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Abstract. Generalized Descriptive Geometry (GDG) denotes all techniques of
imaging abstract objects and their relations, which are constructive in the same
sense as the methods of classical descriptive geometry, i.e., there have to be algo-
rithms concerning the abstract objects (may be decision processes) so that there
are translations into algorithms working with the pictures instead of the abstract
objects. Hence GDG is more than mere visualization though the borderlines some-
times are fuzzy. The paper presents an outline of standard methods. Some of them
are very old and were originally developed outside mathematics.
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1. Generalized vs. traditional descriptive geometry

The notion Generalized Descriptive Geometry (shortly GDG, originally in German: Darstel-
lende Geometrie im weiteren Sinne) was seemingly created by myself in 1985 [18]. Since
then it has proved for myself as a framework for many different, old and new, techniques of
imaging and, moreover, as a spring of inspiration within the methodology of mathematics
and a good basis for the discussion with all kinds of practitioners about some fundamentals
of mathematics. So I’m very grateful for the invitation to explain my ideas in this journal.

1.1. Traditional descriptive geometry

Let us start with a short description of traditional (or classical) descriptive geometry. In my
opinion it consists of all principles of making planar (Euclidean) pictures of spatial objects or
ensembles of objects by exact rules and in such a manner that a welldefined set of algorithmic
processes designed for these spatial objects can be translated into equivalent algorithms work-
ing with the plane pictures. These processes may be constructions, e.g., from the plane and
elevation of two different points construct the plane and elevation of the connecting straight
line, or they may be decisions, e.g., from the plane and elevation of two straight lines decide
whether they are parallel or not. It is also noteworthy that within descriptive geometry (and
so also in GDG) we have processes for [17]
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a) producing a picture from a given picture or completing a given picture by additional
components,

b) producing a nongeometric result from a picture (e.g., ‘yes’ or ‘no’ if the process is a
decision) or a number if we use the picture for counting the vertices, edges, or faces of
a polyhedron,

c) producing a picture from nongeometric given objects (e.g., a formula or a verbal de-
scription),

but only processes of type a) and b) use pictures as input objects. Processes of type c) mostly
produce only visualizations though their outputs may serve as inputs for further algorithms.

There are further important remarks:
1. According to this definition the methods of traditional descriptive geometry are special

cases of the more general notion of coding and brings them in analogy to such methods
as

– working with the coordinates of geometric objects instead of the objects,

– calculating by the use of numbering systems, i.e., with strings of symbols instead
of the (abstract) numbers,

– executing such procedures as differential and integral calculus by use of formulas
denoting functions instead of with the functions themselves.

2. Producing (more or less) nice planar pictures from spatial objects is a very old art. One
of the most important merits of Gaspard Monge is just that he accentuated the coding
nature of descriptive geometry, the scetched constructive aspect, and hence its analogy
to coordinate geometry.

3. Equal to other coding methods, the methods of descriptive geometry guarantee the one-
to-one correspondence between some kinds of encoded objects and their code objects
only by a more or less complex system of contextual knowledge. The more information
you want to encode, the more knowledge about the coding technique the ‘reader’ must
have. Moreover, each enlargement of the encoded kinds of objects or information is to
pay by a loss of evidence of the pictures.
An Example: For the exact and unique description of all kinds of straight lines in
plane and elevation, the simple pair of projections is insufficient. In the well known
special cases you must use a third plane or a more symbolic representation of these
straight lines, and for the ‘reader’ of such pictures more knowledge about the used code
is necessary. Often, uniqueness is forced by labelling the depicted objects. The code
objects then are elements of cartesian products of one, two, or three planes and further
sets (e.g., of numbers, reals, or words). Moreover, in principle the cartesian coordinate
method consists of projections of a point onto three axes of points or reals instead of
two planes. So, from an advanced point of view, the borderline between the methods of
descriptive geometry and the coordinate methods is somewhat fuzzy.

By the way, the inspection of lots of historical technical drawings shows that methods with a
small amount of one-to-one correspondence and a high grade of evidence (as central perspec-
tive or especially parallel projection) mostly were preferred for the presentation (and particu-
larly for marketing) of existing objects against people without deeper knowledge whereas the
design of not yet existing objects requires a higher amount of uniqueness of the pictures and
hence a higher grade of abstractness and a higher amount of knowledge about the imaging
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technique both from the designer and from those people producing the objects on the basis
of the drawing.

