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Abstract. The tooth profiles of two meshing spur gears are considered. A given
profile may envelop another gear profile. The paper presents an explicit parame-
trization of the gear profile. It is also shown that the corresponding conjugate
rack profile is explicitly determined.
Analogously, the line of action is described. Afterwards, the inverse problem is
studied. If the gear centers, the gear ratio, and a line of action are given then
conjugate gear profiles are determined by the solution of an ordinary differential
equation of first order. An example of application is shown. Finally, this differ-
ential equation is geometrically interpreted by introducing the pole distance. At
any instant the rate of change of the pole distance relates to the inclination of the
rack profile. It is shown that for a specific linear relation, corresponding conjugate
profiles are trochoids of 2nd or 3rd order.
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1. Reference systems

For spur gears in mesh, it is necessary to establish a system of coordinates to parameterize
their geometry. For this purpose
• the coordinate system (O1;x1, y1) is attached to a first cylindrical wheel rotating about

the point O1 = O0 with angular velocity ω1;

• the coordinate system (O2;x2, y2) is attached to a second cylindrical wheel rotating
about the point O2 = O4 with angular velocity ω2;

• the coordinate systems (O0;x0, y0) and (O4;x4, y4) are fixed to the ground;

• the coordinate system (O3;x3, y3) is attached to a rack which is intended to mesh with
the designed spur gears.
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After all, five coordinate systems are needed. Let Σk denote the coordinate system
(Ok;xk, yk) where the subscipt k may be 0, . . . , 4. In order to indicate that any point X
of the plane is described by the coordinate system Σk we also use the subscript k. For in-
stance, X1 indicates a point which is referred to Σ1. The subscript 1 indicates that together
with the frame Σ1 the point X1 is rigidly connected to the first cylindrical wheel. Further-
more, considering the coordinates xk and yk of a point Xk to be the real and imaginary part
of a complex number, respectively, we obtain

Xk = xk + iyk = ρk eiθk , (1)

where i is the imaginary unit. Here, the second equation gives the exponential representation
of Xk, where ρk is the absolute value (modulus) and Θk the argument of Xk. This powerful
notation for Euclidean kinematics has been systematically developed by Bereis [2]. Some
remarks in English language can be found in [4]. Applying this notation we find the following
coordinate transformations in dependance on the rotation angle t := t1 of frame Σ1:

X1 = X0e
it, X2 = X4e

iωt

X1 = (r1 − ir1t+X3)e
it (2)

where t2 = ωt is the rotation angle of Σ2 (see Fig. 11). The constant gear ratio is

ω =
ω2

ω1
=

r1

r2
(3)

where r1 and r2 are the radii of the centrode circles p1 and p2. Note that the center distance
a satisfies

a = r1 − r2. (4)

In any case assuming r1 > 0, let r2 be positive or negative according to the intented spur gear
design. The transformation between the ground frames simply reads

X0 = a+X4. (5)

The centrode circles p1 and p2 contact each other at the instantaneous rotation pole P which
is described by

P1(t) = r1e
it, P2(t) = r2e

iωt, P3(t) = −ir1t (6)

according to the various coordinate systems Σ1, Σ2, and Σ3. The relative displacement of Σ2

with respect to Σ1 is given by

X1 = aeit +X2e
i(1−ω)t (7)

where t is the parameter of this motion. If X2 is any fixed point in Σ2 then the path of X2

(in the plane of Σ1) is parametrized by (7) in terms of X1 = X1(t). Of course, the path is a
trochoid which may be prolate or curtate dependent on the position of X2.

1The figures of the present paper naturally depend on the parameter t. In order to support the under-
standing of the considered displacements, corresponding movies are presented on the author’s home page:
http://www.math.tu-dresden.de/∼baer. Look at “Selected Papers”.
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Figure 1: Conjugate profiles c1, c2 and c3 are in contact at X

2. Determination of a conjugate profile

Let a profile (curve) c2 be given by the parametrization

X2 = x2(s) + iy2(s), s ∈ S ⊆ R (8)

then its various positions in Σ1 may envelop a profile c1 in Σ1. Then, the profiles c2 and c1

are called conjugate. For any instant t in a certain interval, the two profiles c1 and c2 contact
each other at a point of contact. This contact point is determined by the first law of (planar)
gearing that states that the common normal to the contacting profiles has to pass through
the instantaneous rotation pole. In equivalent terms: At a contact point the common normal
of the profiles is perpendicular to the common tangent line. Hence, any point X2 of the given
profile c2 becomes a point of contact for an instant t if the direction vector X2 − P2 of the
normal is perpendicular to the tangent vector X ′

