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Abstract. A subdivision surface is a powerful tool to represent a smooth sur-
face with arbitrary topology. It starts with a control polyhedron which roughly
approximates the final surface. The polyhedron gradually approaches to the final
surface by subdividing faces more closely to approximate the final surface. How-
ever, it is not so popular in engineering applications because of the procedural
nature. Algorithms for parametric surfaces cannot be applicable to a procedural
surface. This paper discusses a method for evaluating a subdivision surface with
parametric values based on Stam’s work. Our approach gained stability around
an extraordinary point as well as the convergence of a normal vector at the point.
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1. Introduction

Subdivision surfaces have been considered as a powerful tool to represent smooth shapes with
arbitrary topology. Although they are widely used in computer graphics applications, they
are not so popular in engineering applications such as CAD/CAM/CAE. One of the reasons
is their procedural nature. Most of algorithms for parametric surfaces are not applicable to
the subdivision surfaces.

Recently a method for evaluating a surface point with certain parametric values was
proposed by J. Stam [6]. This method allows us to treat subdivision surfaces as parametric
surfaces. However, there still remain some problems on the robustness of the computation
around extraordinary points. This paper discusses the issue on basic evaluations of subdivision
surfaces and proposes an approach for the solution.

This paper proceeds with the overview of subdivision surfaces. Section 3 describes their
mathematical formulation. Section 4 discusses the computation around extraordinary points.
Section 5 explains a Catmull-Clark surface as an example of a subdivision surface. Finally,
Section 6 concludes the paper.
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2. Subdivision Surface

A subdivision surface starts with a control polyhedron which roughly approximates the final
surface. In each step of the subdivision, a new polyhedron is generated by subdividing faces
into smaller faces which approximate the final surface more closely than the original faces.
Therefore the polyhedron gradually approaches to the final surface.

There are several different types of subdivision surfaces, namely, a Catmull-Clark

surface [1], a Doo-Sabin surface [2], a Loop surface [3], etc. Fig. 1 illustrates subdivision
steps of a Catmull-Clark surface and a Loop surface. Every face is subdivided into
small faces by inserting vertices. One can easily compute approximating polyhedra with any
accuracy by recursively subdividing the polyhedron based on the subdivision rules. This
is usually enough for the rendering purpose. However, they are merely approximations. A
subdivision process do not calculate exact positions or normals of the surface.

Figure 1: Subdivision steps of a Catmull-Clark surface (above)
and Loop surface (bottom)

A valence of a vertex is the number of edges connected to the vertex. A vertex is said to be
regular if its valence is four and six in case of rectangular and triangular patches, respectively.
Otherwise, it is called an extraordinary vertex. A surface patch consisting only of regular
vertices is regular. Many kinds of subdivision surfaces are designed such that regular patches
converge to certain parametric surfaces, e.g., B-spline surfaces, box spline surfaces, and so
on. During the subdivision process, the number of regular patches increases, while that of
extraordinary vertices is constant. Most of the region of a subdivision surface become regular
after several subdivision steps as shown in Fig. 1 where the patches containing extraordinary
vertices are specified with shadows.

Fig. 2 shows two examples of subdivision steps. The original vertices are indicated with
black dots and lines, while new vertices are shown as circles. The left figure shows a step
of a Catmull-Clark surface with an extraordinary vertex of valence five, while the right
one shows a Loop surface case with an extraordinary vertex of valence five as well. There
are two kinds of new vertices, namely even vertices and odd vertices. An even vertex has
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Figure 2: A subdivision step of a Catmull-Clark surface (left) and Loop surface (right).

an corresponding original vertex, while an odd vertex is a newly inserted vertex with the
subdivision step. In case of a Catmull-Clark surface, odd vertices are further categorized
into two types, i.e., edge vertices and face vertices, according to the locations where they are
inserted.

Figure 3: Catmull-Clark subdivision: masks for a face vertex (left),
edge vertex (middle), and even vertex (right)

Fig. 3 illustrates subdivision rules of a Catmull-Clark surface, called subdivision
masks. The left figure depicts the subdivision mask for a face vertex. The middle and
right ones show the the masks for an edge vertex and an even vertex, respectively. The new
vertices are denoted with black dots. The numbers in the figure are the coefficients of the
subdivision rule, i.e., the weights for calculating new vertices from the original vertices. For
instance, a face vertex v is obtained by the following equation:

v =
1

4
(v0 + v1 + v2 + v3) ,

where v0,v1,v2, and v3 correspond to the original vertices of the face. In the mask for an
even vertex, l stands for the valence of the vertex while β and γ are given by the following
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equations:

β =
3

2l
, γ =

1

4l
.

