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email: avelasco@feg.unesp.br

Abstract. While observing the difficulties of first-year engineering students
toward learning technical drawing, taking into account the progressively reduced
work time with them, and recognizing the importance of spatial aptitude in the
engineering profession, we feel the necessity to improve the teaching methodologies
in this subject. In our opinion, in order to effectively plan the didactic process, it is
necessary to detect as early as possible those students who require more attention
and support.

This study proposes an investigation of a visualization psychometric test that
could facilitate an early diagnosis concerning the academic performance of tech-
nical drawing students.

To this end, a computerized version of the Mental Cutting Test (MCT) was car-
ried out on a sample of Brazilian engineering students from the Paulista State
University at Guaratingueta Campus (UNESP) and from the Polytechnic School
of Sao Paulo University (EPUSP).

The test was analyzed by the Item Response Theory, with the Rasch model,
a measurement model with optimal properties in order to estimate the level in
spatial aptitude of the examinees. The results suggest that MCT can be useful in
detecting those students with different performance levels in technical drawing.
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1. Introduction

The first year of engineering curricula presents great challenges and adaptation problems to
the students. In some cases, these difficulties have negative consequences for the students’
academic performance and can be the reason for leaving studies. This fact is not specific in
Brazil, it appears in different countries [27]. The adaptation problems to a new curriculum
are more serious in the subjects in which there is not a specific and wide work during high
schools. Without any doubt, this is the case for technical drawing. We think that the
activities in elementary and high schools do not promote sufficiently the development of
spatial aptitudes. That is why teachers frequently have to attend students with limitations
that could be improved with a distinct treatment. In our point of view, the teaching-learning
process could have better support if it were possible early to detect the students with a low
level of spatial aptitude in a way that allows to administer:

(1) a distinct didactic treatment or

(2) an specific training program in spatial abilities.

The first proposition is to apply the classic designs ATI (Aptitude × Treatment Interaction),
that were proposed by Cronbach [7]. In his opinion, the analysis of the interactions between
the students’ aptitudes and the didactic methods allows one to adjust the teaching method to
the aptitude level of a person. The second proposition is to use resources for training and the
improvement of the spatial aptitude. Some of these resources have been used with success in
samples of engineering students [12].

Spatial aptitude is one of the most studied abilities in the field of human cognition. It
is very common to find a high level of spatial aptitude in people who work in activities
related to engineering, architecture, piloting, air traffic control, just to pick out some of them
[17]. Following the Carroll classification [5], currently in use, we can distinguish in spatial
aptitude several subaptitudes, detaching the visualization and the mental rotation.

Mental rotation (MR) is defined by the speed in which one mentally rotates simple shapes.
Visualization (Vz) is defined by the ability to mentally manage complex shapes.

Studies about the relation between spatial aptitude and the technical drawing performance
are not in a great number as are the studies existent in others academic performance areas.
The available data allows one to affirm that the Vz tests are moderately good predictors,
while the MR tests do not have an impact on course performance [15, 19, 3, 23]. There are a
few studies about these problems in the Brazilian population, mainly in the engineering field.

There are a great number of tests to evaluate Vz. An excellent compilation has been done
by Eliot and Smith [8]. In this work we apply the Mental Cutting Test (MCT) because it
has been used with success for samples of engineering students in many countries [23, 26, 25].

The objectives of this work are:

(i) to analyze the data with a psychometric model that has optimal properties to obtain
a joint estimation of the MCT characteristics and the visualization capacity of the
students,

(ii) to analyze the relations between MCT scores and qualification in technical drawing on
the first exams of Brazilian engineering students in the first year, and

(iii) to determine the usefulness of MCT to detect those students that have a great proba-
bility of obtaining low levels of performance.
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2. Method

2.1. Participants

In this study 163 first year students of engineering participated. 92 were from Paulista State
University – Guaratingueta Campus (UNESP), and 71 from Polytechnic School of Sao Paulo
University (EPUSP). The age mean was 19 years and 6 months and the standard deviation
2 years and 2 months. 19% of the sample were women.

2.2. Instrument

The Mental Cutting Test was applied to the students. It is an adaptation of a subtest of
CEEB Special Aptitude Test in Spatial Relations, and is used in many countries to evaluate
the spatial aptitude of engineering students [23, 26, 25, 6, 14].

Validation studies of MCT show that it is an excellent indicator of Vz [25]. In the MCT,
the students are asked to determine true cutting views after being given pictorial views of
objects and cutting planes. The test contains 25 multiple choice items with one correct
option and four distracters. The time limit is 20 minutes. Saito, Suzuki and Jingu [23]
propose that the items in the MCT are classified into two categories: pattern and quantity
problems. In the first, the solutions are determined by identifying only the patterns of the
sections. Nineteen items can be classified into this category. In the second, the solutions are
determined by identifying not only the patterns of the sections, but also the quantities in the
sections (e.g., the lengths of the edges). Six items can be classified into this category (Fig. 1).

