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Abstract. We extend de Bruijn’s idea of constructing Penrose’s non-periodic
tilings of the plane to higher-dimensional analogons. On the base of d-dimensional
space groups we can draw nice aperiodic coloured plane tilings with the aid of com-
puters, especially interesting ones if d + 1 is prime. Our proposed probabilistic
method seems to produce attractive pictures, in particular.
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1. Introduction

Consider the “(d+ 1)-rotation” ((d+ 1)-cyclic transformation)

R : e1 → e2 → . . . → ed → −e1 − e2 − . . .− ed ( → e1) (1.1)

in the d-dimensional Euclidean space Ed for even d in a coordinate system (O, e1, e2, . . . , ed)
to be fixed later more precisely.
That means in a matrix form (e1, e2, . . . , ed)→

(Re1,Re2, . . . ,Red) = (e1, e2, . . . , ed−1, ed)















0 0 0 · · · 0 −1
1 0 0 · · · 0 −1
0 1 0 · · · 0 −1
...
...
...
. . .

...
...

0 0 0
... 1 −1















, (1.2)
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i.e., by use of the Einstein convention

ei → ejR
j
i with detR := det(R

j
i ) = 1.

The eigenvalues of R are the (d + 1)-roots of one (except 1) of the characteristic equation
0 = det(λId −R), that is the minimal polynomial for R. By induction on d we get

0 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ 0 0 · · · 0 1
−1 λ 0 · · · 0 1
0 −1 λ · · · 0 1
...

...
...
. . .

...
...

0 0 0 · · · −1 (λ+ 1)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= λd + λd−1 + . . . + λ+ 1. (1.3)

The complex conjugate eigenvalues

λ1 = ei
2π

d+1 , λd = ei
2πd

d+1 =: λ1, . . .

in pairs determine d
2
2-dimensional R-invariant real planes. Each of them can be chosen

parallel to our computer screen to visualize the intersection of the R-invariant collection of
parallel hyperplane pencils, being defined in Section 4, with the screen.

So we get attractive (d+ 1)-periodic pictures, then also aperiodic ones by a unified algo-
rithm, illustrated in our figures. The method is analogous to that of N.G. de Bruijn [4]
which is very important in the theory of quasicrystals as well. In this direction we only refer
to works of L. Danzer [6], A.W.M. Dress and his students [2] and of P. McMullen [7]
(see also [1]). The general algorithm [10] for finding space groups in Ed, gives the possibility
to extend this method to further applications. This will also be indicated in Section 4.

2. The eigenvectors of R and its canonical form

Solving the eigenvector equation, according to (1.3), we get

(e1, e2, . . . , ed)











λd−1 + · · ·+ λ+ 1
...

λ+ 1
1











=: sλ , (2.1)

a typical eigenvector to the eigenvalue λ (up to a complex factor). Appropriate eigenvector
pairs s1, sd =: s1, . . . to the conjugate eigenvalues yield a new basis with

(t1, t2, . . . , td−1, td) := (s1, s1, . . . , sd/2, sd/2)















1
2
− 1

2i
· · · 0 0

1
2

1
2i

· · · 0 0
...

...
. . .

...
...

0 0 · · · 1
2
− 1

2i

0 0 · · · 1
2

1
2i















=

= (e1, e2, . . . , ed−1, ed)















1 1 · · · 1 1
0 1 · · · 1 1
...
...
. . .

...
...

0 0 · · · 1 1
0 0 · · · 0 1















M, (2.2)
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where

M =

















λd−1
1 λ

d−1

1 · · · λd−1
d/2 λ

d−1

d/2

λd−2
1 λ

d−2

1 · · · λd−2
d/2 λ

d−2

d/2
...

...
. . .

...
...

λ1 λ1 · · · λd/2 λd/2
1 1 · · · 1 1































1
2
− 1

2i
· · · 0 0

1
2

1
2i

· · · 0 0
...

...
. . .

...
...

0 0 · · · 1
2
− 1

2i

0 0 · · · 1
2

1
2i















.

Thus, we can express the action of R on the basis (t1, t2, . . . , td−1, td):

R(t1, t2, . . . , td−1, td) = (Rs1,Rs1, . . . ,Rsd/2,Rsd/2)















1
2
− 1

2i
· · · 0 0

1
2

1
2i

· · · 0 0
...

...
. . .

...
...