2 = d
ds
X2(s). Working that out with complex

numbers we obtain the contact equation

(X2 − P2)X̄
′
2 + (X̄2 − P̄2)X

′
2 = 0 (9)

where the overline denotes the complex conjugate of a complex number.
With the abbreviations

X2 = x2(s) + iy2(s) = ρ2e
iθ2 , θ2 := Arg(X2), ρ2 := Abs(X2)

X ′
2 = x′2(s) + iy′2(s) = λeiα, α := Arg(X ′

2), λ := Abs(X ′
2),

(10)

and substituting P2 by (6) we obtain

(ρ2e
iθ2 − r2e

iωt)λe−iα + (ρ2e
−iθ2 − r2e

−iωt)λeiα = 0,

which is equivalent to

r2(e
i(ωt−α) + e−i(ωt−α)) = ρ2(e

i(θ2−α) + e−i(θ2−α)).
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With the general relation 2 cosϕ = eiϕ + e−iϕ we get

r2 cos(ωt− α) = ρ2 cos(θ2 − α) = ρ2(cos θ2 cosα + sin θ2 sinα) =
= ρ2 cos θ2 cosα+ ρ2 sin θ2 sinα.

Finally, using (10): X2 = x2 + iy2 = ρ2 cos θ2 + iρ2 sin θ2, we obtain the equivalent contact
equation

r2 cos(α− ωt) = x2 cosα + y2 sinα.

This equation allows the explicit solution

t = t(s) =
α± β + 2πN

ω
, N = 0,±1,±2, . . . , (11)

where

β = arccos
x2x

′
2 + y2y

′
2

r2λ

s ∈ SH = {s ∈ S : |x2x
′
2 + y2y

′
2| ≤ |r2λ|}.

Consequently, there is always an explicit parametrization of the conjugate profile. For the
case N = 0, the solution defines the basic part of the conjugate profile

X1B(s) = (a+X2 e
−i(α±β)) ei

1
ω

(α±β), s ∈ SH . (12)

The complete conjugate profile c1 is given by

X1(s) = X1B(s) e
i 2π
ω

N . (13)

Geometrically spoken, the complete conjugate profile c1 is obtained by revolutions of the basic
part through any integer multiple of the angle 2π

ω
.

The set of all contact points observed in the ground coordinate system (O0;x0, y0) establish
the so-called line of action

c0 : X0(s) = a+X2(s)e
i(α±β) = X1(s)e

−i(α±β)/ω. (14)

Example 1: The given profile c2 is chosen to be the real axis of the system Σ2 that is

X2(s) = s, s ∈ R.

Then by (11) it follows the explicit solution

t =
1

ω
(±β + 2πN) where β = arccos

(

s

r2

)

, s ∈ SH = {s : |s| ≤ |r2|}. (15)

The solution set SH shows that the contact points lie within the diameter segment of the
centrode circle p2. By eq. (12), the basic part of the conjugate profile is

c1B : X1B(s) = (a+ se−iβ)e±i β
ω .

With help of the implicit form of the solution

s = r2 cosβ (16)
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we find the new parametrization

X1B(s) =
(

r1 −
r2

2
+

r2

2
e−i2ωτ

)

eiτ , 0 ≤ τ ≤ 2π.

Comparing this parametrization with eq. (7), we see that the conjugate profile c1 is a cuspidal
trochoid. It is traced by the point X2 =

r2
2
attached to a circle of radius r2

2
rolling around the

outside of the fixed circle of radius r1.
Using the substitution (16) in eq. (14) we can conclude that the line of action is the circle

c0 : X0(ξ) = r1 −
r2

2
+

r2

2
eiξ, 0 ≤ ξ ≤ 2π.

which has radius r2
2
and the mid point M0 = r1− r2

2
. Fig. 2 illustrates the results for the case

of an enveloped epicycloid with the gear ratio ω = −3.
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Figure 2: A diameter of the rolling centrode envelops a cuspidal epitrochoid

3. Determination of a rack profile

In this chapter the relative motion of the gear systems and the rack system is again considered
as depicted in Fig. 1. The displacement of the gear system Σ1 with respect to the rack system
Σ3 is given by the rolling of the centrode circle p1 upon the straight line centrode p3. So, it
is a cyclic motion which is analytically described by (2). The instantaneous rotation centers
of all considered displacements coincide at point P . Therefore, if a pair (c2, c1) of conjugate
profiles contact at a point X then this point can belong to a rack profile c3 with the same
contact normal as the pair at the considered moment. So, this rack profile c3 is in contact
with c1 and c2 at the same moment.