Figure 4: Loop subdivision: masks for an edge vertex (left) and even vertex (right)

Fig. 4 indicates subdivision masks of a Loop surface. The left figure shows the mask for
an edge vertex, while the right one depicts that for an even vertex. Here, l is the valence of
the vertex and β is computed from the following equation:

β =
1

l

(

5

8
−

(

3

8
+

1

4
cos

2π

l

)2
)

.

Every subdivision rule is given as a convex combination so that a new vertex is calculated
with a weighted average of the original vertices. Thus the subdivided polyhedron consisting
of the new vertices becomes more smooth and approximates the final surface more closely.
However, it must be noted again that the polyhedron is only an approximation.

Stam proposed a way to compute an exact position of a surface point corresponding to
certain parametric values by using the regular grids after some subdivision steps [6]. This
allows us to see a subdivision surface as a parametric surface. Though, his method is not
so stable around an extraordinary point. Especially the derivative computations suffer from
instability. We have generalized the Stam’s method to calculate differential properties.

3. Mathematical Formulation

This section explains a mathematical formulation of a subdivision surface. The discussion is
applicable to the most of subdivision surfaces.

A subdivision surface patch is determined by K control points:

C = (c1 . . . cK)T .

In order to simplify the problem, we assume that a patch contains at most one extraordinary
point.

A subdivision surface has a parametrization even if it has an extraordinary point [5]. So
that a surface can be defined with the following formula over a domain Ω:

S(u, v)|(u,v)∈Ω =
K
∑

i=1

bi(u, v)ci = b(u, v)TC. (1)
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Here, b(u, v) = (b1(u, v) . . . bK(u, v))T is a set of basis functions. The basis functions must
satisfy the partition of unity:

K
∑

i=1

bi(u, v) = 1 (2)

in order to guarantee the affine invariance so that a surface generated with affinely trans-
formed control points coincides with the surface transformed by the same affine transforma-
tion. The domain is assumed to be a unit square in this paper: Ω = [0, 1] × [0, 1]. In case
of a regular surface, it is determined by R control points with basis functions bR(u, v) =
(b1(u, v) . . . bR(u, v))

T which are analytically defined, usually polynomials, such as B-spline
functions and box spline functions. For instance, a regular Catmull-Clark patch consist-
ing of R = 16 control points converges to a cubic B-spline surface. A regular Loop patch
composed of R = 12 control points converges to a cubic box spline surface.

A subdivision step generates M control points, C, from the original control points, C:

C = (c1 . . . cM)T = ĀC,

where Ā is a M ×K matrix representing the barycentric combination of the original control
points. The surface is subdivided into L+ 1 subsurfaces defined over Ω with the new control
points, C. In other words, the original patch consists of L + 1 subpatches corresponding to
the subdomains Ωk:

S(u, v)|(u,v)∈Ωk
= Sk(u

′, v′)|(u′,v′)∈Ω ,

where
Ω = Ω0 ∪ Ω1 ∪ . . . ∪ ΩL and Ωi ∩ Ωj = ∅ (i 6= j).

In the left case of Fig. 2, i.e., a Catmull-Clark surface, the numbers of the original control
points and new points are K = 18 and M = 27, respectively. There are the K = 11 original
control points and M = 17 new points in the right case, i.e., a Loop surface.

Only one of the subpatches has the same topology as the original patch and the rests are
regular patches:

Sk(u
′, v′) =

{

b(u′, v′)TP0C if k = 0,
bR(u

′, v′)TPkC if k = 1, . . . , L

Here, Pk implies a picking matrix for selecting either K or R control points from the M

control points, C. P0 is a K ×M matrix. Otherwise, Pk is a R×M matrix. Each row of Pk

is filled with zeros except for a one in the column corresponding to the control points of each
subpatch.

Each subpatch Sk is mathematically defined over Ω while it coincides with a part of the
original surface S corresponding to the subdomain Ωk. There are L+1 domain transformations
between the original surface and the subsurfaces:

φk : Ωk → Ω.

Since every subpatch but S0 is analytically defined, the patch of our interest is S0 defined
by K control points. A subdivision matrix A generates K control points of the subpatch S0
from the original control points:

C(1) = P0C = AC(0) = AC.
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Here we have introduced a new notation, C(i), standing for control points of the i-th level
subdivision. Because of the definition, A is a K×K matrix consisting of K rows of the matrix
Ā.

The corresponding subdomain of the original patch Ω0 is also denoted as Ω(1) to specify
the level of subdivision. The domain transformation from Ω(1) to Ω is denoted with φ instead
of φ0:

φ : Ω(1) = Ω
(0)
0 → Ω

By applying the surface evaluation scheme given by Equation (1), the subsurface of the first
subdivision level can be represented as below:

S(u, v)|(u,v)∈Ω(1) = b(u(1), v(1))TC(1)
∣

∣

(u(1),v(1))∈Ω

= b(φ(u, v))TAC
∣

∣

(u,v)∈Ω(1) .

