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Abstract. When a surface of revolution with a conic as meridian is intersected
with a double tangential plane, then the curve of intersection splits into two con-
gruent conics. This decomposition is valid whether the surface of revolution inter-
sects the axis of rotation or not. It holds even for imaginary surfaces of revolution.
We present these curves of intersection in different cases and we also visualize
imaginary curves. The arguments are based on geometrical reasoning. But we
also give in special cases an analytical treatment.
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1. Introduction

Due to Y. Villarceau the following statement it is valid (compare e.g. [1], p. 412, [3], p. 204,
or [4]):
The curve of intersection between a ring torus Ψ and any double tangential plane τ splits into

two congruent circles.

We assume that r is the radius of the meridian circles k of Ψ and that their centers are
in the distance d, d > r, from the axis a of rotation. We generalize and replace k by a conic
which may also intersect the axis a. Under these conditions it is still true that the intersection
with a double tangential plane τ is reducible.

2. Extension of the ’Villarceau-section’

The following two theorems will be proved by standard arguments from Algebraic Geometry:
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Theorem 1 Let τ be a double tangential plane τ of a surface Ψ of revolution with a conic k
as meridian. Then τ intersects Ψ in two congruent conic sections.

Theorem 2 The two congruent conics of v := τ ∩Ψ according to Theorem 1 are either real

and of the same type as the generating conic k, or they are imaginary.

In the sequel the intersection curve between Ψ and τ is called a ‘Villarceau-section’ or
briefly a ‘v-section’.

3. Geometrical Treatment

According to MacLaurin’s theorem (see e.g. [2], p. 49) an irreducible plane curve of order
n can possess at most

dn :=
(n− 1)(n− 2)

2
double points. A surface of revolution Ψ with a generating conic k is an algebraic surface of
order four. Thus any plane section is an algebraic curve of order four which in the irreducible
case can have at most d4 = 3 double points. If the curve has more than 3 singularities, then
it splits into at least two irreducible components.

Let k′ denote the image of the generator k under reflection in the axis a of rotation. Then
k and k′ form a complete meridian section of the surface Ψ (see Fig. 1). A double tangential
plane τ passes through a common tangent t of k and k′ which is not perpendicular to a. (In
Fig. 1 t is a common inner tangent.) Then τ touches the surface Ψ at the points B ∈ k and
B′ ∈ k′. These points are two double points of the intersection v = τ ∩Ψ.
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Figure 1: Double tangential plane τ of the surface Ψ of revolution

The two coplanar meridian conics k, k′ intersect each other in four points.1 Two of them,
1The case k = k′ with Ψ being a twofold covered quadric is excluded here. Furthermore we exclude

the trivial case where the meridian conics touch the rotation axis. In this case the v-sections coincide with
complete meridians.
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the points K,K ′, are located on the axis a of Ψ and they can be real or conjugate imaginary.
The two remaining points Q,Q′ are symmetric with respect to a. Under rotation about a
they trace a double circle q of Ψ. This circle is symbolically indicated in Fig. 1 as well as
the points K,K ′ ∈ a. The circle q can be real or imaginary depending on whether the points
Q,Q′ are real or conjugate imaginary.

In the generic case the double tangential plane τ intersects the double circle q at two
double points D,D′.2 Thus the intersection curve v = τ ∩Ψ contains at least 4 double points
B,B′, D,D′. Hence v splits into two parts. Due to the symmetry of v with respect to t the
two components are congruent conics c, c′. This proves Theorem 1.

A generating ellipse k has two complex conjugate points at infinity. Therefore Ψ intersects
the plane at infinity along two imaginary conics. Hence any component of a v-section is either
an ellipse or imaginary.