0 0 · · · 1
2
− 1

2i

0 0 · · · 1
2

1
2i















=

= (s1, s1, . . . , sd/2, sd/2)H = (t1, t2, . . . , td−1, td)















1 1 · · · 0 0
−i i · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 1
0 0 · · · −i i















H,

with

H =















λ1 0 · · · 0 0

0 λ1 · · · 0 0
...

...
. . .

...
...

0 0 · · · λd/2 0

0 0 · · · 0 λd/2





























1
2
− 1

2i
· · · 0 0

1
2

1
2i

· · · 0 0
...

...
. . .

...
...

0 0 · · · 1
2
− 1

2i

0 0 · · · 1
2

1
2i















, (2.3)

i.e.,

R(t1, t2, . . . , td−1, td) = (t1, t2, . . . , td−1, td)















cos 2π
d+1

− sin 2π
d+1

· · · 0 0

sin 2π
d+1

cos 2π
d+1

· · · 0 0
...

...
. . .

...
...

0 0 · · · cos πd
d+1

− sin πd
d+1

0 0 · · · sin πd
d+1

cos πd
d+1















as usual canonical form. Moreover, (2.2) provides a real basis transform

(t1, t2, . . . , td−1, td) = (e1, e2, . . . , ed−1, ed)















1 1 · · · 1 1
0 1 · · · 1 1
...
...
. . .

...
...

0 0 · · · 1 1
0 0 · · · 0 1















W,
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where

W =

















cos 2π(d−1)
d+1

− sin 2π(d−1)
d+1

· · · cos πd(d−1)
d+1

− sin πd(d−1)
d+1

cos 2π(d−2)
d+1

− sin 2π(d−2)
d+1

· · · cos πd(d−2)
d+1

− sin πd(d−2)
d+1

...
...

. . .
...

...
cos 2π

d+1
− sin 2π

d+1
· · · cos πd

d+1
− sin πd

d+1

1 0 · · · 1 0

















(2.4)

not expanded further, because (2.2) is also comfortable through complex numbers. We use
the Einstein convention by writing

ti = ejt
j
i (2.5)

for the formula (2.4) or (2.2), respectively.

3. An R-invariant scalar product

For an R-invariant symmetric positive definite scalar product

〈 , 〉 : Ed × Ed → R, 〈ei, ej〉 =: gij = gji (3.1)

the Gramian (gij) has to be introduced by (1.2)

Rα
i gαβR

β
j = gij (3.2)

where Rα
i is the transposed of R

i
α.

This is an equation system for the Gramian gij of
d(d+1)

2
parameters whose number can be

reduced to d
2
as follows:

g11 = g22 = · · · = gdd =: g0, g12 = g23 = · · · = gd−1,d =: g1,

g13 = g24 = · · · = gd−2,d =: g2, · · · , g1,d−1 = g2d =: gd−2 =: g1d =: gd−1,

gdd =: g0 = dg0 + 2(d− 1)g1 + 2(d− 2)g2 + · · · + 2gd−1,

gd−1,d =: g1 = −gd−1 − gd−2 · · · − g1 − g0,

gd−2,d =: g2 = −gd−2 − gd−3 · · · − g1 − g0 − g1,
...

g1,d =: gd−1 = −g1 − g0 − g1 · · · − gd−2.

(3.3)

From this we get a solution (not uniquely) for any dimension d ≥ 2

g0 = 1, g1 = · · · = gd−1 = −
1

d
,

i.e.

(gij) =















1 − 1
d
· · · −1

d
−1

d

−1
d

1 · · · −1
d
−1

d
...

...
. . .

...
...

−1
d
−1

d
· · · 1 −1

d

−1
d
−1

d
· · · −1

d
1















=: (〈ei, ej〉) (3.4)

which provides a positive definite quadratic form xigijx
j =: 〈x,x〉 as it is well-known. Thus,

the basis {e1, e2, . . . , ed−1, ed} will be fixed in Ed up to isometry defined by the scalar product
〈 , 〉 above.
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4. On R-invariant symmetric forms, in general

As R describes a representation of the cyclic group Cd+1 of order d + 1, affording each non-
trivial character exactly once, the space of all R-invariant bilinear forms has dimension d, and
the space of symmetric bilinear forms has dimension d

2
. Determining the space of G-invariant

forms (gij) for any matrix group G requires solving linear equations of the form (3.2) for each
generator of G in the place of Rj

i . For a general algorithm determining all or some invariant
(positive definite) quadratic forms, see [9]. In this case, however, the situation is more simple,
as the group generated by R is cyclic, and hence Abelian.