Resolving (2) for X3, we obtain an explicit parametrization of the rack profile c3 for the
pair (c2, c1) that is

X3(s) = X1(s)e
−it(s) − r1 + ir1t(s). (17)
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Example 1 (continued): If we substitute the solution (16) in (17) the rack profile c3 is
determined for the pair (c2, c1) of the above example. The rack profile c3 is the cycloid traced
out by the pole P attached to the line of action and rolling with this circle along the centrode
p3.

Now let us consider the reverse problem. A rack profile

c3 : X3 = x3(s) + iy3, s ∈ S3 ⊆ R

may be given. We are looking for the conjugate gear profile c1 in the system Σ1. According
to the first law of gearing applied to the displacement of Σ3 with respect to Σ1, the normal
vector X3−P3 and the tangent vector X ′

3 = x′3 + iy′3 must be perpendicular, i.e., analytically

(X3 − P3)X̄
′
3 + (X̄3 − P̄3)X

′
3 = 0.

Here we find the explicit solution

t = t3(s) :=
x3x

′
3 + y3y

′
3

r1y′3
. (18)

Therefore, by (2) the profile c1 is given by

X1 = X1(s) = (r1 − ir1t3(s) +X3(s))e
it3(s), s ∈ S3H . (19)

Example 2: It is well known that a straight lined rack profile c3 generates an involute in each
gear system. The line of action is then a straight line which is tangent to the basic circles of
the gear involutes. It is easy to proof that the presented formulae produce this special case.

4. A differential equation for conjugate profiles

Let
X0(s) = E0(s) = u(s) + iv(s), s ∈ S, (20)

be a parametrization of an arbitrary line of action with respect to the ground system. With
an unknown function of contact, t = t(s), the conjugate profile is

X1(s) = E0(s)e
it(s). (21)

Hence the tangent vector of the conjugate profile c1 is

X ′
1 = (E ′0 + it′E0)e

it. (22)

If the profile c1 contacts a profile c2 at the point E0(s) then the normal vector X1 − P1 and
the tangent vector X ′

1 have to be perpendicular, i.e., analytically

(X1 − P1)X̄
′
1 + (X̄1 − P̄1)X

′
1 = 0.

Here, we insert (6), (21), and (22), and by a little manipulation we obtain the ordinary
differential equation (ODE)

d

ds
t(s) =

(r1 − u)u′ − vv′

r1v
=: g(s). (23)
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Assuming the boundary condition t0 = t(s0) the ODE has the unique solution

t(s) =

∫ s

s0

g(σ)dσ + t0. (24)

Inserting this solution into equation (21) yields the profile c1. The conjugate profile c2 is then
given by

X2(s) = (E0(s)− a)eiωt(s). (25)

Example 3: Let the line of action be a polynomial of order n for the real and imaginary
part:

u(s) =
∑n

k=0 aks
k (an 6= 0, 0 ≤ s ≤ s1)

v(s) =
∑n

k=0 bks
k (bn 6= 0, 0 ≤ s ≤ s1).

(26)

Hence the integrand (23) is a rational function with a numerator polynomial of order n(n−1)
and a denominator polynomial of order n. Therefore, (24) is integrable by partial fraction
decomposition.

P
1O

1x

2O
2xF K

Figure 3: Conjugate profiles by integration

Fig. 3 shows the solution of a numerical example with the gear ratio ω = −5/6. The ad-
dendum, pitch, and dedendum radii are rk1 = 70, r1 = 50, and rf1 = 40, respectively. The
gears are designed without clearance. According to the polynomial approach (26) the line
of action c0 is chosen to start at the foot point F of gear 1 with negative inclination at the
moment t = 0. Furtheron, it is required that the line of action has to intersect the pole P
forming an angle of 60 degree with the centre line. Then, the line of action has to end at the
addendum point K. These requirements determine seven coefficients ak and bk. So, the order
n = 3 is sufficient. The second half of the line of action is simply the reflection of the first
half. The method facilitates the design of conjugate profiles with a closed line of action. For
this purpose, the boundary condition for the second integration is t0 = t(s1) where s1 is the
endpoint of the definition interval in (26).

