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Abstract. A necessary and sufficient condition for a central-axonometric refer-
ence system to be the image of a positively oriented orthonormal frame under a
central projection is given by a single complex equation. The presented equation
is an analogon of the Gauss equation that characterizes the reference system of
an orthogonal axonometry.
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1. Introduction

Let X be an oriented Euclidean space of dimension 3 and let Y be an affine plane in X. We
choose a projective completion X̂ of X and denote the projective closure of Y in X̂ by Y .

Given an arbitrary point z of X̂ that does not lie in Y , the projection from X̂ onto Y

with center z is the projective map

π : X̂ \ {z} → Y , p 7→ (p ∨ z) ∩ Y ,

where p ∨ z denotes the line joining p and z. The map π is called a central projection if z is
finite or a parallel projection if z is infinite.

A positively oriented orthonormal frame in X is a quadruplet (q, r1, r2, r3) of points of X
such that the vectors r1 − q, r2 − q, r3 − q form a positively oriented orthonormal basis of
the vector space ~X of X. For j = 1, 2, 3 let sj denote the infinite point of the line joining q

and rj. In this paper we study the images of the points

q, r1, r2, r3, s1, s2, s3

under a central projection from X̂ onto Y (see Fig. 1). The problem of characterizing these
images has been discussed by several authors [4], [7], [8], [3]. In Section 2 we present an
algebraic equation for this problem, and in Section 3 and 4 we show how the geometric
conditions of [8] and [7] follow from our algebraic equation. Central projections of orthonormal
frames in higher-dimensional spaces are treated in [2] and [6].
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Figure 1: A central-axonometric reference system

2. A complex equation for the image

A central-axonometric reference system in Y is a septuplet (o, e1, e2, e3, f1, f2, f3) of non-
collinear points in Y such that o, e1, e2, e3 are finite and each triple (o, ej , fj), j = 1, 2, 3,
consists of three pairwise distinct collinear points. In [1] it is shown how central axonometry
can be used for geometric constructions. For j = 1, 2, 3 let uj denote the infinite point of the
line joining o and ej , and let

ρj := cross-ratio(o, ej , fj, uj) =
fj − o

fj − ej

∈ R \ {0}. (1)

Then ρj = 1 if and only if fj = uj , i.e., fj is infinite. For convenience, we use the notation

ρ′j := 1− ρj and wj := ej − o for j = 1, 2, 3.

Theorem 1 The central-axonometric reference system (o, e1, e2, e3, f1, f2, f3) is the image of
a positively oriented orthonormal frame under a central projection if and only if

(ρ′
2
ρ1w1 − ρ′

1
ρ2w2)

2 + (ρ′
3
ρ1w1 − ρ′

1
ρ3w3)

2 + (ρ′
3
ρ2w2 − ρ′

2
ρ3w3)

2 = 0 (2)

and ρ1, ρ2, ρ3 are not all equal to 1. Here we use w1, w2, w3 as complex numbers by identifying
the Euclidean vector space ~Y with the complex plane C. (Since the equation is invariant with
respect to complex multiplication and conjugation, all identifications are equivalent).

Furthermore, for a reference system (o, e1, e2, e3, f1, f2, f3) where at least one of the points
f1, f2, f3 is finite and which satisfies equation (2), there are exactly two solutions for the
frame and the center, and one solution can be transformed into the other by first reflecting
the center of the projection and the frame in the image plane and then reflecting the frame
in the centre.
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Due to Gauss the complex equation w2
1
+ w2

2
+ w2

3
= 0 characterizes the reference

system of an orthogonal axonometry.1 Therefore, the above equation can be seen as a central-
axonometric analogon of the Gauss equation.

For parallel axonometry, a calculation similar to that in the proof of Theorem 1 yields
the complex equation

w2

1
+ w2

2
+ w2

3
=

1

2

(

|w1|2 + |w2|2 + |w3|2 − |w1
2 + w2

2 + w3
2|
)

v2

which gives a necessary and sufficient condition that the parallel-axonometric reference system
(o, e1, e2, e3) is, up to a uniform scaling in the image plane, the image of a positively oriented
orthonormal frame under the parallel projection in the direction n + v where n is a unit
normal vector of the image plane.

Proof of Theorem 1. Following [5] we choose X̂ as the projective space of the vector space

R× ~X with the embedding

X → X̂ , p 7→ o[(1, p− o)] = R(1, p− o).