Figure 1: Projections of four of the four-dimensional regular polytopes
(c) Springer-Verlag; reproduced from [5], Figs. 169–172

1.2. Generalized descriptive geometry

Now we shall proceed to generalized descriptive geometry. By this notion we denote all
methods of imaging objects and/or relations between objects which are
(a) Euclidean but of higher dimension than 3,

(b) geometric but not Euclidean,

(c) ‘abstract’ in other manners,
if these methods are exact defined in the same sense as scetched above for the classical
methods. Particularly there must be a class of algorithms which may be translated into
algorithms working with the planar pictures of the abstract objects. Because the aim of
generalized descriptive geometry is visible representation of the abstract we should permit
not only plane images but also three-dimensional models (or else four-dimensional models
with the time as a fourth dimension, see below).

In recent times there is a growing presence of the term visualization [3]. In some sense
it has a similar meaning, but we prefer the term generalized descriptive geometry because it
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stresses the constructive aspect of what we mean. Our pictures are not merely for looking and
nice appeal. You should use them really as tools in certain procedures. There is an analogy
with what in the arts is named allegory and sometimes the borderlines between visualization,
generalized descriptive geometry, and allegory are somewhat fuzzy, particularly in historical
examples. This analogy causes my interest in cooperation with historians of arts, whereas
the notion of generalized descriptive geometry may become a bridge over the present deep
gap between the exact sciences and the humanities. On the one hand, most methods of
generalized descriptive geometry work also in the humanities, some of them came from there
but are hardly reflected up to now. On the other hand, a popular explanation of the theory
of generalized descriptive geometry is a good tool to bring a minimum of sympathy and
knowledge about the specific mathematical mode of thinking into the minds of philosophers,
historians, artists, linguists, . . . Last but not least let us mention that according to the present
state of neurobiology also the human brain internally is working with the concept of GDG.
Not only what we see, but also what we hear, touch, smell, or taste is in the first instance
imaged ‘topographically’ into the cortex [2], particularly 202 ff.

2. Examples

Let us turn to details and examples.

2.1. The fourth dimension

A good matter for explaining the fourth dimension to non-mathematicians are the analogues
of the platonic solids. (There are exactly six in the four-dimensional space, four of them are
drawn in Fig. 1). Describing the procedure of extending an interval to a quadrangle and a
quadrangle to a cube, it is easily seen how a hypercube grows from a cube by translation
in a fourth dimension (may be the time). Looking how parallel or central projection from
the space onto a plane is working, everybody may easily understand (this is my experience
with many visitors in an exhibition on mathematics and arts) the three-dimensional model
of the four-dimensional hypercube and then also its two-dimensional picture. Next, we recall
the relation between a cube and its plane net and generalize it. So we see that the solid
in the painting ‘Christus hypercubus’ (1954 by Salvador Dali, Fig. 2) is really the three-
dimensional development of a four-dimensional hypercube.

But until now this all is only ‘visualization’. Why is it generalized descriptive geometry?
One simple example: The procedure of constructing a regular tetrahedron by a special choice
of diagonals of the faces of a cube is easily generalized to the four-dimensional case. By
constructing this with the model or with the picture of the model we may learn which of the
other regular 4-polytopes is produced and that it is not the 4-dimensional simplex!

2.2. Cartography

The most popular (and perhaps the most important) case of constructive modelling of a non-
Euclidean structure in the Euclidean plane is the domain of cartography. This example shows
very well that different kinds of desired procedures require different kinds of modelling the
same structure (here the surface of a sphere). If one is interested in the shortest or in the loxo-
dromical route between two given points, other maps are needed than if one is looking for the
area of a country (Fig. 3). The stereographic projection (i.e., central projection from a point
on the surface of the sphere onto the tangential plane in the diametral point) is particularly
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Figure 2: Salvador Dali (1904–1989): Corpus hypercubus (1954)
Metropolitan Museum of Art, New York, (cf. [15])