First note, that Cd+1 ≤ Sd+1, where Sd+1 is the symmetric group on d + 1 letters, e.g
e1, . . . , ed+1, first. Sd+1 has an absolutely irreducible representation of degree d over any
field of characteristic 0, coming from its natural permutation module, subtracting the trivial
constituent, i.e., describing the action on the quotient space modulo 〈e1 + · · · + ed+1〉. Note
that this provides exactly the representation for R given in the introduction. Because this
representation of Sd+1 is absolutely irreducible (and rational, hence equivalent to its dual),
it is also uniform, and the Sd+1-invariant form (mod scalar factor) is given by (3.4). For a
given quadratic form, e.g., for (gij) in (3.4) we can look for the integral matrix group leaving
it invariant. In [3] for d = 4 we find a maximal matrix group (of order 240 = 2 · 5!) 31/07/01
of Bravais lattice type XXII/I with generators

A









0 0 0 −1
0 0 −1 0
−1 0 0 0
0 −1 0 0









, B









0 0 1 −1
−1 0 1 0
0 −1 1 0
0 0 1 0









, C









1 0 0 0
1 0 −1 0
1 0 0 −1
1 −1 0 0









(4.1)

where B2 ∼ R is integral (Z) equivalent with our 5-cyclic transform. Surprisingly, a centred
lattice basis with rational (Q) matrixW = (W j

i ) as follows

(ê1 ê2 ê3 ê4) = (e1 e2 e3 e4)











1
5

1
5

1
5

2
5

1
5

1
5

2
5

1
5

1
5

2
5

1
5

1
5

2
5

1
5

1
5

1
5











, êi = ejW
j
i , (4.2)

provides us an isomorphic (Q-equivalent) matrix group 31/07/02 of Bravais lattice type
XXII/II, with corresponding generators

Â









0 0 −1 0
0 0 0 −1
0 −1 0 0
−1 0 0 0









, B̂









1 1 1 1
0 0 −1 0
0 0 0 −1
−1 0 0 0









, Ĉ









0 0 −1 0
−1 0 0 0
0 −1 0 0
1 1 1 1









. (4.3)

That means, e.g., B =WB̂W−1 holds with

W−1 =









−1 −1 −1 4
−1 −1 4 −1
−1 4 −1 −1
4 −1 −1 −1









, and (ĝij) =











1 1
2

1
2

1
2

1
2
1 1

2
1
2

1
2

1
2
1 1

2
1
2

1
2

1
2
1











(4.4)

will be the matrix of the corresponding invariant quadratic form (up to a scalar factor), as
Wα

i gαβW
β
j =

1
10
ĝij shows in case d = 4. We say: (gij) characterizes the Bravais type XXII/I,
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and (ĝij) describes the Q-equivalent Bravais type XXII/II. These maximal groups Γ and
Γ̂ are Q-equivalent but not Z-equivalent (Z for integers), thus Γ and Γ̂ describe different
space groups. Note, however, that the groups generated by B and B̂, respectively, are also
Z-equivalent, according to our starting arguments. A similar situation occurs in every even
dimension d.

5. The intersections

The computer screen will be chosen first as a 2-dimensional point set

C :=
{−→
OT =: t = t0 + t1c

1 + t2c
2 | c1, c2 ∈ R

}

(5.1)

in our d-space spanned by {O, e1, e2, . . . , ed−1, ed}, where

t0 = eit
i
0 and t1 = ejt

j
1, t2 = ekt

k
2. (5.2)

Here t0 is given arbitrarily, t1 and t2 are due to (2.5), (2.4), (2.2). Now the 2-dimensional
Gramian of {t1, t2} can be chosen as

〈tα, tβ〉 =: tαβ = tiαgijt
j
β = ttδαβ (5.3)

(the Kronecker symbol) α, β = 1, 2 by (2.3) and the R-invariance of the scalar product 〈 , 〉
above. That means {t1, t2} will be fitted to the orthonormal basis of the screen by a similarity
factor t > 0. Varying this factor later, we get larger or smaller picture on our screen. Now
we define the important hyperplanes of the point lattice LO of the origin O, spanned by the
basis {e1, e2, . . . , ed−1, ed} in Sections 1 and 3

L0 :=
{

X | −−→OX = e1x
1 + . . .+ edx

d, x1, . . . , xd ∈ Z
}

(5.4)

with Gramian gij = 〈ei, ej〉 in (3.4).

5.1.

