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Abstract. In this paper we classify two-parametric motions in the Lobatchevski
plane L2. These motions are surfaces on the Lie group SO(2, 1). In the first part
the basic properties of motions in L2 are derived and it turns out that the kine-
matical space belonging to these motions is locally the space SO(2, 2)/SO(2, 1)
realized as the unit quadric with signature (2, 2) in the vector space R4. The re-
maining part contains explicit expressions and graphic representations of surfaces
induced by motions with constant invariants. We also present some special cases
— developable surfaces.
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1. Introduction

Let us consider vector space V = R3 with scalar product (x, y) = x1y1 + x2y2 − x3y3 and
vector product x × y = (x2y3 − x3y2, x3y1 − x1y3, x2y1 − x1y2) for any x = (x1, x2, x3) and
y = (y1, y2, y3) from V . We can choose an orthonormal base {e1, e2, e3} in V (e2

1 = e2
2 = 1,

e2
3 = −1, (ei, ej) = 0 for i 6= j) for which e1 × e2 = −e3, e2 × e3 = e1, e3 × e1 = e2. The
Lobatchevski (hyperbolic) plane L2 is the projective plane P2, realized as one-dimensional
subspaces of V .

Planar hyperbolic geometry is the geometry of L2 with respect to the group of projective
transformations preserving the so-called absolute conic x2

1 + x2
2− x

2
3 = 0 (see [4]). This group

is isomorphic to the Lie group G = SO(2, 1) realized as a group of 3× 3 matrices acting on
L2 by matrix multiplication. Each element g of SO(2, 1) satisfies the condition J = gTJg,
where J is the matrix representation of the quadratic form x2

1 + x2
2 − x2

3,

J =





1 0 0
0 1 0
0 0 −1



 .
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The 3-dimensional Lie algebra of the group SO(2, 1), denoted by so(2, 1), is interpreted as
the tangent space in the unit element of the group G and every element X from so(2, 1) is of
the form

X =





0 −x3 x2

x3 0 x1

x2 x1 0





or Xv = (x1, x2, x3) in vector notation. The operation of Lie bracket in so(2, 1) is the same
as the vector product introduced above, [X,Y ] = Xv × Y v. For the invariant Killing form
we obtain K(X,Y ) = 2(Xv, Y v), where (Xv, Y v) means the scalar product introduced above.
From this we see that the Lie algebra so(2, 1) can be identified with the vector space V with
the vector product introduced above. We also notice that introduced operations are similar
to the usual operations of vector algebra, which correspond to spherical kinematics (see [1]).
This analogy will be also used in what follows.

2. Motion in a homogeneous space

By a two-parametric motion in L2 we mean a 2-dimensional motion in the groupG = SO(2, 1),
which is an immersion g of a 2-dimensional manifold X into G. Let us choose two copies of
L2 and in each of them a fixed orthonormal frame: R̄0 in moving plane L̄2 and R0 in fixed
plane L2. The group G = SO(2, 1) acts as a group of linear maps from L̄2 into L2 by the
rule g(R̄0) = R0g. Then for fixed elements g1, g2 in G we consider motions g1gg

−1
2 and g

equivalent.
This shows that we have to consider the homogeneous space G0 = G×G/Diag(G×G),

where Diag(G × G) is the group of all elements (g, g) for g from G. We consider the action
of G × G on G given by the rule (g1, g2)g = g1gg

−1
2 and this shows that G can be identified

with G0 because the isotropy group of the unit element e of the G is the group Diag(G×G)
(see [3]). This homogeneous space G0 is called the kinematical space of the group G. By a
2-dimensional motion in G we now understand an immersion of a 2-dimensional manifold X
into G0 and the properties of the motion in G are properties of an immersion of X into G0.

The classical example is the geometry of the group SO(3) realized as the group of mo-
tions of the unit sphere S2 in E3, the homogeneous space G0 of which is locally the space
SO(4)/SO(3) and it is the 3-dimensional elliptic space (see [1, 2]).

In our case, SO(2, 1) × SO(2, 1) is locally isomorphic with SO(2, 2), which is the group
of projective transformations in P3 preserving the quadric with signature (2, 2). This follows
that the homogeneous space G0 is locally the space SO(2, 2)/SO(2, 1) of dimension 3. We
can realize this space as the unit quadric with the signature (2, 2) in the projective space P3

realized as one-dimensional subspaces of vector space R4. Because the space SO(2, 2)/SO(2, 1)
is 3-dimensional, each two-parametric motion can be represented as a surface in this space
and properties of such surfaces are the same as properties of two-parametric motions.