(c) Demart pro Arte B.V., 2002, www.artmm-ag.com

interesting from the point of view of generalized descriptive geometry: Each construction on
the surface of the sphere by compass and great circle instrument (that here plays the role of
the plane ruler) is transformed by the stereographic projection into a construction problem
solvable by Euclidean compass and ruler [16]. Otherwise, the great circles, i.e., the ortho-
dromic courses on a sphere, are transformed into straight lines by central projection from the
midpoint of the sphere, but this projection maps only the half of the sphere onto a tangential
plane. To get a global model of the sphere you must interprete the plane as the double image
of two hemispheres. Then each point of the plane is the image of a point of the ‘northern’
hemisphere and at the same time the image of a point of the ‘southern’ hemisphere and in
which of the both roles you want to use it has to be declared by labelling. (This is in analogy
with the double role of each point of the plane if one uses the plane as the model of the whole
space in classical plane and elevation technique.) An elementary but interesting problem then
consists of constructing the shortest route between two given points in different hemispheres.
(It is insuffficient to find only the connecting great circle, you have to find also the direction



42 P. Schreiber: Generalized Descriptive Geometry

Figure 3: Peter Apian: Tabula orbis cogniti universalior, Ingolstadt 1530
Area-preserving map after the principle of Johann Stoeberer (Stabius)
and Johannes Werner [I. Kupčik: Alte Landkarten, Artia, Prague 1980]

of shortest routing and this, though the map of course is not isometric [19]).

2.3. Models of hyperbolic geometry

Inside mathematics another important problem is to build models of hyperbolic geometry, and
here we can once more explain the essence of generalized descriptive geometry in comparison
with mere visualization. If one only wants to prove the consistency, i.e., the logical possibility
of the hyperbolic geometry, there is no qualitative difference between the models of Felix
Klein and Henri Poincaré. But in Klein’s plane model hyperbolic circles are transformed
in general into ellipses and hence they are not constructible by compass and ruler. Moreover,
their intersection points are not constructible by compass and ruler. On the other hand it has
been proved [16, 20] (in analogy to the mentioned result on the stereographic projection) that
each hyperbolic construction by compass and ruler is transformed by the Poincaré model
into a construction problem that is solvable by Euclidean compass and ruler. So one can really
use this model for executing hyperbolic construction algorithms. M.C. Escher knew this.
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His famous ‘Kreislimits’ are models of the hyperbolic plane with archimidean tesselations (Fig.
4) and of course he used the Poincaré model really in the sense of generalized descriptive
geometry. I think nobody has experience on how difficult it would have been in the Klein
model.

Figure 4: M.C. Escher (1898–1972): Circle Limit III (1959)
(c) 2002 Cordon Art – Baarn – Holland. All rights preserved.

www.mcescher.com

Having a look on some other models of structures of non-Euclidean nature but embedded,
eventually by the help of self-intersection, into the Euclidean space (Figs. 5–7) we see that
a whole department of the arts (usually denoted ‘minimal art’ is very near to generalized
descriptive geometry. At least they visualize some structures builded by exact mathematical
rules and everybody may use them for executing some procedures, for instance searching what
happens if we try to fill Klein’s bottle with red wine.
If in any abstract structure the time is involved, always two points of view are possible:
(A) If time is accepted as a geometric dimension alike the spatial dimensions then visual-

izations involving time may be of

type a : if we assume Newton ian physics (because of ordinary circumstances), or of

type b : if we assume Einstein ian physics.

We illustrate the second case by the historical visualization (Fig. 8) of special relativity
presented in Felix Klein’s book [9]. Once more the question arises whether this is more
than visualization. Indeed, one could decide graphically within the model whether a
given event is reachable from another.
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Figure 5: Moebius band Figure 6: A glass model of
“Klein’s bottle”

Figure 7: Model of the Boy surface1

made from steel bands,
Mathematical Institute Oberwolfach

Figure 8: Drawing of the realitivistic
space-time [9]

(B) If time is seen as a (continuous or discrete) abstract quantity like probability, energy,
or profit, then models involving time are of type (c).

Accepting time as a regular geometric dimension has an unexpected consequence. We then
should accept it also as a legitime dimension for our models, i.e., moving pictures (film)
then are possible three-dimensional visualizations, moving three-dimensional models are four-
dimensional models. In visualization practice the possible exchange of time-like and space-

1The Boy surface is topologically equivalent to the real projective plane. For more information see [8].
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Figure 9: Synchronoptical diagram for a lecture in history of mathematics

like dimensions is very important. Almost all graphical representations of functions from
science or economics use the x-axis as the t-axis in a quite self-evident way. Especially the
‘synchronoptical’ diagrams, frequently used by historians (Fig. 9), are of that kind: The y-axis
then may be totally abstract, i.e., some of their points may represent the elements of any set.
Conversely, as we saw in Section 2.1, four-dimensional Euclidean objects may be represented
by objects within the cartesian product of space and time (then actually time and not the
geometric visualization of a time axis).