For a parabola k the surface Ψ touches the plane at infinity along a real conic. In the
hyperbolic case Ψ has at infinity two real — perhaps coinciding — conics. The components
c, c′ of the v-section are in a certain relation to the meridians k, k′: For non-intersecting
meridians τ , B and B′ are real; for intersecting k, k′ the plane τ is imaginary and B,B ′

are complex conjugate. Hence also in these cases the components of a v-section are either
imaginary or of the same type as k. 2

The well-known Villarceau-section is the intersection of a ring torus with a double tan-
gential plane. It consists of two congruent circles3 according to the presented theorems (see
Fig. 2). We consider a few other special examples:

• For a torus Ψ the points Q,Q′ of intersection of the meridian circles k, k′ are conjugate
imaginary and at infinity. The double circle q of Ψ is the absolute circle. At a ring
torus the double tangential plane τ touches at the real points B,B ′ and it intersects
the absolute circle q at the points D,D′. Thus the v-section splits into two congruent
circles that pass through the points B and B ′ of tangency and the absolute points.

• If k, k′ are equilateral hyperbolas with axes parallel to a, their points Q,Q′ of intersection
are real and at infinity. Thus q is a real conic. When the inclination of τ is greater
than 45◦ then the double points D,D′ of v are real points at infinity; the v-section
consists of two congruent hyperbolas (see Fig. 7). It turns out that otherwise v consists
of imaginary curves.

• If k, k′ are parabolas with axes perpendicular to a, then they share — apart from the
finite points K,K ′ of intersection — their infinite point Q. The surface Ψ touches
the plane at infinity along q. This shows that the v-section consists of two congruent
parabolas with their axis perpendicular to a.

4. Analytical Treatment

Any v-section of a torus with a generating imaginary circle k is obviously imaginary. However,
even an apple-shaped so-called spindle torus Ψ that intersects the rotation axis a has no real
double tangential plane τ . Hence, the v-section consists of two imaginary circles. Such cases
are noticeable as they provide the possibility of dealing with imaginary structures and their
visualization. Imaginary structures can be handled well through analytical equations.

2Examples with the special case Q = Q′ are presented as Cases 7 and 8.
3The remarkable property that these circles are isogonal trajectories of the parallel circles on Ψ is not

considered here (compare [5], vol. I, pp. 154–155).
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In order to present the analytical treatment as simply as possible we choose a cartesian
coordinate system (O;x1, x2, x3) with the axis a of rotation as x3-axis. The generating conic
k is specified in the x2x3-plane.

An analysis of the v-section of these surfaces of revolution shows a certain relationship
among them that has become evident only after inclusion of imaginary elements. Only Case
9 shows an example with a generating ellipse.
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Figure 2: v-section of a ring torus (Case 1, d : r = 2 : 1)

Case 1: Generating circle k(M, r), d > r :

In the equation of the meridian

k : (x2 − d)2 + x2
3 − r2 = 0 (1)

we replace x2
2 by x2

1 + x2
2 and get after separating the terms which are linear in x2

Ψ : (x2
1 + x2

2 + x2
3 + d2 − r2)2 − 4d2(x2

1 + x2
2) = 0. (2)

A plane through the x1-axis obeys the equation x3 = mx2. We substitute this in eq. (1) and
obtain
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Figure 3: Position of the double
tangential plane (4OAB)

(m2 + 1)x2
2 − 2dx2 + d2 − r2 = 0. (3)

This plane is tangent to Ψ if the discriminant D =
d2 − (m2 + 1)(d2 − r2) vanishes. This results in

τ : x3 = mx2 with m =
r√

d2 − r2
. (4)

Due to (4) we eliminate x3 in (2). After simplifi-
cation the top view v1 of v obeys

v1 :

(

x2
1 +

d2

d2 − r2
x2

2 + d2 − r2

)2

− 4d2(x2
1 + x2

2) = 0. (5)

We introduce a cartesian coordinate system (O;x1, x4) in τ (see Fig. 3 showing a front view).
Then due to

x4 =
√
1 +m2 x2

we obtain from (5) after some computation the equation of the v-section

v :
[

(x1 − r)2 + x2
4 − d2

] [

(x1 + r)2 + x2
4 − d2

]

= 0 (6)

consisting of two circles with radius d (see Fig. 2).
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Figure 4: v-section of a dorn torus (Case 2, d : r = 1 : 2)
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Case 2: Generating circle k(M, r), d < r :

In this case the slope m of τ is imaginary according to (4). Fig. 4a shows the meridian
section of Ψ in the x2x3-plane. But at the same time it shows also its image under the
imaginary affine transformation (x2, x3) 7→ (x2, ix3) which transforms the meridian circles
into equilateral hyperbolas. After this transformation τ has a real image.