Writing z = o+ u with u ∈ ~X , the central projection from X̂ onto Y with center z is given
analytically by

π : X̂ \ {z} → Y , [(α, v)] 7→ [~π(α, v)],

where
~π : R× ~X → R× ~Y

denotes the linear projection with respect to the direct sum

R× ~X = R(1, u)⊕ R× ~Y

with the kernel R(1, u), i.e., for y ∈ ~Y : ~π(λ(1, u) + (µ, y)) = (µ, y). Then π(q) = o if and
only if ~π(1, q − o) = λ(1, 0) for some λ ∈ R \ {0}. Equivalently, (1, q − o)− λ(1, 0) ∈ R(1, u),
i.e.,

q = o+ (1− λ)u . (3)

For j = 1, 2, 3, let rj = q + vj with vj ∈ ~X. Then

π(rj) = [~π(1, q + vj − o)] = [~π(1, q − o) + ~π(0, vj)] = [λ(1, 0) + ~π(0, vj)].

Thus π(rj) = ej iff
~π(0, vj) = (λj − λ, λjwj)

for some λj ∈ R \ {0}. Equivalently, (λ− λj, vj − λjwj) ∈ R(1, u), i.e.,

vj = (λ− λj)u+ λjwj . (4)

Finally, the cross-ratio of the points

o = [1(1, 0) + 0(0, wj)]

ej = [1(1, 0) + 1(0, wj)]

fj = [(λj − λ)(1, 0) + λj(0, wj)]

uj = [0(1, 0) + 1(0, wj)]
1The author wishes to thank the referee for this information.
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∣

·
∣

∣

∣

∣
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∣

∣

∣

∣

=
λj

λ
. (5)

From the equations (3)–(5) we conclude that the reference system (o, e1, e2, e3, f1, f2, f3) is the
image of a frame (q, q+ v1, q+ v2, q+ v3) under the central projection with center z = o+u

if and only if

q = o+ (1− λ)u (6)

vj = λ((1− ρj)u+ ρjwj) for j = 1, 2, 3 (7)

for some λ ∈ R \ {0}. To prove the theorem, we examine the existence of some λ ∈ R \ {0}
and some vector u ∈ ~X such that the vectors

λ((1− ρj)u+ ρjwj)

are orthonormal and positively oriented. Obviously not all of ρ1, ρ2, ρ3 can be equal to 1.
Therefore,

ρ := ρ′
1

2
+ ρ′

2

2
+ ρ′

3

2 6= 0.

Choosing a suitable positively oriented orthonormal basis of the vector space ~X we can assume
that

w1 =





a

b

0



 , w2 =





c

d

0



 , w3 =





e

f

0



 and u =





r

s

t





with a, b, c, d, e, f, r, s, t ∈ R. Then it suffices to check that the rows of the matrix

λ





ρ′
1
r + ρ1a ρ′

2
r + ρ2c ρ′

3
r + ρ3e

ρ′
1
s+ ρ1b ρ′

2
s+ ρ2d ρ′

3
s+ ρ3f

ρ′
1
t ρ′

2
t ρ′

3
t





are orthonormal and positively oriented. The third row has length 1 iff

t = ± 1

λ
√
ρ
. (8)

The sign of t can be chosen such the determinant of the matrix is positive. The second and
the third row are orthogonal iff

s = −ρ′
1
ρ1b+ ρ′

2
ρ2d+ ρ′

3
ρ3f

ρ
. (9)

The first and the third row are orthogonal iff

r = −ρ′
1
ρ1a+ ρ′

2
ρ2c+ ρ′

3
ρ3e

ρ
. (10)

In the sequel we use these formulas to eliminate r, s and t. The first row has length 1 iff

(ρ′
1
ρ1a+ ρ′

2
ρ2c+ ρ′

3
ρ3e)

2 = (ρ2

1
a2 + ρ2

2
c2 + ρ2

3
e2 − λ−2)ρ . (11)
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The second row has length 1 iff

(ρ′
1
ρ1b+ ρ′

2
ρ2d+ ρ′

3
ρ3f)

2 = (ρ2

1
b2 + ρ2

2
d2 + ρ2

3
f2 − λ−2)ρ . (12)

Finally, the first and the second row are orthogonal iff

(ρ′
1
ρ1a+ ρ′

2
ρ2c+ ρ′

3
ρ3e)(ρ

′
1
ρ1b+ ρ′

2
ρ2d+ ρ′

3
ρ3f) = (ρ2

1
ab+ ρ2

2
cd+ ρ2

3
ef)ρ . (13)

Using the real bilinear form
〈x, y〉 := x1y1 + x2y2 + x3y3

and the vectors

A := (ρ1a, ρ2c, ρ3e), B := (ρ1b, ρ2d, ρ3f) and N := (ρ′
1
, ρ′

2
, ρ′

3
)

we can rewrite the equations (11)–(13) as

〈N,A〉2 = (〈A,A〉 − λ−2)〈N,N〉
〈N,B〉2 = (〈B,B〉 − λ−2)〈N,N〉

〈N,A〉〈N,B〉 = 〈A,B〉〈N,N〉

or, equivalently,

〈N × A, N × A〉λ2 = 〈N,N〉 (14)

〈N,B〉2 − 〈N,A〉2 = (〈B,B〉 − 〈A,A〉)〈N,N〉 (15)

〈N,A〉〈N,B〉 = 〈A,B〉〈N,N〉 (16)

where × denotes the cross product and we have used that

〈N × A, N × A〉 = 〈N,N〉〈A,A〉 − 〈N,A〉2.