Figure 1: Pattern (left) and quantity (right) items

The technical drawing qualifications were obtained from the scores of the first exams.
These exams were individual but with similar problems. The students at FEG-UNESP were
supposed to make orthographic views of objects from pictorial views or other views of them.
In EPUSP, they did practical problems about topographic surfaces. This difference was due
to the different programs in both universities, but both exams were about basic themes of the
basic engineering graphics area.

2.3. Procedure

The MCT was applied to each examinee in a single section in November 2000 by a comput-
erized application made in MetaCard software [18]. The first exam of technical drawing was
done in April 2000.

2.4. Measurement Model

The item response matrix was analyzed with the Rasch model [21], that provides measurement
equivalent to that available in the physical sciences, because it synthesizes the key features
of requirements for fundamental measurement (invariance, unidimensionality, and additivity)
[24]. This model is known as a one parameter logistic model because the probability of a
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correct answer P (Xij=1) depends on the difference between the ability of the examinee (θj)
and the item difficulty parameter (βi): The greater the difference θj − βi, the greater the
probability that the examinee answers the item correctly. The equation (1) describes the
relation between both values.

P (Xij=1) = exp(θj − βi)/(1 + exp(θj − βi)) (1)

The advantages of the Rasch model against the Classical Test Theory (CTT) [11] have been
widely spread [10, 2, 4]. We gave emphasis to the characteristics that are more important
to psychological and educational measurement: conjoint measurement, specific objectivity,
interval properties and specificity of the measurement standard error.

Conjoint measurement: This means that examinees and item parameters were expressed
in the same units and were placed in the same scale. First, this property gives the Rasch model
a more realistic character than CTT: it is not reasonable to maintain the idea that all items
measure the same quantity of the construct. Second, this characteristic allows to analyze the
interactions between examinees and items. Consequently, the score interpretations are not
based necessarily on a normative group, but in identifying items that the examinee has a high
or low probability of correct response. This characteristic gives to the Rasch model a great
richness of diagnosis.

Specific Objectivity: A measure could be considered valid and general only if it does not
depend on the specific conditions under which it is obtained. The difference between two
examinees in an attribute does not depend on the specific items used to estimate it. Equally,
the difference between two items does not depend on the specific examinees used to quantify
it [10]. Important psychometric applications such as equating of scores obtained from distinct
tests, construction of item banks and examinees’ adaptive tests are based on this property.

Interval Properties: The meter to score jointly persons and items (usually the logit scale)
has interval properties. The interval property is based on interpretations originated from the
specific objectivity: similar differences between people have the same meaning throughout
the continuous scale. The location of the point zero on the scale is arbitrary. In the Rasch
tradition, it is situated in the difficulty mean of the items. In this case, the interpretation of
the persons’ parameters is simple (values of θs greater than 0 means that these persons have
a probability of success greater than 0.50 on items that have a mean difficulty). Although
the logit scale can adopt values between ±∞, in the majority of cases it is situated between
±3. The interval property has a great importance because it is a necessary condition to
precisely use the parametric analysis methods which are most frequently used in social sciences
(ANOVA, regression, etc.) and moreover, guarantees the invariance of differences of scores
all through the continuous scale (a necessary requirement in the analysis of the changes due
to development or training).

Specificity of the Measurement Standard Error: It is supposed in CTT that the tests have
the same reliability in all regions of the variable. The Rasch model does not assume this
supposition that is so improbable. In contrast, it allows
(i) to quantify the measurement error in each point of the continuous scale and
(ii) to select items that permit increasing the reliability in previously specified trait regions.
Generally the measure precision increases adjusting the item difficulty to the person level [10].

The advantages of the Rasch model can only be obtained if the raw data fits to the
model. According to the equation (1), the probability of a correct response only depends
on the difference between persons and items in the trait (unidimensionality). Presence of
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aberrant responses like people with low trait levels correctly answer difficult items, indicates
that the person and item parameters are only numerals without theoretical meaning. The
misfit could be due to many factors: multidimensionality, biased items, lack of precision on the
item formulation, guessing, lack of motivation or cooperation, errors in pointing the answer,
copying of the right answer, etc. [13]. The analysis can detect items and persons that misfit
the model. Several statistics to evaluate the model fit have been proposed [13].

