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Abstract. This paper deals with a special class of 4th-order surfaces in the
3-dimensional Euclidean space. The surfaces of this class contain the absolute
conic, a double straight line and triple points. It is shown that such surfaces
may contain on the double line at least two real triple points which are classified
according to the type of their tangent cones. The selected examples of the surfaces
are displayed using the program Mathematica 4.1.
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1. Introduction

In this paper we use the term “quartic” for the 4th-order surfaces in the three-dimensional
Euclidean space E3. In homogeneous Cartesian coordinates

(x : y : z : w), (x, y, z) ∈ R4, w ∈ {0, 1}, (x, y, z, w) 6= (0, 0, 0, 0),

a quartic is given by the homogeneous equation F4(x, y, z, w) = 0 of degree 4. In the 19th and
at the beginning of the 20th century their properties were studied intensively in a number of
geometric books and papers. We present here the basic classification of those quartics which
contain singular lines [7, vol. II, pp. 200–252], [6, pp. 1537–1787], i.e.,

- quartics with a triple straight line (this class contains only ruled quartics);

- quartics with a double twisted cubic (this class contains only ruled quartics);

- quartics with a double conic section (this class contains cyclides);

- quartics with a double conic section and a double line (this class contains only ruled
quartics);

- quartics with three double lines (this class contains Steiner’s quartics);

- quartics with two double straight lines (this class contains only ruled quartics);

- quartics with one double straight line (this class contains ruled quartics, the pedal
surfaces of (1,2)-congruences [2] and the surfaces which will be considered in this paper).
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2. Tangent cones at singular points

The point T (x0 : y0 : z0 : w0) is singular for the surface given by equation Fn(x, y, z, w) = 0
if and only if

∂Fn

∂x
(T ) =

∂Fn

∂y
(T ) =

∂Fn

∂z
(T ) =

∂Fn

∂w
(T ) = 0.

At such a point the tangents of the surface form a tangent cone of order equal to its mul-
tiplicity. We recall here some analytical properties of tangent cones, according to [7, Vol. I,
p. 56] and [5, p. 251], which will be used in the proofs presented in the following section.

Proposition 1 Each homogeneous equation Hn(x, y, z) = 0 of degree n represents in E3 a
cone Cn

O with the vertex (0 : 0 : 0 : 1). If the polynomial Hn(x, y, z) is irreducible over the
field R, the cone Cn

O is a proper cone of order n. If

Hn(x, y, z) = Hn1
(x, y, z) ·Hn2

(x, y, z) · · ·Hnk
(x, y, z), n1 + n2 + . . . + nk = n

and k 6 n, the cone Cn(O) splits into the cones Cn1(O), Cn2(O), . . . , Cnk(O).

Proposition 2 Each homogeneous equation H2(x, y) = 0 of degree 2 represents in E3 a pair
of planes through the axis z. If H2(x, y) is reducible over the field R the planes are real. They
coincide if H2(x, y) is a total square, and they are a pair of imaginary planes if H2(x, y) is
irreducible over R.

Proposition 3 If X ⊂ Rn is a hypersurface given as the zero set of the polynomial F (x),
x := (x1, . . . , xn), and we write

F (x) = Hm(x) + Hm+1(x) + . . . + Hd(x),

where Hk(x) is homogeneous of degree k in x1, . . . , xn for k = m, . . . , d, then the tangent cone
at the origin (0, . . . , 0) will be a cone of order m given by the polynomial Hm.

3. Triple points on non-ruled quartics through the absolute conic

and with a double straight line

In homogeneous Cartesian coordinates each quartic F with the double line z : x = y = 0
which contains the absolute conic ω : x2 + y2 + z2 = w = 0 can be presented by the following
equation:

F (x, y, z, w) = (x2 + y2 + z2)a2(x, y) + wd3(x, y) + zwb2(x, y) + w2c2(x, y) = 0, (1)

where a2,b2, c2,d3 are homogeneous polynomials in x, y of degrees 2, 2, 2 and 3, respectively,
with real cofficients; at least one coefficient in the polynomial a2 is different from 0, i.e.,
a2 6= 0.