3. Two-parametric motions in L2

Let g(X) be a two-parametric motion in L2. We may identify the elements of SO(2, 1) ×
SO(2, 1) with pairs of orthonormal frames by R = R0g1, R̄ = R̄0g2, so that the pair (g1, g2)
is identified with the pair (R, R̄). Let (R, R̄) be a lift of g, by definition a pair of orthonormal
frames such that gR̄ = R. From the following formulas

dR = Rg−1
1 dg1, dR̄ = R̄g−1

2 dg2
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we obtain the left invariant form (ϕ, ψ) of the lift (g1, g2), where ϕ = g−1
1 dg1 and ψ = g−1

2 dg2.
Let’s define new forms ω = (ϕ− ψ)/2 and η = (ϕ+ ψ)/2. Forms ϕ, ψ, ω and η have values in
so(2, 1). Then dR = Rϕ, dR̄ = R̄ψ and

dϕ+ ϕ ∧ ϕ = 0, dψ + ψ ∧ ψ = 0, (1)

or, by using ω and η

dω + η ∧ ω + ω ∧ η = 0, dη + ω ∧ ω + η ∧ η = 0,

where (1) are Maurer-Cartan relations obtained by exterior differentiation of ϕ and ψ. This
gives the integrability conditions in the form

dω1 = ω2 ∧ η3 + η2 ∧ ω3 dη1 = η2 ∧ η3 + ω2 ∧ ω3

dω2 = ω3 ∧ η1 + η3 ∧ ω1 dη2 = η3 ∧ η1 + ω3 ∧ ω1

dω3 = ω2 ∧ η1 + η2 ∧ ω1 dη3 = η2 ∧ η1 + ω2 ∧ ω1.
(2)

If we choose another lift of g, say (g1h, g2h), where h ∈ SO(2, 1), then for the new forms ω̃
and η̃ we get

ω̃ = h−1ωh

η̃ = h−1ηh+ h−1dh.

Due to the isomorphism between so(2, 1)× so(2, 1) and so(2, 2) for an adapted frame
R = {e0, e1, e2, e3} of g(X) (an adapted frame is any orthonormal frame with respect to the
invariant quadratical form x2

0 − x2
1 − x2

2 + x2
3 such that e0 is the point of induced surface) we

obtain dR = RM , where

M =









0 ω1 ω2 ω3

ω1 0 η3 η2

ω2 −η3 0 η1

−ω3 η2 η1 0









.

According to the Killing form K(ω) = ω2
1 + ω2

2 − ω2
3 we have to distinguish three cases:

K(ω) is positive definite (has signature (2,0)), K(ω) is indefinite (has signature (1,1)) and
K(ω) is singular. In this paper we leave out the last case because it is not interesting.

3.1. K(ω) is positive definite

We may always find a lift of g such that ω3 = 0. An adapted frame is then any orthonormal
frame such that e0 is the point of induced surface, e1, e2 determine the tangent plane of surface
and e3 is normal to surface. Then ω1 ∧ ω2 6= 0 and the corresponding isotropy group is

h =









1 0 0 0
0 cosφ − sinφ 0
0 sinφ cosφ 0
0 0 0 1









.

The integrability conditions are given in (2). Using Cartan’s Lemma we get

η1 = βω1 + γω2

η2 = αω1 + βω2 .
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From the new forms ω̃, η̃ given by the change of frame h we obtain two invariants:

H0 =
1

2
(α+ γ) (3)

K0 = β2 − αγ, (4)

where H0 is the mean curvature and K0 is the Gauss curvature of the surface induced by
two-parametric motion.

There always exists a lift such that β = 0. α and γ are then called the main curvatures
of the surface. In the case α = γ = 0 we get a planar point and if this condition is satisfied
on a neighbourhood, we get a part of a plane.

Let us denote η3 = κω1 + λω2, dα = α1ω1 + α2ω2, dγ = γ1ω1 + γ2ω2, dκ = κ1ω1 + κ2ω2

and dλ = λ1ω1 + λ2ω2. Computation gives:

γ1 = (γ − α)λ
α2 = (γ − α)κ

(5)

and
κ2 + κ2 − λ1 + λ2 − 1− αγ = 0. (6)

These equations (5) and (6) are analogous to Codazzi and Gauss equations from the surface
theory in E3.

3.1.1. Surfaces with constant main curvatures

In the case α = γ 6= 0 we get analogical results as in the theory of two-parametric motions in
O(3) (see [6]). Then d(e0 − e3/α) = 0 and computation gives the equation of the surface

x2 + y2 − z2 = −
1

α2
, (7)

which is a double-sheet hyperboloid in dehomogenized coordinates.
In the following figures we present given surfaces in grey shade together with the absolute

one-sheet hyperboloid, similarly as in Fig. 1.
Let α 6= γ be constants, then from (5) γ1 = α2 = 0 and κ = λ = 0. Then η3 = 0

and αγ = −1 (due to (6)). According to integrability conditions dω1 = dω2 = 0 we get
ω1 = du, ω2 = dv. The Frenet formulas (applied in the same sense as in the theory of curves)
for the surface are

de0 = du e1 + dv e2

de1 = du e0 + α du e3

de2 = dv e0 − 1/α dv e3

de3 = α du e1 − 1/α dv e2.

