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Abstract. In this paper we classify two-parametric motions in the Lobatchevski
plane Ls. These motions are surfaces on the Lie group SO(2,1). In the first part
the basic properties of motions in Lo are derived and it turns out that the kine-
matical space belonging to these motions is locally the space SO(2,2)/50(2,1)
realized as the unit quadric with signature (2,2) in the vector space Ry. The re-
maining part contains explicit expressions and graphic representations of surfaces
induced by motions with constant invariants. We also present some special cases
— developable surfaces.
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1. Introduction

Let us consider vector space V' = Ry with scalar product (z,y) = 2111 + 2y — z3y3 and
vector product z X y = (Tays — T3Ys, T3Yy1 — T1Y3, Toay1 — T1Yy2) for any x = (z1,z9,x3) and
y = (y1,y2,y3) from V. We can choose an orthonormal base {e, ez, e3} in V (e? = €2 = 1,
e3 = —1, (e;e;) = 0 for @ # j) for which e; X e; = —eg,e2 X €3 =ej,e3 X e; =ey. The
Lobatchevski (hyperbolic) plane Ly is the projective plane P,, realized as one-dimensional
subspaces of V.

Planar hyperbolic geometry is the geometry of Lo, with respect to the group of projective
transformations preserving the so-called absolute conic 2% + x5 — 22 = 0 (see [4]). This group
is isomorphic to the Lie group G = SO(2, 1) realized as a group of 3 x 3 matrices acting on
Ly by matrix multiplication. Each element g of SO(2,1) satisfies the condition J = g7 Jg,
where J is the matrix representation of the quadratic form z? + x5 — 23,
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The 3-dimensional Lie algebra of the group SO(2,1), denoted by so0(2,1), is interpreted as
the tangent space in the unit element of the group G and every element X from so(2,1) is of

the form
0 —XI3 )

or X = (xy, 9, x3) in vector notation. The operation of Lie bracket in s0(2,1) is the same
as the vector product introduced above, [X,Y] = X¥ x Y". For the invariant Killing form
we obtain K(X,Y) = 2(X",Y"), where (X", Y") means the scalar product introduced above.
From this we see that the Lie algebra so(2, 1) can be identified with the vector space V' with
the vector product introduced above. We also notice that introduced operations are similar
to the usual operations of vector algebra, which correspond to spherical kinematics (see [1]).
This analogy will be also used in what follows.

2. Motion in a homogeneous space

By a two-parametric motion in Ly we mean a 2-dimensional motion in the group G = SO(2, 1),
which is an immersion g of a 2-dimensional manifold X into G. Let us choose two copies of
Ly and in each of them a fixed orthonormal frame: R in moving plane L, and R in fixed
plane L. The group G = SO(2,1) acts as a group of linear maps from L, into L, by the
rule g(Ro) = Rog. Then for fixed elements g, g, in G we consider motions gi9g,* and g
equivalent.

This shows that we have to consider the homogeneous space Gy = G x G/Diag(G x G),
where Diag(G x G) is the group of all elements (g, g) for g from G. We consider the action
of G x G on G given by the rule (g1,92)9 = 9199, - and this shows that G can be identified
with Gy because the isotropy group of the unit element e of the G is the group Diag(G x G)
(see [3]). This homogeneous space G is called the kinematical space of the group G. By a
2-dimensional motion in G we now understand an immersion of a 2-dimensional manifold X
into GGy and the properties of the motion in GG are properties of an immersion of X into Gy.

The classical example is the geometry of the group SO(3) realized as the group of mo-
tions of the unit sphere S; in E3, the homogeneous space Gy of which is locally the space
SO(4)/SO(3) and it is the 3-dimensional elliptic space (see [1, 2]).

In our case, SO(2,1) x SO(2,1) is locally isomorphic with SO(2,2), which is the group
of projective transformations in Ps preserving the quadric with signature (2,2). This follows
that the homogeneous space Gy is locally the space SO(2,2)/SO(2,1) of dimension 3. We
can realize this space as the unit quadric with the signature (2,2) in the projective space Pj
realized as one-dimensional subspaces of vector space Ry. Because the space SO(2,2)/50(2,1)
is 3-dimensional, each two-parametric motion can be represented as a surface in this space
and properties of such surfaces are the same as properties of two-parametric motions.