Every subdivision step is processed with the same subdivision matrix A:

C(i) = AC(i−1).

So the control points of the n-th subdivision level are given by the following equation:

C(n) = AnC. (3)

The corresponding subdomain is as below:

(u(n), v(n))
∣

∣

(u(n),v(n))∈Ω
= φn(u, v)|(u,v)∈Ω(n) .

Fig. 5 illustrates the domain subdivision of a Catmull-Clark surface. For each step, a do-
main Ω(i) is subdivided into four subdomains, Ω

(i)
0 , Ω

(i)
1 , Ω

(i)
2 , and Ω

(i)
3 , where Ω

(i)
0 corresponds

to a domain of the i+ 1-th level subdivision Ω(i+1).

Finally, the following equation for the n-th level subsurface is obtained:

S(u, v)|(u,v)∈Ω(n) = b(u(n), v(n))TC(n)
∣

∣

(u(n),v(n))∈Ω

= b(φn(u, v))TAnC
∣

∣

(u,v)∈Ω(n) . (4)

We are ready for evaluating a point of the subdivision surface with parameters (u, v).

1. Find n and k such that given (u, v) is in Ω
(n)
k where k 6= 0.

2. Evaluate the following equation:

S(u, v)|
(u,v)∈Ω

(n)
k

= bR(φk(φ
n(u, v)))TPkĀA

nC.

This evaluation process is rather expensive if n is large, because the multiplication of the
subdivision matrix A is not so trivial. Furthermore, the equation cannot evaluate a point
of parameters (0, 0), i.e., at the extraordinary point. The eigenspace analysis may be used
for accelerating the evaluation but also for examining the convergence at the extraordinary
point.
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Figure 5: Domains of a Catmull-Clark surface (above) and Loop surface (below)

4. Eigenspace Analysis

An eigenvector vi and an eigenvalue λi of a matrix A satisfies the following relation:

Avi = viλi .

It is known that subdivision matrices of many types of subdivision surfaces have K linearly
independent eigenvectors [4]. This indicates that the subdivision matrix A can be written
with the diagonal matrix Λ and the invertible matrix V :

A = V ΛV −1

where

V = (v1 . . .vK) , Λ =







λ1 0
. . .

0 λK






.

By substituting the matrix A with the diagonalized form, Equation (3) of n-th level control
points yields the following equation:

C(n) = AnC = V ΛnV −1C.
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This indicates that a subdivision surface can be evaluated without multiplying the K × K

matrix A in (4):

S(u, v)|(u,v)∈Ω(n) = b(φn(u, v))TV ΛnV −1C

=
K
∑

i=1

(

b(φn(u, v))Tvi

)

λn
i ĉi (5)

where Ĉ = (ĉ1 . . . ĉK)T = V −1C represents the control points in the eigenspace.
We introduce a convention for indexing the eigenvalues λi as below:

|λ1| ≥ |λ2| ≥ . . . ≥ |λK | .

In order to converge the subdivision surface, the limits of control points must also converge.
So any eigenvalue is less than or equal to one: 1 ≥ |λi|. Since a subdivision step generates
new control points with barycentric combinations of the original control points, all rows of A
sum up to 1. Therefore, the first eigenvalue and its corresponding eigenvector is obvious:

λ1 = 1, v1 = (1 . . . 1)T .

The above condition together with the partition of unity of the basis function, i.e., Equa-
tion (2), makes the first term of (5) constant:

S(u, v)|
(u,v)∈Ω

(n)
k

= ĉ1 +
K
∑

i=2

(

b(φn(u, v))Tvi

)

λn
i ĉi (6)

= ĉ1 +
K
∑

i=2

(

bR(φk(φ
n(u, v)))TPkĀvi

)

λn
i ĉi.

Derivatives of the subdivision surface are obtained just by taking partial derivative:

Su(u, v)|(u,v)∈Ω
(n)
k

=
K
∑

i=2

(

∂b(φn(u, v))

∂u

T

vi

)

λn
i ĉi (7)

=
K
∑

i=2

(

∂bR(φk(φ
n(u, v)))

∂u

T

PkĀvi

)

λn
i ĉi.