The dual vectors {εj} to {ei} defined by

ε
jei = δ

j
i (Kronecker) (5.5)

in the dual space Ed of linear forms to Ed assign natural hyperplanes by equations

ε
jx = ε

jeix
i = xj = const. ∈ Z. (5.6)

The transformation formula (1.2) provides the corresponding one to linear forms











ε
1

ε
2

...
ε
d











→











ε
1R−1

ε
2R−1

...
ε
dR−1











=



















−1 1 0 · · · 0
−1 0 1 · · · 0
−1 0 0 · · · 0
...

...
...
. . .

...
−1 0 0 · · · 1
−1 0 0 · · · 0





























ε
1

ε
2

...
ε
d











, (5.7)
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indeed, by keeping the form values invariant

(εjR−1)(Rei) = ε
jei = δ

j
i . (5.8)

That means

R−1 : ε1 → −ε
1 + ε

2 → −ε
2 + ε

3 → . . . → −ε
d−1 + ε

d → ε
d (→ ε

1) (5.9)

is a (d+ 1)-rotation according to (1.1)–(1.2).
The hyperplane pencil parallel to ε

1 has equations

ε
1x = x1 = const. ∈ Z.

This intersects our computer screen (4.1)–(4.2) in points T (t) by

ε
1t = t10 + t11c

1 + t12c
2 = x1 = const. ∈ Z (5.10)

as linear equation in the screen coordinates c1, c2 ∈ R for each fixed x1 ∈ Z. Here t10 is
determined by the origin T0(t0) of the screen in Ed. The formula (2.2) or (2.4) gives t1 and
t2, e.g.,

t11 = 1 + cos
2π

d+ 1
+ . . . + cos

2π(d− 1)
d+ 1

, t12 = − sin
2π

d+ 1
− . . .− sin 2π(d− 2)

d+ 1
. (5.11)

Thus we get a parallel line pencil, coloured with the first colour (say red) in our screen. Then
comes the second hyperplane pencil, parallel to −ε

1 + ε
2

(−ε
1 + ε

2)x = −x1 + x2 = const. ∈ Z.

This intersects our computer screen (5.1)–(5.2) as the equation

(−ε
1 + ε

2)t = −t10 + t20 + (−t11 + t21)c
1 + (−t12 + t22)c

2 = const. ∈ Z (5.12)

prescribes for the screen coordinates c1, c2 ∈ R. Thus we get the parallel line pencil, designed
with the second colour (yellow) in the screen. Again (2.2) or (2.4) provides the coefficients.
And so on up to −ε

d, deriving the (d + 1)-th line pencil in the screen. Until now the scalar
product (3.4) did not play an explicit role.

5.2.

The hyperplanes orthogonal to e1, e2, . . . , ed−1, ed,−e1 − e2 − . . . − ed−1 − ed, respectively,
through the origin, have the equations for x = eix

i

0 = 〈e1,x〉 = 〈e1, eix
i〉 = g1ix

i, then 0 = g2ix
i, . . . , 0 = gdix

i, (5.13)

0 = −(g1i + g2i + g3i + . . .+ gdi)x
i,

respectively. The corresponding parallel hyperplane pencils, each having all points of L0 by
(5.4), will be

dg1ix
i = const. ∈ Z, . . . , dgdix

i = const. ∈ Z, (5.14)

−x1 − x2 − . . .− xd = const. ∈ Z,

respectively. These intersect our computer screen (4.1)–(4.2) in points T (t) by

dg1i(t
i
0 + ti1c

1 + ti2c
2) = const. ∈ Z, . . . , dgdi(t

i
0 + ti1c

1 + ti2c
2) = const. ∈ Z, (5.15)

−(t10 + . . . + td0)− (t11 + . . .+ td1)c
1 − (t12 + . . . + td2)c

2 = const. ∈ Z,

respectively, d+1 parallel line pencils in coordinates c1, c2 ∈ R, designed by d+1 colours. Thus
we get an R-invariant picture on our computer screen C by (5.1)–(5.2), again.
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6. Examples and closing remarks

For d = 2 our E2 is just the computer screen

(e1, e2) → (Re1,Re2) = (e1, e2)

(

0 −1
1 −1

)

;

(t1, t2) = (e1, e2)

(

1 1
0 1

)(

−1
2
−
√

3
2

1 0

)

= (e1, e2)

(

1
2
−
√

3
2

1 0

)

,

gij =

(

1 −1
2

−1
2

1

)

, tαβ =

(

3
4
0

0 3
4

)

.