Let us turn now to examples of type ‘c’. This is a very rich field and indeed the examples
of types ‘a’ and ‘b’ are merely simple particular and relatively new cases of it. As we shall
see, some kinds of GDG are much older than the mathematical notion of ‘model’ or of the
non-Euclidean geometries. Particularly some of the most abstract techniques as e.g. graph-
theoretic descriptions, were invented in the Middle Ages. This period with its tendency to
think about very abstract notions provided much symbolism in picturing (Fig. 10) and so, in
some respects, it was nearer to modern science than the following periods (Renaissance, 17th,
18th centuries) when human interest turned towards material beings and their many details.

2.4. Relations in the field of numbers

Let us begin with the technique (usually ascribed to the Pythagoreans but apparently in use
as early as in Babylonian culture) to find and to understand relations in the field of numbers
by patterns of points or pebbles. To see this in the right way, recall that numbers themselves
are quite abstract objects which may be represented only in principle by finite sets. ‘Only
in principle’ means that really only relatively small numbers may be represented so, but
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Figure 10: Complex diagram from the Middle Ages, showing connections
between the four elements, the zodiac, the temperaments, the continents etc. [13]

By permission of the President and Scholars of Saint John Baptist College
in the University of Oxford

particularly in the field of numbers and of the smallest kind of infinity, a ‘geometrical and
so on’ plays a very important role. I should like to state that our mind would be unable to
understand the countable infinite without this visible ‘and so on’. The Pythagoreans started
mathematics by seeing the difference between even and odd and by seeing that

even + even = odd + odd = even, but even + odd = odd

(Fig. 11,a). Then they proceeded to

n2 + 2n + 1 = (n + 1)2 (Fig. 11,b) and 1 + 2 + . . . + n = (n + 1)n/2 (Fig. 11,c).
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a)

b) c)

d)

Figure 11: Number theory by pebble patterns

By the study how a cube of n3 pebbles may be generated by three pyramids, each of 1+ 22 +
. . .+ n2 pebbles, and how many pebbles on the borders of these pyramids then are taken two
times or three times (Fig. 11,d) one may get a formula for the sum of the first n squares.
We do not want to repeat here all Pythagorean mathematics but to point to the fact that
Cantor’s famous first diagonal process for the proof that ‘countable infinity times countable
infinity is countable infinity’ rests on this ‘pebble method’. The visiblity of this idea enabled
the artist G. Geyer when shaping a relief memorial honouring Cantor, to visualize at least
a little part of Cantor’s otherwise invisible work (Fig. 12).

The field of use of patterns of points has many features. When calculating determinants
‘by hand’ one wants to have a simple memory rule which of the products gets the sign ‘+’
and which gets ‘−’. For n = 3 the well known Sarrus rule solves the problem. There is an
analogue for n = 4 based on the fact that the occurring patterns of factors have a geometric
appeal and their signs are invariant under congruence transformations. It is GDG because the
point pattern stands for another object (a product of elements of a matrix); we decide the sign
of the product by perceiving the geometric kind of the pattern. We close this chapter with
two pictures (Fig. 13) illustrating the generation of the integers from the natural numbers
and the rationals from the integers, each by creating the cartesian product of the set of the
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Figure 12: Relief in Halle-Neustadt, honoring Georg Cantor (1845–1918).
Sculptor Gerhard Geyer (1907–1989) created it 1972.

Figure 13: Geometric display of the generation of the
a) integers from numbers, b) rationals from integers

numbers with itself, defining an equivalence relation within this product and specifying a
suitable representative from each class.