Equation (6) indicates the convergence of a surface point at the extraordinary point. The
convergent position can be computed by taking the limit of (6):

lim
n→∞

S(u, v)|(u,v)∈Ω(n) = ĉ1,

if 1 > |λ2|. The convergence was firstly discussed by Doo and Sabin [2].
Equation (7) is related to the convergence condition of a normal at the extraordinary

point specified by Reif [5]. The normal exists if and only if λ2 = λ3 is real with multiplicity
2, i.e., 1 > |λ2| = |λ3| > |λ4|. In this case, a normal vector of the n-th level subdivision is
given in the following formula:

n(u, v)|(u,v)∈Ω(n) = Su(u, v)× Sv(u, v)|(u,v)∈Ω(n)

= c (ĉ2 × ĉ3)λ
2n
2 + o(λ2n2 ), (8)

where o(λ2n2 ) indicates that the limit of the rest terms converges to zero faster than λ2n2 .
Therefore, the normal at the extraordinary point is perpendicular to the plane spanned by
the vectors, ĉ2 and ĉ3. However, Equation (8) does not specify the orientation of the normal
vector, because it depends on the sign of the coefficient c.
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5. Example: Catmull-Clark Surface

This section treats a Catmull-Clark surface as an example of subdivision surfaces espe-
cially for discussing differential properties. A Catmull-Clark patch with an extraordinary
point of valence N consists of K = 2N + 8 control points. A subdivision step generates
M = K + 9 control points representing four subsurfaces which correspond to the following
subdomains of the original surface:

Ω0 =

[

0,
1

2

]

×

[

0,
1

2

]

, Ω1 =

[

1

2
, 1

]

×

[

0,
1

2

]

,

Ω2 =

[

1

2
, 1

]

×

[

1

2
, 1

]

, Ω3 =

[

0,
1

2

]

×

[

1

2
, 1

]

.

This means that the domain transformation of the subdivision step is a simple scaling trans-
formation of factor two:

(u(n), v(n))
∣

∣

(u(n),v(n))∈Ω
= (2nu, 2nv)|(u,v)∈Ω(n) .

Therefore, the Catmull-Clark surface of (u, v) is given by the following equation:

S(u, v)|
(u,v)∈Ω

(n)
k

=
K
∑

i=1

(

N(φk(2
nu, 2nv))TPkĀvi

)

λn
i ĉi (9)

= ĉ1 +
K
∑

i=2

(

N(φk(2
nu, 2nv))TPkĀvi

)

λn
i ĉi, (10)

where N(u, v) denotes uniform cubic B-spline functions. The first order derivative of the
Catmull-Clark surface is given as below:

Su(u, v)|(u,v)∈Ω
(n)
k

= 2n+1

K
∑

i=1

(

Nu(φk(2
nu, 2nv))TPkĀvi

)

λn
i ĉi (11)

= 2n+1

K
∑

i=2

(

Nu(φk(2
nu, 2nv))TPkĀvi

)

λn
i ĉi. (12)

Equations (9) and (11) are the same as those specified by Stam [6]. Our main contribu-
tions are (10) and (12) which are obtained by pre-evaluating the first terms. The equations
indicate the convergence of a surface point as well as a normal at the extraordinary point as
described in Section 4. Furthermore, the equations, especially of derivatives, become much
more numerically stable.

The first order derivative (12) near the extraordinary point is governed by the first two
terms, λn

2 ĉ2 and λn
3 ĉ3. Thus, the normal vector at the extraordinary point is given by the

following equation:

n(0, 0) = lim
n→∞

Su(u, v)× Sv(u, v)|(u,v)∈Ω
(n)
k

= lim
n→∞

(

2fk(2λ2)
2n

ĉ2 × ĉ3 + o
(

(2λ2)
2n))

, (13)

where

fk =
(

Nu(0, 0)
T
PkĀv2

)(

Nv(0, 0)
T
PkĀv3

)

−
(

Nu(0, 0)
T
PkĀv3

)(

Nv(0, 0)
T
PkĀv2

)

.
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Although fk varies depending on k, the sign of fk is consistent. Equation (13) gives a normal
at the extraordinary point.

Fig. 6 shows some results of the normal vector calculation. The left three figures show
extraordinary points of valence three while the right three figures show those of valence five.
The top two figures on page 5 are calculated with (11), while the middle and bottom two
figures are generated with (12) and (13), respectively. Due to the instability caused by the
first term of (11), the left figures have wrong normal vectors around the extraordinary points
which results dark spots of shading calculation. Other figures indicate that Equations (12)
and (13) are capable of evaluating proper normal vectors around extraordinary points.
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Figure 6: Normal vectors around extraordinary points of valence three and five

6. Conclusion

This paper discussed an approach to modify the Stam’s method for evaluating a subdivision
surface around an extraordinary point. A simplified version of the evaluation formula is
obtained based on the investigation into the first eigenvalue and its eigenvector of a subdivision
matrix. The achievements of the modification were verified with some experiments.
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