3. Two-parametric motions in L,

Let g(X) be a two-parametric motion in L. We may identify the elements of SO(2,1) x
SO(2,1) with pairs of orthonormal frames by R = Rog1, R = Rogs, so that the pair (g1, g2)
is identified with the pair (R, R). Let (R, R) be a lift of g, by definition a pair of orthonormal
frames such that gR = R. From the following formulas

dR = Rg;'dg1, dR = Ry, 'dg,
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we obtain the left invariant form (p, ) of the lift (g1, g2), where ¢ = gy 'dg; and ¢ = g, *dgs.
Let’s define new forms w = (¢ —v)/2 and 1 = (¢ +v)/2. Forms ¢, 1, wand n have values in
50(2,1). Then dR = Ry, dR = Ry and

dp+eNe=0, dp+yAy=0, (1)
or, by using w and n
dv+nAw+wAn=0, dp+wAw+nAn=0,

where (1) are Maurer-Cartan relations obtained by exterior differentiation of ¢ and . This
gives the integrability conditions in the form

dw; = wa A3z +n2 Aws dn = m Ang 4+ wa A ws
dwy = ws A+ 13 A wi dnp =m3 A +ws Aw (2)
dW3:CU2/\771+772/\W1 d773:172/\771+w2/\w1.

If we choose another lift of g, say (g1h, goh), where h € SO(2,1), then for the new forms @
and 77 we get

h~'wh

h~'nh + h~'dh.

&
|

R

Due to the isomorphism between s0(2,1) x s0(2,1) and so(2,2) for an adapted frame
R = {ep,e1,e9,e3} of g(X) (an adapted frame is any orthonormal frame with respect to the
invariant quadratical form x3 — 2% — 22 + 22 such that ey is the point of induced surface) we
obtain dR = RM, where

O w1 W2 w3

M _ w1 0 773 772
wa  —M3 0 M

—w3 M2 T 0

According to the Killing form K(w) = w} 4+ w3 — w2 we have to distinguish three cases:
K(w) is positive definite (has signature (2,0)), K(w) is indefinite (has signature (1,1)) and
K(w) is singular. In this paper we leave out the last case because it is not interesting.

3.1. K(w) is positive definite

We may always find a lift of g such that w3 = 0. An adapted frame is then any orthonormal
frame such that e is the point of induced surface, e;, e5 determine the tangent plane of surface
and es is normal to surface. Then w; A ws # 0 and the corresponding isotropy group is

1 0 0 O
b 0 cosp —sing 0
0 sing cos¢p 0
0 0 0 1

The integrability conditions are given in (2). Using Cartan’s Lemma we get

M = PBwi + ywe
N2 = awp + Pws
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From the new forms @, 77 given by the change of frame h we obtain two invariants:

Hy = %m +) 3)
Koy = 3% — ay, (4)

where Hj is the mean curvature and Kg is the Gauss curvature of the surface induced by
two-parametric motion.

There always exists a lift such that 5 = 0. a and 7 are then called the main curvatures
of the surface. In the case & = v = 0 we get a planar point and if this condition is satisfied
on a neighbourhood, we get a part of a plane.

Let us denote 13 = kwy + Aws, da = aqwy + asws, dy = Wi + Yews, dk = KWy + Kows
and dA = A\jw; + Aws. Computation gives:

7= (7 —a)A
)
ag = (y— )k (5)
and
Ko+ K2 — M+ AN —1—ay=0. (6)
These equations (5) and (6) are analogous to Codazzi and Gauss equations from the surface
theory in Es.

3.1.1. Surfaces with constant main curvatures

In the case a = v # 0 we get analogical results as in the theory of two-parametric motions in
O(3) (see [6]). Then d(ep — eg/a) = 0 and computation gives the equation of the surface

1
x2+y2—22:—§, (7)
which is a double-sheet hyperboloid in dehomogenized coordinates.

In the following figures we present given surfaces in grey shade together with the absolute
one-sheet hyperboloid, similarly as in Fig. 1.

Let o # 7 be constants, then from (5) 77 = @ = 0 and Kk = A = 0. Then 13 = 0
and ay = —1 (due to (6)). According to integrability conditions dw; = dwy = 0 we get
w; = du,wy = dv. The Frenet formulas (applied in the same sense as in the theory of curves)
for the surface are

deg = due; +dvey

de; = dueg+ adues
des = dvey—1/adves
des = adue; —1/adves.