5. A differential equation for the pole distance

Let us consider a rack profile

c3 : X3 = X3(s), s ∈ S3.
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At the instant τ = −t(s) the point X3(s) is assumed to be a contact point with a profile c1.
Then the relation to the ground system is given by

X0 = r1 + ir1τ +X3 = r1 +X3(s)− P3(τ). (27)

The term X3 − P3 can be expressed by an exponential complex number that is

neiα := X3 − P3

where n = n(s) is the pole distance, i.e., the distance Abs(X3−P3) between a point of contact
X3(s) and the instantaneous rotation pole P3. The rack centrode p3 and the common tangent
line of the contacting profiles include the rack angle α = α(s).
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Figure 4: Integrated profiles

In view of the description of the line of action (20) we insert these definitions into (27)
and get

E0(s) = r1 + n(s)eiα(s). (28)

For this special representation of the line of action, we determine (23) and replace the auxiliary
parameter τ(s) by the familiar parameter −t(s). We obtain

dt

ds
r1 sinα =

dn

ds
. (29)

The general curve parameter s can be specified by the arc length of the rack centrode, i.e.,
s = y3. It follows s = −r1t, and by differentiation, we have ds

dt
= −r1.

Inserting that into (29) we obtain the ODE

r1 sinα(t) = −dn

dt
. (30)
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Assuming the boundary condition n0 = n(s0), (30) has the unique solution

n(t) = −r1

∫ t

t0

sinα(x)dx+ n0, n0 = n(t0). (31)

If the function sin(α(x)) is integrable conjugate profiles c1 and c2 are determined by

X1(t) = (r1 + n(t)eiα(t))eit (32)

and
X2(t) = (r2 + n(t)eiα(t))eiωt, (33)

respectively. The corresponding rack profile c3 is

X3(t) = P3(t) + n(t)eiα(t). (34)

In the case
α(x) = α1x+ α0 (αk = const., α1 6= 0), (35)

in which α(x) is a linear function of x, the function sin(α(x)) is integrable. The solution

∫ t

t0

sinα(x)dx =
1

α1

(cosα(t0)− cosα(t)) (36)

is substituted in (31) and (32). We obtain the gear profile c1:

X1(t) = r1(1−
1

2α1

)eit +

(

n0 −
r1

α1

cosα(t0)

)

ei((α1+1)t+α0) − r1

2α1

ei((2α1+1)t+2α0).

Therefore, in the subcase α1 6= 1, the gear profile c1 is a trochoid of 3rd order (in terms of
[3, 9]: Radlinie 3-ter Stufe). But in the subcase α1 = 1, the gear profile c1 is the trochoid (of
2nd order)

X1(t) = (n0 − r1 cos(t0 + α0)) e
i(2t+α0) − r1

2
ei(3t+2α0). (37)

In [8], it was shown that the conjugate profile for a trochoid consists of two parts, a trochoid
again and also a trochoid of 3rd order. Hence, in the subcase α1 = 1, the conjugate gear

profiles are trochoids of order m where m ≤ 3.
If the angle α(x) is a polynom of second order, that is

α(x) = α2x
2 + α1x+ α0 (αk = const., α2 6= 0), (38)

the function sinα(x) is not integrable, but the solution can be written by the help of the
Fresnel integrals

S(z) =
1√
2π

∫ z

0

sin u√
u

du and C(z) =
1√
2π

∫ z

0

cosu√
u

du.

The Fresnel integrals are well-known by tabled values. They can practically be handled
like explicit functions. With these notations the solution reads

∫ t

t0

sinα(x)dx =

√

π

2α2

[(S(f(t))− S(f(t0))) cos δ + (C(f(t))− C(f(t0))) sin δ] (39)
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where the abbreviations

δ = α0 −
α2

1

4α2
and f(t) =

α1 + 2α2t√
2πα2

have been used.

Example 4: A numerical example is given for the linear case (35) with coefficients α1 = 1
2

and α0 =
π
9
. So, the gear profile c1 will be a trochoid of 3rd order. See Fig. 4.

The gear ratio ω = − 9
3
and the pitch radius r1 = 50 are chosen. The integrated profiles

are meant to contact the rack profile c3 at P at the instant t = 0. Therefore, we assume
t0 = n0 = 0. The resulting profiles are explicitly given by (32) to (34) for 0 ≤ t ≤ 1. The
corresponding line of action c0 is determined by inserting the solution (31) in (28). In Fig. 4
the trochoidal gear profiles are plotted at the instant t = 0, 8.

6. Conclusion

The presented explicit solutions are not contained in the relevant textbooks [3, 4, 6, 7, 9].
They have been provided to support the design of general spur gear profiles in a concise
manner. For given gear centers and a gear ratio, the designer may start with a given profile
either of a gear or a rack. Then, the other profiles are explicitly calculable. As a by-product,
the line of action is found. On the other hand, the designer may begin with a given line of
action. Then he can find conjugate profiles by solving an ordinary differential equation. The
latter method shows a profile design starting with a given rack angle function.

All methods allow free design parameters. Therefore, future research may focus on these
parameters to meet new requirements of gear design.
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