The proof is a direct consequence of the equation of the quartic with the double line z [7,
vol. II, p. 217] and the fact that the section of such quartic and the plane at infinity is the
absolute conic ω and the pair of lines through the point (0 : 0 : 1 : 0) given by the equations
a2 = w = 0. Such proof can be found in [3, p. 136].

Theorem 1 T is a triple point on the surface F given by equation (1), if and only if

T (0 : 0 : t : 1), t ∈ R, (2)

t2a2 + tb2 + c2 = 0, d3 + z̃(2ta2 + b2) 6= 0 for z̃ := z − t. (3)
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Proof: The triple point of the surface F must be located on the double line z. (Otherwise the
line joining the triple point with any point on the double line would intersect the surface at
five points which is impossible for a non-ruled quartic.) Furthermore, the point (0 : 0 : 1 : 0)
cannot be a triple point of the surface F . (If (0 : 0 : 1 : 0) was a triple point, it would be a
triple point of any planar section through it, but the plane at infinity cuts the surface F along
the degenerated 4th-order curve (x2 + y2 + z2)a2 = w = 0 with a double point (0 : 0 : 1 : 0).)
Therefore, the coordinates of triple points are always (0 : 0 : t : 1).

If we translate the Cartesian coordinate system O(x, y, z) into the system T (x̃, ỹ, z̃), where

x̃ := x, ỹ := y, z̃ := z − t,

we obtain the equation

F (x̃, ỹ, z̃, 1) = (x̃2 + ỹ2)a2 + d3 + (z̃ + t)2a2 + (z̃ + t)b2 + c2 = 0. (4)

If T is a triple point, then according to Prop. 3 the minimal degree of the homogeneous
polynomials in (4) is 3 and it follows that t2a2 + tb2 + c2 = 0 and d3 + z̃(2ta2 + b2) 6= 0.

On the other hand, if T (0 : 0 : t : 1), t2a2 + tb2 + c2 = 0 and d3 + z̃(2ta2 + b2) 6= 0, then
the tangent cone at the point T (0 : 0 : t : 1) is a cone of third order, i.e., T is a triple point
of the surface F . ¤

Corollary 1 If there are two different triple points on the double line of the surface F , then
the tangent planes at other points of the double line are given by the equation a2 = 0.

Proof: Without loss of generality we assume that T1(0 : 0 : 0 : 1) and T2(0 : 0 : t : 1),
t ∈ R \ {0}, are triple points of the surface F . Then from Theorem 1 we conclude

c2 = 0 and b2 = −t a2. (5)

Let Z0(0 : 0 : z0 : 1) be a point on the double line different from T1 and T2, i.e., z0 6= 0 and
z0 6= t. In the coordinate system Z0(x

′, y′, z′),

x′ := x, y′ := y, z′ := z − z0,

the surface F is given by the equation

F (x′, y′, z′, 1) = (x′2 + y′2 + z′2)a2 + d3 + z′(2z0 − t)a2 + z0(z0 − t)a2 = 0. (6)

According to Prop. 3 the equation of the tangent cone at the binode Z0 is z0(z0 − t)a2 = 0.
From z0(z0 − t) 6= 0 follows that a2 = 0 is the equation of the tangent cone at any point
different from T1 and T2 on the double line (see Figs. 1–3). ¤

Theorem 2 If T (0 : 0 : t : 1) is a triple point of the surface F given by eq. (1), then for the
tangent cone T C(T,F) of the surface F at point T one of the following statements is valid:

1. T C(T,F) is a proper (non degenerate) cone of third order if and only if d3 + 2z̃ta2 + z̃b2

is irreducible over the field R.
2. T C(T,F) degenerates into the real 2nd-order cone and a plane if and only if the polyno-

mials d3 and 2ta2 + b2 have a common linear factor in x and y.