The most employed statistic is called Infit, which is an information-weighted sum. The
statistical information in a Rasch observation is its variance. To calculate Infit, each squared
standardized residual value is weighted by its variance and then summed. Infit statistic is
reported as mean squares divided by their degrees of freedom, so that they have a ratio scale
form with an expected value of 1 and a range from 0 to positive infinity. In this form, the
mean squared fit statistics are used to monitor the compatibility of the data with the model.
Traditionally it is considered that values greater than 1.3 shows maladjustment [2, 4, 13]. The
softwares bring graphical representations that facilitate the interpretation. In this work we
analyzed the data with the Quest [1] software. The answers were codified dichotomously: 1 =
correct, 0 = incorrect or no reached. The presence of no reached items was very low (91.4%
of the students answered all items).

3. Results and Discussion

3.1. Adjustment of MCT to estimate the students’ capacity in Vz

First, we show the results of the fit model analysis for items and examinees. As we have
commented, the fit is crucial. If it does not exist, the values does not have a theoretical
meaning and the Rasch model advantages disappear. We used the Infit statistic as an indicator
of the global fit. The descriptive statistics of Infit values are shown in Table 1.

Table 1: Item and person fit. Descriptive statistics of Infit values

Object Mean Std. Dev. Maximum Infit Percentage with Infit > 1.3

Items 1.00 0.90 1.17 0
Persons 1.00 0.19 1.59 6.13

The statistics reveal a good fit-model data. On one hand, the means and standard de-
viations of values are those that are expected when there are not substantial divergences
between the model predictions and the raw data. On other hand, no items and only 6.13%
of the students present values greater than 1.3.

Table 2: Descriptive statistics of item and person distributions

Object Mean Std. Dev. Maximum logit Minimum logit

Items 0.00 1.16 2.57 -2.72
Persons 0.15 0.98 2.88 -2.05
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Compared with CTT, the greatest advantage of Rasch model is the property of conjoint
measurement: the items’ and persons’ parameters are on the same scale. In Fig. 2 and in
Table 2, a graphical representation and descriptives data of the conjoint scaling are shown.

Figure 2: Conjoint measurement of items and students

We can observe a conjoint representation of students and items on a scale that goes
between -3 and 3 logit. The majority of items is grouped on a mean difficulty level, as well
as the students on the ability mean level. This indicated that the test is much convenient to
evaluate the visualization level on the students majority (it is neither so easy nor so difficult).

A small students group (12.3%) shows high values on the variable measured by MCT
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(θ > 1.5). Nevertheless, the students group with low values of ability (1.2% with values lower
than -1.5) is smaller.

In Fig. 2 we can observe that there are a few items in the extreme ranges of the measured
trait. This characteristic conditioned the MCT precision in these ranges. For example, the
measurement standard error (MSE) of students with higher ability is much greater (θ = 2.88;
MSE = 0.77) than that of students with a mean ability (θ = 0.15; MSE = 0.44). With the
purpose of improving the test reliability in the extreme regions of trait, it would be convenient
to include items with extreme difficulty values in future versions of MCT. As we pointed out
before, the procedures to increase the reliability are based on adjusting the items’ difficulty
to peoples’ capacity (e.g., we can not estimate with precision the level of the examinees with
much capacity with easy items for them).

3.2. Construct validity of MCT scores

In this work, we analyzed the relationship between the difficulty and complexity of items as
a way to question about the construct validity of MCT scores. Embretson [9] has pro-
posed a two-part distinction for construct validation: construct representation that involves
the identification of cognitive components underlying task performance, and nomothetic span,
which concerns the specification of the network of test scores correlations with other instru-
ments or constructs. The traditional methods of construct validation involve only nomothetic
span, whereas new advances in cognitive psychology suggested that the meaning of measures
can also be established by the understanding of the operations involved in problem-solving
behavior for individual items (construct representation). An important aspect of construct
representation is the determination of item complexity. This involves the identification of
skills related with item performance and item characteristics that poses a demand on these
skills [20].

From this approach, we look for answering some questions about MCT. First, we have
analyzed if there are differences in difficulty between items of distinct forms (quantity and
pattern problems).

As we have mentioned previously, Saito, Suzuki and Jingu [23] propose that the items
in the MCT could be classified as pattern and quantity problems. Firstly, the solutions
are determined by identifying only the patterns of the sections. Secondly, the solutions are
determined by identifying not only the patterns of the sections, but also the quantities in the
sections (e.g., the lengths of the edges). If this task form has an impact in its difficulty, it
could be inferred that the resolution of each type of item demands distinct aptitude level.
We analyzed the mean difficulty of quantity and pattern problems to infer if this task form
influences the cognitive complexity.

In Table 3 the results of a variance analysis are shown in which the item difficulty esti-
mations were the dependent variable (β) and the form task, the independent one.

Table 3: ANOVA for item difficulty. Effect: pattern or quantity problems

Modality Pattern Quantity F DF P-value

Mean -0.12 0.38 0.83 1 0.37
Std. Dev. 1.26 0.77 – – –
Count 19 6 – – –
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As it can be observed, the difference in the mean difficulty of both types of items is not
statistically significant. Nevertheless, due to the low number of quantity items, the results can
not be considered conclusive. A new analysis would be necessary after introducing a greater
number of this type of items in future versions of the test.