Let t0 = 0. Then we get the 3 line pencils, as indicated in Subsection 5.1,

1

2
c1 −

√
3

2
c2 = const. ∈ Z,

1

2
c1 +

√
3

2
c2 = const. ∈ Z and 1c1 = const. ∈ Z. (6.1)

For the construction of Subsection 5.2 we get in (5.15)

2
(

−
√

3
2

)

c2 = const. ∈ Z, 2
(

3
4
c1 +

√
3

4
c2
)

= const. ∈ Z,

−3
2
c1 +

√
3

2
c2 = const. ∈ Z.

(6.2)

Both pictures serve the well-known regular triangle tiling up to a similarity constant (Fig. 1).

Figure 1: The construction to (6.1) and (6.2), respectively, d = 2

Varying the origin T0(t0) of the screen, the 3 pencils do not move, since they are defined
to the coordinate system (O, e1, e2). But if we allow inhomogeneous linear forms for a pencil,
e.g.,

(

1

2
, ε1

)

x :=
1

2
+ ε

1x =
1

2
+ x1 = const. ∈ Z,

then the origin O may not lie on any pencil line (Fig. 2).
The most interesting dimensions are d = 4, 6, 10, 12, . . ., when d + 1 is prime. Moreover,

the planes {t3, t4}, . . . , {td−1, td} by (2.2), (2.4) can play the former role of {t1, t2}, with
permuted colours.

In Subsection 5.1 any form ε and its R−1 images by (5.7) can be chosen because of 5.2
such that we choose the d+ 1 linear forms

ε = dε1−ε
2− . . .−ε

d, εR−1 = −ε
1+dε2− . . .−ε

d, . . . , εR−d = −ε
1−ε

2− . . .−ε
d (6.3)
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Figure 2: The construction with inhomogeneous linear form to (6.1)

Figure 3: Dimension 4; the screen is parallel to (t1, t2), intersected by coordinate 3-planes
(a) through the origin, (b) translated origin

for the d+ 1 hyperplane pencils in Subsection 5.1.
In cases d > 2 the change of the origin T0(t0) of the screen C will cause changes in the

d+ 1 line pencils.
In Figures 3–6 we illustrate d = 4, and d = 6 for 5 and 7 order rotational symmetry,

respectively. For d = 4 we have the scalar product at (3.4)

g0 = 1, g1 = g, g2 = g3 = −
1

2
− g, (6.4)

in general, for so called decagonal lattices with one free parameter g (g = − 1
4
yields g2 = g3 =

−1
4
as well in (3.4) which describes the so-called icosahedral lattice in Section 5).

Remarks:

1. Although the planar pictures for given d can be drawn up to similarity without any
d-dimensional theory, the method might give some advantages from various aspects
emphasized no more in details.
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Figure 4: Dimension 4, the screen is parallel to (t1, t2), intersected by
coordinate 3-planes orthogonal to e1, e2, . . . ,−e1 − . . .− ed, respectively

(a) through the origin, (b) translated origin

Figure 5: Dimension 6, the screen parallel to (t1, t2), intersected by
coordinate 5-planes through the origin

2. Observe that the line pencils may have only one points (the centre) when all the d+ 1
lines meet, since any 2-plane {t1, t2} by (2.4) will have only one common point with the
d+ 1 hyperplanes because of the irrationality of the d+ 1-roots of one (6= 1).

3. The d + 1 line pencils determine d
2
congruence types of parallelograms which can form

a nonregular tiling, by cancelling superflous lines. We suggest the reader to construct a
probabilistic algorithm for such a nonregular tiling (see Fig. 6,a-b).

4. All of our algorithms by coloured lines provide attractive pictures (nicer than our illus-
trations without colours) and some imaginations about higher-dimensional Euclidean
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Figure 6: Dimension 6, the pencils are induced by 5-planes orthogonal to e1, e2, . . .,
−e1 − . . .− e6. The screen is parallel to (a) (t1, t2), (b) (t3, t4), respectively.

geometry.

5. We again assume that d is even. If we imagine 3-dimensional screen, i.e., such an
intersection, then d + 1 order periodicity can easily be achived in dimension d + 1 by
taking a basis vector invariant under rotation R due to equations (1.1)–(1.2)

ed+1 = Red+1. (6.5)

Then t3 = ed+1 in addition to (5.2), perpendicular to t1 and t2 will be the third “screen
basis vector”.
A similar phenomenon can be obtained by

R : e1 → e2 → . . . → ed → ed+1 → e1 (6.6)

with a R-invariant vector e1 + e2 + . . . + ed+1.
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