Integration gives

e1 = f0 e
√

1+α2 u + f1 e
−
√

1+α2 u

e2 = f2 e

√
1+α2 v

α + f3 e
−
√

1+α2 v

α ,

where {f0, f1, f2, f3} is a fixed orthonormal base. Computation yields

e0 =
1

1 + α2

( ∂e1

∂u
+ α2 ∂e2

∂v

)

and the equation of the surface is
α2x = yz. (8)
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Figure 1: The surface (7) for choice α = 1
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Figure 2: The surface (8) for α = 1/2

3.2. K(ω) is indefinite

If this condition is satisfied, we can take such a lift for which ω1 = 0. Then ω2 ∧ ω3 6= 0 and
the isotropy group is

h =









1 0 0 0
0 1 0 0
0 0 coshφ sinhφ
0 0 sinhφ coshφ









.

Using Cartan’s Lemma we get η2 = βω2 + γω3, η3 = αω2 − βω3. The mean and Gauss
curvatures are

H0 =
1

2
(α + γ), K0 = β2 + αγ.

Let us denote η1 = κω2 + λω3, dα = α2ω2 + α3ω3, dγ = γ2ω2 + γ3ω3, dκ = κ2ω2 + κ3ω3 and
dλ = λ2ω2 + λ3ω3. For a choosen frame such that β = 0 (possibility α = γ = 0 leads to the
same conclusion as in 3.1.) we obtain

γ2 = (γ − α)λ
α3 = (α− γ)κ

(9)

and
κ3 − κ2 − λ2 + λ2 − 1 + αγ = 0. (10)

3.2.1. Surfaces with constant main curvatures

In the case α = γ we get d(e0 + e1/α) = 0 and computation gives the equation of the surface
in the form

x2 − y2 − z2 = −
1

α2
, (11)
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Figure 3: The surface (11) for α = 1/3

which is a one-sheet hyperboloid (Fig. 3).
Let α 6= γ be constants. Then κ = λ = 0 and γ = 1/α. From (2) we get ω2 = du, ω3 = dv

and from the Frenet formulas we obtain the equation of the following surface:

α2x = yz, (12)

already mentioned in Section 3.1.1, Fig. 2.

4. Developable surfaces

A surface is called developable, if the Gauss curvature K0 = 0. For the first type of motion
(Section 3.1) we obtain αγ = 0. Let us suppose α 6= 0 and γ = 0. Then λ = 0, α2 = −ακ
and κ2 + κ2 − 1 = 0 from (5) and (6). The corresponding matrix is

M =









0 ω1 ω2 0
ω1 0 κω1 αω1

ω2 −κω1 0 0
0 αω1 0 0









.

From the integrability conditions we get dω2 = 0 and dη2 = d(αω1) = 0. So let us denote
ω2 = du, ω1 = dv/α. Integration gives κ = tanh(u− g(v)), α = −h(v)/cosh(u− g(v)), where
g(u), h(u) are arbitrary functions. Computation gives

e0 = f0(v)e
u + f1(v)e

−u, (13)

where f0, f1 are orthonormal vectors depending on one variable v.
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Figure 4: Developable surface (13)
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Figure 5: Developable surface (14)



34 M. Hlavová: Two-parametric Motions in the Lobatchevski Plane

For example we choose

f0 =
(1

v
,
cosv

v
,
sinv

v
, 1
)

, f1 =
(

1,−
sinv

v
,
cosv

v
,−

1

v

)

.

The corresponding surface is displayed in Fig. 4.
In the second case (Section 3.2) the properties are similar. We obtain αγ = 0 and then

λ = 0 and α3 = ακ, κ3 − κ2 − 1 = 0 (due to (9),(10)). The matrix

M =









0 0 ω2 ω3

0 0 αω2 0
ω2 −αω2 0 κω2

−ω3 0 κω2 0









and due to dω3 = 0 and dη3 = 0 = d(αω2) we can denote ω3 = du, ω2 = dv/α. Then we
get κ = tan(v − g(u)) and α = cos(g(u))h(u)/cos(v − g(u)), where g(u), h(u) are arbitrary
function again. Integration yields

e0 = f0(v) cosu+ f1(v) sinu, (14)

where f0, f1 mean the same as in the previous case.
For the choice

f0 =
(

v, v cosv, v sinv, 1
)

, f1 =
(1

v
,
cosv

v
− sinv,

sinv

v
+ cosv, 0

)

we get the example of a developable surface (14) presented in Fig. 5.

5. Conclusion

The results we have presented show that the theory of two-parametric motion in the hy-
perbolic plane is similar to the theory of the same kind of motion of unit sphere S2 in the
Euclidean space (see [1]), closely connected with the elliptic surface theory. It yields a nat-
ural interpretation of the group of projective space transformations preserving a one-sheet
hyperboloid.

All computations and figures were obtained by using MAPLE software.
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[5] M. Husty, P. Nagy: Dreidimensionale Lie Gruppen und ebene Kinematik. Math.
Pannonica 1, 1–15 (1990).

[6] A. Karger: Two-Parametric Motions in E3. Aplikace Matematiky 2/32, 96–119
(1987).



M. Hlavová: Two-parametric Motions in the Lobatchevski Plane 35

[7] A. Karger: Kinematic geometry of regular motions in homogeneous space. Czech.
Math. J. 28 (103), 327–338 (1978).
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