Also the x4-axis in τ is imaginary. Nevertheless the equation (6) shows two symmetric
hyperbolas which are displayed in Fig. 4b as if x4 would be a real axis. Note that this auxiliary
view does not correspond to the imaginary transformed front view. Therefore there is no order
line connecting the two views of the point B of contact.

Case 3: Generating imaginary circle k(M, r = iρ), ρ ∈ R :

Again the slope m of τ is imaginary according to (4). The two circles of the v-section
according to (6) have complex conjugate centers. The top view in Fig. 5a shows at the same
time the image under the imaginary scaling (x2, x3) 7→ (x2, ix3). The auxiliary view in Fig. 5b
shows the image under (x1, x4) 7→ (ix1, x4) which gives equilateral hyperbolas constituting
the v-section.

Case 4: Generating equilateral hyperbola k(M, r), d > r :

In analogy to Case 1 we compute

k : (x2 − d)2 − x2
3 − r2 = 0,

Ψ : (x2
1 + x2

2 − x3
3 + d2 − r2)2 − 4d2(x2

1 + x2
2) = 0,

τ : x3 = mx2, m = ir/
√
d2 − r2.

The top view of the v-section Ψ ∩ τ obeys

v1 :

(

x2
1 +

d2

d2 − r2
x2

2 + d2 − r2

)2

− 4d2(x2
1 + x2

2) = 0.

We introduce in the complex plane τ a cartesian coordinate system (O;x1, x5) (in the unitary
sense). Due to

x5 :=
√
1−m2 x2

we replace x2 in the equation of v1 by x5 and obtain

v :
(

x2
1 + x2

5 − d2 + r2
)2 − 4r2x2

1 = 0

which can be decomposed into
(x1 ± r)2 + x2

5 = d2

describing two congruent circles in the imaginary plane. These circles are displayed in Fig. 6b.

Case 5: Generating hyperbola k(M, r), d < r :

Following the computations of Case 4 we get a real plane τ (see Fig. 7a). v consists of two
hyperbolas. When we set

x5 := i
√
1−m2 x2 =

d√
r2 − d2

x2,

then the projection of v into the x1x5-plane obeying

(x1 ± r)2 − x2
5 = d2 (7)

consists of two equilateral hyperbolas which are displayed in Fig. 7b.
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Figure 5: v-section of an imaginary torus (Case 3, d : r = 2 : i)
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Figure 6: v-section of a surface of revolution with generating hyperbola,
rotation axis is intersected (Case 4, d : r = 2 : 1)
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Figure 7: v-section of a surface of revolution with generating hyperbola,
rotation axis is not intersected (Case 5, d : r = 1 : 2)

Case 6: Generating hyperbola k(M, r = iρ), ρ ∈ R :

τ is a real plane. Eq. (7) represents two imaginary circles with complex conjugate centers.
Fig. 8b shows their image under the imaginary scaling (x1, x5) 7→ (ix1, x5).

Case 7: Generating parabola k with p, d > 0 :

In the same way as in previous cases we get

k : x2
3 = 2p(x2 − d),

Ψ : (x2
3 + 2pd)2 − 4p2(x2

1 + x2
2) = 0,

τ : x3 = mx2, m =
√

p/2d.