3. T C(T,F) degenerates into three (independent) planes intersecting at point T if and only
if either 2ta2 + b2 is a factor of d3 or d3 = 0.
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Figure 1: (x2 + y2 + z2)(x2 − 2y2)− 2x3−
−2y2x + 3(2y2 − x2)z = 0,

2 triple points (proper tangent cones) and
ordinary binodes on the double line

Figure 2: (x2 + y2 + z2)x2 − 2x2y−
−2y3 − 3x2z = 0,

2 triple points (proper tangent cones) and
pinch-points (unodes) on the cuspidal line

4. T C(T,F) degenerates into three planes through the double line z if and only if 2ta2 +
b2 = 0 and d3 6= 0.

Proof: According to Theorem 1, (4) and Prop. 3, with respect to the coordinate system
T (x̃, ỹ, z̃) the tangent cone of the surface F at the triple point T (0 : 0 : t : 1) is given by

d3 + z̃(2ta2 + b2) = 0. (7)

The axis z : x = y = 0 is a double line of the tangent cone given by eq. (7). Namely, each
third-order cone with the double line z and the vertex (0 : 0 : 0 : 1) is given by the equation
u3 + zu2 = 0, where u3, u2 are homogeneous polynomials in x and y of degree 3 and 2,
respectively.

If the polynomial d3 + 2z̃(ta2 + b2) is irreducible over R, the tangent cone T C(T,F) is an
irreducible third-order cone with the double line z (according to Prop. 1).

If the polynomial d3+ z̃(2ta2+b2) is reducible consisting of a linear and an (irreducible) 2nd-
order factor, we obtain three different types of tangent cones because the greatest exponent
of z̃ is 1.

- The 2nd-order factor is homogeneous in x, y and z, while the linear factor is homoge-
neous in x and y. In this case d3 and 2ta2 + b2 have a common linear factor and the
tangent cone degenerates into the plane through z and an irreducible real cone of order
2 through z (Prop. 1).
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Figure 3: (x2 + y2 + z2)(x2 + 3y2)− 2x3 + 2x2y − 2xy2 + 2y3 − 2(x2 + 3y2)z = 0,
2 triple points (proper tangent cones) and isolated binodes on the double line

Figure 4: (x2 +y
2 +z

2)(x2 +y
2)+2x

3 +4x
2
y+

+2xy
2 + 4y

3 + 2(3x
2 − xy + 6y

2)z = 0,

1 triple point (a proper tangent cone),
2 pinch-points, ordinary and isolated

binodes on the double line

Figure 5: (x2 + y2 + z2)xy − x2y − y3+
+(x2 + 2xy − 2y2)z = 0,

1 triple point (a proper tangent cone),
ordinary binodes on the double line



116 S. Gorjanc: Special Quartics with Triple Points

Figure 6: (x2 + y2 + z2)(x2 + y2)− x3+
+x2y − xy2 + y3 + (x2 − y2)z = 0,

1 triple point (a degenerated tangent
cone: 2nd-order cone and a plane),
2 pinch-points, ordinary and isolated

binodes on the double line

Figure 7:
(x2 + y2 + z2)(x2 + y2) + 2z(x2 − y2) = 0,
1 triple point (a degenerated tangent cone:
3 real and different non collinear planes),
2 pinch-points, ordinary and isolated

binodes on the double line

- The 2nd-order factor is homogeneous in x and y, while the linear factor is homogeneous
in x, y and z. In this case 2ta2 + b2 is a factor of d3 or d3 = 0 and 2ta2 + b2 is
irreducible over R. The tangent cone T C(T,F) degenerates into three planes. Two of
them are imaginary planes through the line z (Prop. 2), and the third is a real plane
through T which does not contain the line z.