2.5. Continuous quantities

The next step in the historical development of GDG techniques is the representation of (in
modern terminology) continuous quantities by line segments, areas, or volumina, as the Greeks
did after the discovery of incommensurability. It is well known that the so founded algebra is
impeded by the two conditions of ‘homogenity’ (only quantities of the same dimension can be
added or subtracted) and the dimensions being less than four, but within these boundaries the
‘geometric algebra’ (so denoted by the Danish historian of mathematics H.G. Zeuthen) was
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Figure 14: Examples of Greek diagrams explaining algebraic identities

Figure 15: Title-page of an edition of Euclid’s “Elements” (1618), that recommends
the execution of algebraic operations by geometric representatives

[Steck, Folkerts: Bibliographia Euclideana, Gerstenberg-Verlag, Hildesheim 1981]

able to lay exact foundations to algebraic identities (Fig. 14). Moreover, following the inten-
tion of the present paper, in the 16th and 17th centuries, many popular editions of Euclid’s
‘Elements’ in vernacular languages recommended the execution of algebraic operations by
construction with geometric representatives of the involved quantities (Fig. 15). Descartes
then, by use of an arbitrary unit length e, could overcome both limitations: if the rectangles
ab and ce have equal areas then c is a line representative of the two-dimensional quantity
ab. So one may transform the product of arbitrary many line factors into a line quantity
and at the same time force homogenity of all quantities. The ‘Cartesian’ (or another) co-
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Figure 16: Visualizing the styles of authors
by mean length of words and sentences [24]

Figure 17: Visualizing characteristics of lan-
guages by the mean number of syllables per
word and by the entropy [24]

ordinate method from beginning had two very different features: It allows the treatment of
geometric problems by algebra, but it makes visible also algebraic ‘objects’ and their facts.
In some periods of the historical development such visual insights were the first step towards
new algebraic knowledge. The overall use of the coordinate methods has made us oblivious
to the fact that the majority of the visualized relations or functions concern quantities from
physics, biology, economy . . . Only the not so commonplace use of Cartesian visualization in
the humanities (Figs. 16, 17) may remember this once more.

The method of representing quantities by line segments or areas has particular importance
also for the presentation of statistical data. From the image of a function produced by
the Cartesian coordinate method (or sometimes another, e.g. polar coordinates) we can get
information about this function much faster and much more effectively than by a table of the
values, though such a table would be nearer to the set-theoretic notion of functions (sets of
ordered pairs). But there is also the possibility for mistakes and frauds. Look at Fig. 18, left
[10]: The numbers of unemployed people resp. of emigrants are represented only by the height
of the figures, but because the figures should have similar shape the areas are growing with
the square of the height — and our eye and our mind perceives the area first! Look at Fig.
18, right [10]: Here, because the strips all have the same width, the areas are proportional to
the heights (this is Descartes in action!), but the designer perhaps wanted to describe the
continuity of the process — however, with the connecting lines between the columns they are
perceived as a central projection of a folded wall, and so, whether we want or not, something
from the impression of growing is lost by the eye’s experience that nearer objects appear
larger.

It was surprising for myself that the begin of the theory of geometric probabilities (as
founded by Buffon’s needle problem) in principle is founded on GDG: If we want to measure
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Figure 18: Statistical diagrams from Knaurs Konversationslexikon [10]

Figure 19: Display of the factorial func-
tion in the complex domain by isolines [7]

Figure 20: Display of the factorial function by a
“landscape” in parallel projection [7]

a set M of geometric objects other than points we have to describe these objects by an
appropriate system of k real coordinates and then to measure in Rk the set of the coordinate
tuples of the elements of M . Particularly if k is < 4, as e.g. in the famous Bertrand
Paradoxon, than one can draw pictures from the involved point sets representing sets of
straight lines, circles, . . . ([21], pp. 446–448, 459–461).

Let us have a look at the visualization of functions of two variables. There are two main
possibilities: the map with level lines or isohypses that clearly came into mathematics from
cartography (Fig. 19), and the parallel perspective of a relief (‘landscape’, Fig. 20). Historical
search confirms what logic says: Because it is much ea sier and much more important to
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Figure 21: Raimundus Lullus (1234–1315): The tree of the sciences

from “Arbor scientiae” (1295)

Figure 22: The tree of the vices Figure 23: The tree of virtues
Both from a manuscript of the 14th century

[Courtesy: Technische Universität Darmstadt, Handschriftenabteilung]

measure the depth of a water than the hight in a landscape, there were first maps with
isobathes (from about 1700 onwards) and the first map with isohypses (1771) was from an
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Figure 24: a) Luca Pacioli (1445?–1517): The tree of proportions

from “Summa de arithmetica, geometria, proportioni et proportionalita (1494), [12];
b) Incomplete redrawing by Leonardo da Vinci, [12]; [These drawings are

reproduced by permission of EMB-Service for Publishers, Lucerne, Switzerland.]