The top view of the intersection τ ∩Ψ obeys

v1 :
(

x2
2 − 4d2

)2 − 16d2x2
1 = 0
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Figure 8: v-section of a surface of revolution with generating hyperbola,
rotation axis is intersected (Case 6, d : r = 2 : i)

which can be decomposed into the equations

x2
2 = ±4d(x1 ± d) (8)

representing two parabolas (see Fig. 9) which turn out to be independent from the initial
parameter p.

Case 8: Generating parabola k with p > 0, d < 0 :

This time the double tangential plane τ is imaginary and eq. (8) represents two imaginary
parabolas. Fig. 10b shows their image under an imaginary scaling.

We omit here the trivial cases where the conic k degenerates.

Remarks The eight presented cases can be arranged in pairs which are corresponding under
the imaginary affine transformation

(x1, x2, x3) 7→ (x1, x2, ix3).

The pairs are 1–4, 2–5, 3–6, and 7–8. What is real in one case that is imaginary in the
corresponding case. This can also be seen by comparing the corresponding Figures 2–6, 4–7,
8–5, and 9–10.
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Figure 9: v-section of a surface of revolution with generating parabola,
rotation axis is not intersected (Case 7, d : p = 2 : 1)
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Figure 10: v-section of a surface of revolution with generating parabola,
rotation axis is intersected (Case 8, d : p = −2 : 1)
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Case 9: Generating meridian ellipse k in general position:
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Figure 11: v-section of Ψ with a meridian ellipse k in general position (Case 9)

As an example we specify k as an ellipse with semiaxes a = 2 and b = 1. The principal axis
is rotated under ϕ = 45◦ and the center of the ellipse has the distance d = 2 to the axis (see
Fig. 11a). We proceed in the same way as in Case 1 and obtain the equations:

k : 5x2
2 − 6x2x3 + 5x2

3 − 20x2 + 12x3 + 12 = 0,

Ψ :
(

5x2
1 + 5x2

2 + 5x2
3 + 12x3 + 12

)2 − (6x3 + 20)2(x2
1 + x2

2) = 0,

τ : x3 =
√

31

24
x2 − 3/4 = 1.13652x2 − 0.75 .

The top view v1 of the v-sections obeys

v1 : 1.0 + 1.75977x2 − 5.39068x2
1 − 2.39427x2

2 − 4.74317x2
1x2 − 2.78787x3

2 +
+0.73997x4

1 + 2.01518x2
1x

2
2 + 2.50978x4

2 = 0.

We substitute

x2 = 0.66057x4

and obtain

v : 1.0 + 1.1624x4 − 5.39068x2
1 − 1.04477x2

4 − 3.13323x2
1x4 − 0.8036x3

4 +
+0.73997x4

1 + 0.87935x2
1x

2
4 + 0.47789x4

4 = 0

This describes two congruent ellipses (see Fig. 11b) with equations

0.86021x2
1 + 0.55676x1x4 + 0.6913x2

4 ± 1.91579x1 − 0.58123x4 − 1.0 = 0 .
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5. Conclusions

In the present paper we have performed in a simple way an extension of the term ‘Villarceau-
section’ by replacing the ring torus by surfaces of revolution with conics as meridians. There
are many other ways for a generalization. It is possible, for example, to specify a generating
conic section not in a meridian plane or to transform the surface of revolution into cyclides.

References

[1] R. Bereis: Darstellende Geometrie I. Akademie-Verlag, Berlin 1964.

[2] G. Fischer: Plane Algebraic Curves. American Mathematical Society, Providence 2001.

[3] K. Strubecker: Vorlesungen über Darstellenden Geometrie. Vandenhoeck & Ruprecht,
Göttingen 1967.

[4] G. Weiss: Villarceau-Kreise des Ringtorus, ein elementarer Zugang. IBDG 2 (1984).

[5] W. Wunderlich: Darstellende Geometrie I. BI-Hochschultaschenbuch Bd. 96, Bibli-
ographisches Institut, Mannheim 1966.

Received May 23, 2001; final form October 15, 2002