If 〈N × A, N × A〉 = 0, then by (15) also 〈N × B, N × B〉 = 0 and the vectors A,B are
linearly dependent which contradicts the assumption that (o, e1, e2, e3, f1, f2, f3) is a reference
system. Therefore,

λ = ±
√

〈N,N〉
〈N × A, N × A〉 (17)

where the denominator cannot vanish. By equation (3), the ± in this formula corresponds to
the symmetry of the problem.

To simplify the remaining equations (15) and (16), we identify the Euclidean vector space
R2 with the complex plane C, i.e.,

w1 = a+ ib , w2 = c+ id , w3 = e+ if and A+ iB = (ρ1w1, ρ2w2, ρ3w3).

Then the equations (15)–(16) can be combined in the single equation

〈N, A+ iB〉2 = 〈A+ iB, A+ iB〉〈N,N〉

where 〈〉 now is the corresponding complex bilinear form. Equivalently,

〈N × (A+ iB), N × (A+ iB)〉 = 0 (18)

where × denotes the cross-product on C3. Applying the determinant formula for the cross
product now yields equation (2) and finishes the proof.
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3. The conditions of Szabó-Stachel-Vogel

In [8] all the points f1, f2, f3 are supposed to be finite. Then the conditions of [8] can be
derived from equation (2) as follows. From equation (1) we get, for j = 1, 2, 3,

fj − o =
ρj

ρj − 1
(ej − o)

and
d(o, ej)

d(ej, fj)
=
|ej − o|
|fj − ej |

=
|ej − o|

|(fj − o)− (ej − o)| = |ρ
′
j| (19)

where d denotes the Euclidean distance in Y . Thus equation (2) can be rewritten as

(

f3 − f2

ρ′
1

)2

+

(

f3 − f1

ρ′
2

)2

+

(

f2 − f1

ρ′
3

)2

= 0 . (20)

Denoting the angles in the triangle of vanishing points by α1, α2, α3, we have

f3 − f1

f2 − f1

=
|f3 − f1|
|f2 − f1|

exp(−iα1) ,
f3 − f2

f1 − f2

=
|f3 − f2|
|f1 − f2|

exp(iα2)

and

ρ′
1

−2

( |f3 − f2|
|f2 − f1|

)2

exp(2iα2) + ρ′
2

−2

( |f3 − f1|
|f2 − f1|

)2

exp(−2iα1) + ρ′
3

−2
= 0 .

Extracting the imaginary parts gives

(

ρ′
1

ρ′
2

)2

=

( |f3 − f2|
|f3 − f1|

)2
sin(2α2)

sin(2α1)
=

(

sin(α1)

sin(α2)

)2
2 sin(α2) cos(α2)

2 sin(α1) cos(α1)
=

tan(α1)

tan(α2)

and, by the symmetry of equation (20) with respect to permutations,

(

ρ′j

ρ′k

)2

=
tan(αj)

tan(αk)
. (21)

Combining the equations (19) and (21) now yields the conditions of [8]:

(

d(o, ej)

d(ej, fj)

)2

:

(

d(o, ek)

d(ek, fk)

)2

= tan(αj) : tan(αk) .

4. The condition of Stiefel

In [7] it is supposed that the points f1 and f2 are finite, the point f3 is infinite and that f2−f1

is perpendicular to w3. Then the condition of [7] can be derived from equation (2) as follows.
Using

f1 − o =
ρ1

ρ1 − 1
(e1 − o) , f2 − o =

ρ2

ρ2 − 1
(e2 − o) and ρ3 = 1 ,

equation (2) can be rewritten as

(f2 − f1)
2 + (ρ′

1

−2
+ ρ′

2

−2
)w2

3
= 0 . (22)
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Since f2 − f1 is perpendicular to w3, it follows that

ρ′
1

−2
+ ρ′

2

−2
=

( |f2 − f1|
|w3|

)2

.

Substituting
d(o, ej)

d(ej , fj)
= |ρ′j| for j = 1, 2

gives the formula of [7]:

(

d(e1, f1)

d(o, e1)

)2

+

(

d(e2, f2)

d(o, e2)

)2

=

(

d(f1, f2)

d(o, e3)

)2

.
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