‘imaginary isle’ — only illustrating the principle [21], p. 334. But once more we have to return
to our matter. Depicting landscapes or roofs is traditional descriptive geometry, the use of
the methods as in Figs. 19, 20 is visualization of abstracts, if one uses it to solve a problem
about these abstracts then it is generalized descriptive geometry.

In the practice of geosciences the borderlines between the pure geometric image of the (ap-
proximately sphere-shaped) earth, the description of its relief, the description of geophysical
functions by isolines, and thematic cartography in the stronger sense are fuzzy. All of them
of course use labelling, but also try to describe movements and tendencies by appropriate
graphical means. An interesting but open problem is the adequate visualization of ternary
relations in the case at least one of the involved sets is topographically distributed.

2.6. Graphs

The true paradise of GDG are the (directed or undirected) graphs because there is mostly
no doubt that the depicted objects and their relations nothing have to do with geometry,
whereas the difference between a continuous quantity as a geometric object (e.g. the length of
a line segment) or as an abstract object (e.g., an amount of energy or financial resources) is
sometimes fuzzy. As mentioned above, the display of abstract relations between non-geometric
objects came up in the Middle Ages. Particularly there are lots of ‘trees’, the tree of the arts
and sciences (Fig. 21), the trees of the vices and of the virtues (Figs. 22, 23 in [22]), the tree of
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the spreading of the Societas Jesu in space and time. A tree of the kinds of proportions from
Pacioli’s ‘Summa de arithmetica, geometria, proportioni et proportionalita’ (1494) and its
rescetching by Leonardo da Vinci (Figs. 24,a),b) [12]) tells us about Leonardo’s intuitive
clearness that in such diagrams not the shape of the nodes nor the shape or length of the edges
but only their connectivity is important. From a contemporal mathematical point of view all
such trees are mere pictures of data structures and the only processes one may do with them
is ordering, shaping and altering their structure. From other points of view of course there
is more to discuss, e.g., the fact that the virtues are upright on their tree but the vices are
inclined, or that in general there are 8 kinds of virtues or vices on each main branch and a
one-to-one correspondence between virtues and vices. I mention this because the neglect of
the mathematically uninteresting aspects of pictures (or other realities) is dangerous in team
work with non-mathematicians. It is one of the many causes why mathematicians often are
called halfwitted.

- | F W G C

F G | W C

G | F W C

W G F | C G F C | W

W | F G C C | F W G

W C F | G

W C | F G

F W G C |  -

Figure 25: Graph of the problem “Wolf–goat–cabbage”

For the more useful work with graphs I give two simple examples: Problems of the kind
‘wolf-goat-cabbage’ are to solve most effectively if one draws the graph of all possible situa-
tions and all possible changes beween two situations and looks whether there is a (shortest)
path from the given begin to the wanted finish. The special wolf-goat-cabbage-graph (Fig.
25) shows even more: its left-right symmetry corresponds to the duality of devouring and be-
ing devoured and so to the interchangeability of cabbage and wolf. The top-down-symmetry
corresponds to the duality between the left and the right shore of the river. Many other com-
binatorial problems, if graphically represented, unveil such surprising symmetries, otherwise
perhaps unexplored.

Our second example is the display of strategic two-player-games alike ‘wolf and sheep’.
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Figure 26: Principle of the recursive computing of a winning strategy

The graph, in this case with directed edges, consists of all situations as nodes. The edges
correspond to all ‘moves’ of the first or the second player transfering the game from a situation
into the next one. If the so generated graph is a rooted tree (to exclude cyclic paths sometimes
there must be a rule banning infinite repeating of moves) and for each of its leaves a rule fixes
who wins the game in this situation, then in principle for each other situation the question
of who of the two players has a winning strategy may be decided recursively (Fig. 26). This
afterwards ‘simple’ proposition was presented by E. Zermelo at the Fifth International
Congress of Mathematicians (Cambridge 1912) when graph theory was in statu nascendi (and
hence the title of Zermelo’s talk tells about ‘an application of set theory onto the theory
of chess’ [11], p. 114). Of course, for all nontrivial games the drawing of the complete graph
is practically impossible and sometimes (especially for chess) the calculation of a winning
strategy is impossible even for the most powerful computers, but my opinion is, that finding
and understanding the idea of the fact is almost impossible without the optical impression
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of such a graph. For small games one may really graphically mark ‘from bottom to top’ the
winning player in each node.