Second, we questioned what are the characteristics of representative tasks of a low and a
high ability. This aim is not free of difficulties because, what occurs at many classical tests,
the MCT construction was not based on an explicit cognitive model that could be derived
from the task conditions associated to cognitive abilities. Consequently, we limited ourselves
to a rational analysis of item characteristics with extreme values on the difficulty continuous
scale.

As it could be seen in Fig. 2, the easier items (with values β ≤ −2) are 8, 5 and 3, the
harder are 23 (β = 1.38) and 25 (β = 2.57). The easier and harder item format can be seen
in Fig. 3.

Figure 3: Easier and harder MCT items

It could be observed that in the easier items the sections were merely rectangles, similar
figures of the cut planes presented, e.g., not only were they pattern items but the visualization
of the cutting plane already brings the desirable form. Consequently, the task resolution does
not requires very complex mental transformations of the figure.

Since the presence of no reached items was so few, the difficulty values obtained to items
23 and 25 are not due to lack of time for the students to have answered the last items of the
test. In our point of view, on item 23, the difficulty could be due to the fact that the frontal
face shown in the picture view has the same feature of the required section but, logically,
does not present the same proportions between its edges, working as a distracter in the final
evaluation of those measures, e.g., in the visualization of the section real largeness. In the
item 25, it could be due to the fact that the required section is the result of the intersection
of an inclined plane with two curved surfaces, which does not occur with other test items,
moreover the fact that the section is half covered by the object presented. In our judgement,
the task complexity is determined by the difficulty in rotating the section in a way to reach
visualization of the real feature and largeness, as well as imagining the invisible elements of
features. Therefore the capacity to solve those kind of problems demands the capacity to
represent and manage precisely the invisible elements of features.

In our point of view, the analysis of sources of item difficulty allows one to extract conver-
gent conclusions as well as those obtained from other validation methods. For example, the
construct validity of MCT had been analyzed by means of the exploratory factor analysis [25],
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from analysis of verbal protocols and recorded eye fixations during the resolution process [16]
and from error analysis done by experts and novices [22]. The authors of those studies con-
cluded that MCT score reflects the students’ ability to make and manipulate mental images
of three-dimensional objects from pictorial views. The main reasons of errors are difficulty in
recognizing a cutting plane’s position, difficulty in transforming a section to a true size view
and difficulty in reading a view synthetically. These conclusions and those obtained in this
work, reinforce the idea that MCT is an excellent indicator of the visualization construct.

3.3. MCT usefulness to foresee the technical drawing performance

The main objectives of this work were:

(i) to analyze the relationship between MCT scores and the technical drawing performance
of the first year engineering students and

(ii) to determine the utility of MCT to detect those students with a high probability of
obtaining a low level of performance.

Related to the first aim, we obtained a Pearson correlation of 0.34 (p < 0.0001) between MCT
Rasch-scores and the qualifications on the technical drawing first exam. It reveals a moderate
association, similar to that obtained by Suzuki et al. [23, 26] in samples of Japanese students.

To reach the second aim, we classified the students in four categories from the following
technical drawing qualification groups (G): insufficient (G < 5), acceptable (5 ≤ G < 7),
good (7 ≤ G < 9) and excellent (G ≥ 9). The significance of differences between the means
of these four groups on the MCT Rasch-scores was contrasted, using ANOVA and Fisher’s a
posteriori contrasts.

The results are shown in Table 4 and Fig. 4.

Table 4: ANOVA for MCT-score. Effect: Technical drawing performance.
The means with different letters have a significant difference in a Fisher’s contrast

MCT Insufficient Acceptable Good Excellent F DF P-value

Mean -1.69a 0.27b 0.50b 0.62b 3.85 3 0.01
Std. Dev. 0.85 1.04 0.90 0.90 – – –
Count 32 47 37 17 – – –

It could be observed that the F-value was significant. The posteriori contrasts reveal that
the mean on MCT of the students with an insufficient performance in technical drawing is
significantly lower than the means of the others groups.

In this way, it could be affirmed that MCT can be an appropriate instrument of diagnosis
to identify early those students with low capacity to have a good performance in technical
drawing. The diagnostic usefulness could be increased if the test, in its future versions,
incorporates new items with extreme difficulty values.

In summary, we consider that the incorporation of visualization psychometric tests in the
learning-teaching methodology certainly facilitates the gain of important data in planning it,
optimizing its development by the way of new and different didactic strategies that allow one
to surpass the obstacles that currently would be presented.
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Figure 4: Interaction line plot for MCT-score.
Effect: Technical drawing performance. Error bars: ±1 Standard Error(s)
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