- Both, the linear and the 2nd-order factor are homogeneous in x and y. This case occurs
only if 2ta2 + b2 = 0, d3 6= 0, with d3 reducible over the field R to a linear and
irreducible factor of order 2. The cone T C(T,F) degenerates into three planes through
the line z and two of them are imaginary.

If the polynomial d3 + z̃(2ta2 + b2) is reducible to three linear factors, we can obtain two
different types of a tangent cone.

- 2ta2 + b2 is a factor of d3 or d3 = 0 and 2ta2 + b2 is reducible over the field R.
The tangent cone T C(T,F) degenerates into three planes, two of them real (different or
coinciding) through the line z (Proposition 2) and the third plane not containing z.
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Figure 8:
(x2 + y2 + z2)(x2 + y2) + zx2 = 0,

1 triple point (a degenerated tangent cone:
3 real planes, 2 coinciding), 1 pinch-point,

ordinary and isolated binodes on
the double line

Figure 9:
(x2 + y2 + z2)(x2 + y2) + z(2x2 + y2) = 0,
1 triple point (a degenerated tangent cone:
3 non collinar planes, 2 imaginary planes
through the double line), 2 pinch-points,

ordinary and isolated binodes on
the double line

Figure 10:
(x2 + y2 + z2)(x2 + y2)− 3x2y + y3 = 0

Figure 11:
(x2 + y2 + z2)(x2 + y2) + x2y = 0
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Figure 12:
(x2 + y2 + z2)(2x2 + y2)− 2y(x2 + y2) = 0

Figure 13:
(x2 + y2 + z2)(x2 + y2) + x3 = 0

- 2ta2 + b2 = 0, d3 6= 0 and d3 is reducible over the field R to three linear factors. The
cone T C(T,F) degenerates into three real planes through the line z, whereby all three
planes or just two of them may coincide.

This is illustrated in Figs. 1–13. ¤

4. Examples

In this section we present pictures of thirteen different surfaces as considered before, their
triple points and tangent cones. The pictures have been produced with Mathematica 4.1. For
each surface its equation in Cartesian coordinates (x, y, z) is given.

The Figures 1–3 show three types of pedal surfaces of (1,2)-congruences with two triple
points (types VI1, II1 and I1 according to [2]). The directing curves of the congruences are
the double line of the surface and a hyperbola, a parabola and an ellipse. The pole lies on
the double line. For the surfaces and the tangent cones at their triple points which are shown
in the Figs. 1–3 the double line is nodal, cuspidal and isolated, respectively.

The considered quartics can also contain only one triple point with a proper tangent cone.
Then they can contain at least two pinch-points on the double line. The Figures 4 and 5 show
two examples of pedal surfaces of (1,2)-congruences (types I3,1 and V1 according to [2]).

If the tangent cone at a triple point of the considered quartic degenerates into the plane
and a 2nd-order cone, the cone must be real, because it contains the double line of the surface
as a real generator. This is Case 2 of Theorem 2. Fig. 6 shows the pedal suface of type I3,2

(according to [2]).
In Figures 7–9 the tangent cones at the triple points degenerate into three planes. One of

the tangent planes does not contain the double line of the surface. We obtained the equations
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of the surfaces by summing up the polynomials of the degenerated tangent cones and the
polynomial (x2 + y2 + z2)(x2 + y2). Therefore, the surfaces in Figs. 7–9 contain the absolute
conic and a pair of isotropic lines at infinity. These surfaces illustrate Case 3 of Theorem 2.

The surfaces displayed in Figures 10–13 contain triple points with degenerated tangent
cones as classified in Case 4 of Theorem 2. Three tangent planes are collinear with a double
line; they are real and different in Example 10, two of them coincide in Example 11, two of
them are imaginary in Example 12 and all three coincide in Example 13. All other points on
the double line are isolated binodes.

We obtained the equation of each surface by summing up the polynomials which represent
the section at infinity and the tangent cone at a triple point.
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