2.7. Pictures supporting reasoning

A B
A

und
B A

B

A B

C

D

Figure 27: Eulerian circles

Figure 28: The “Chinese proof” of the Pythagoras theorem

The role that pictures may play in finding and presenting (mathematical) truths led us
to the next chapter of this paper. Quite recently some new discussion about this subject is
growing up [1, 14] and not at all only in mathematics. We have to clarify whether and in
which manner finding and proving ‘without words’ has anything to do with the concept of
GDG. To simplify the matter let us assume that logical reasoning is an algorithmic process
like calculation. The first example shall be the ‘Eulerian circles’ from [4], Fig. 27. They
stand as representatives for entities of arbitrary things having a common quality. Our brain
perceives such a picture and produces a set of non-geometric conclusions, e.g., ‘If all D are B
and C, but not A, then obviously all objects which are A and C, are not D’. J. Venn in 1880
extended this method to arrangements of sets such that each intersection of some of the sets
and the complements of the others is not empty, and tried to mechanize Boolean reasoning
by a kind of tiling [23].

Look at Fig. 28, the well known ‘Chinese’ proof of the Pythagoras theorem. Our
brain internally transforms the left arrangement of the six tiles into the right arrangement,
deletes then from each of the two arrangements the four triangles and acknowledges by logic
(Euclid, Axiom 3: If equals are subtracted from equals then the remainders are equal) that
the remaining two quadrangles at the left are equal to the remaining quadrangle at the right.
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Figure 29: Description and proof for the trisec-
tion of angles by Archimedes

Figure 30: Alexander’s horned sphere2

(Indeed, this reasoning has to be completed by the proof that the remaining right figure has
equal angles. This is not self-evident because it employs the fact about the sum of the angles
of a triangle). We could do this proof by a sequence of diagrams and then it would really
become a process working with geometric representatives of the treated matter. In my opinion
it is not so important for the quality of the process as a kind of GDG that in such simple
cases only one of the pictures is on the paper and the others are only in our mind.

It is a rare kind of elegance and effectivity in mathematics if one can communicate a
solution of a construction problem and the complete proof why it works without any words
in a single figure. Just to prove this I do not further explain the famous trisection of a given
(acute) angle AOP by Archimedes (Fig. 29). It also works by a sequence of figures from
which only the last one is on paper but the steps towards it are in our mind.

We complete the sightseeing tour by a model of a famous topological monster: Alexan-
der’s horned sphere (Fig. 30). Like Figs. 4, 11, 12, 13, it appeals to our imagination of
the infinite from a finite begin. I repeat my thesis that we were unable to understand and
to handle the infinite without many such ‘geometric and so on’. ‘Handle’ here means such
results as ‘countable + countable is countable, countable times countable is countable’. We
may see also by pictures of some beginning steps how and why v. Koch’s continuous but not
differentiable curve has these qualities, or that there is a one-to-one correspondence between
intervals of different length. In all such cases we are convinced before and independently
of any written formal proof. May be the principal difficulty in catching unambigously more
about the higher infinite than just that the power set of M is always greater than M and
some trivialities, is connected with the impossibility of visualizing such higher infinites. The
human brain causes people to think in pictures, also about seemingly very abstract matters.
So perhaps we can’t understand what is invisible in that wider sense because we can’t make
a picture from it.

2The model was created by a student of the department of mathematics at the University of Greifswald and
lateron used for the cover of W. Rinow’s “Lehrbuch der Topologie”, Deutscher Verlag der Wissenschaften,
Berlin 1975
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At the very end, I want to point to the facts that the above listing of instances of GDG of
course is incomplete and open and that there are many overlappings and connections between
the listed cases, e.g., between proofs without words and calculating by pebbles or by geometric
algebra. Really working with concrete drawings and pictures is so joyful. To make a theory
about it would be a dry matter if there were not so many open questions and doubts.
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phie. Internat. Congres, Nancy 1994. Akademie-Verlag Berlin and Albert Blanchard
Paris.

[21] C.J. Scriba, P. Schreiber: 5000 Jahre Geometrie. Springer, Berlin-Heidelberg 2000.

[22] Symmetrie in Kunst, Natur und Wissenschaft. Catalogue of an exposition, Darmstadt-
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