Integration gives
VitaZu —V1+a2u
+ fie

L4 1+a2v —1/ 1+a2v

e = fae @+ fyeT o,
where { fo, f1, f2, f3} is a fixed orthonormal base. Computation yields
1 de; 5 0es
N 1+a2<8u o ov )

er = foe

€0

and the equation of the surface is
o’r = yz. (8)
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Figure 1: The surface (7) for choice o =1 Figure 2: The surface (8) for a = 1/2

3.2. K(w) is indefinite

If this condition is satisfied, we can take such a lift for which w; = 0. Then ws A w3 # 0 and
the isotropy group is
0 0
0 0
cosh¢ sinhg
sinh¢ cosh¢

Using Cartan’s Lemma we get ny = Pws + yws, N3 = aws — fws. The mean and Gauss
curvatures are

h:

o O O
o O = O

1
Hy = §(a+7), Ko =3+ ay.

Let us denote 1, = kws + A\ws, da = aows + azws, dy = Yows + Y3ws, dk = Kows + K3ws and
d\ = Aows 4+ Agws. For a choosen frame such that g = 0 (possibility & = v = 0 leads to the
same conclusion as in 3.1.) we obtain

Y2 = (v —a)A
9
a3 = (@ —7)k ©)
and
Ky — K2 =X+ M —1+ay=0. (10)

3.2.1. Surfaces with constant main curvatures

In the case a = v we get d(eg + e;/a) = 0 and computation gives the equation of the surface

in the form .
2 2 2
Ty -2 =g, (11)
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Figure 3: The surface (11) for « =1/3

which is a one-sheet hyperboloid (Fig. 3).
Let o # v be constants. Then k = X\ = 0 and 7 = 1/a. From (2) we get wy = du, w3 = dv
and from the Frenet formulas we obtain the equation of the following surface:

o’z = yz, (12)

already mentioned in Section 3.1.1, Fig. 2.

4. Developable surfaces

A surface is called developable, if the Gauss curvature Kg = 0. For the first type of motion
(Section 3.1) we obtain ay = 0. Let us suppose o« # 0 and v = 0. Then A = 0, s = —ak
and ry + k% — 1 =0 from (5) and (6). The corresponding matrix is

0 w1 (%) 0
N 0 kwi aw
M = wy —kwp 0 0

0 aw; 0 0

From the integrability conditions we get dwy = 0 and dns = d(aw;) = 0. So let us denote
wo = du, wy; = dv/a. Integration gives k = tanh(u — g(v)), @« = —h(v)/cosh(u — g(v)), where
g(u), h(u) are arbitrary functions. Computation gives

eo = fo(v)e" + fi(v)e™, (13)

where fy, f1 are orthonormal vectors depending on one variable v.
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Figure 4: Developable surface (13)

Figure 5: Developable surface (14)
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For example we choose

1 cosv sinv sinv cosv 1
f(): g ; al aflz 17__7_5__ .
vV ) v ) v

The corresponding surface is displayed in Fig. 4.
In the second case (Section 3.2) the properties are similar. We obtain ary = 0 and then
A=0and az = ak, k3 — k? —1 =0 (due to (9),(10)). The matrix

—ws 0 Kwy 0

and due to dws = 0 and dn; = 0 = d(aws) we can denote ws = du, we = dv/a. Then we
get £ = tan(v — g(u)) and a = cos(g(u))h(u)/cos(v — g(u)), where g(u), h(u) are arbitrary
function again. Integration yields

ep = fo(v) cosu + f1(v)sinu, (14)

where fy, fi mean the same as in the previous case.
For the choice

i 1 cosv ) sinv
fo=(v,vcosv,vsinv, 1), f = (-, —— — sinv, —— + cosv, 0
v v

we get the example of a developable surface (14) presented in Fig. 5.

5. Conclusion

The results we have presented show that the theory of two-parametric motion in the hy-
perbolic plane is similar to the theory of the same kind of motion of unit sphere S, in the
Euclidean space (see [1]), closely connected with the elliptic surface theory. It yields a nat-
ural interpretation of the group of projective space transformations preserving a one-sheet
hyperboloid.

All computations and figures were obtained by using MAPLE software.
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