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Abstract. We study an ordered pair of functions which determines a regular
space curve up to a direct similarity. The first function is called a shape curvature
and the second one a shape torsion. We prove an extension of the fundamental
theorem of space curves relating to the group of direct similarities. We also propose
a direct way for recovering a space curve from its shape curvature and shape
torsion.
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1. Introduction

The direct similarities of the Euclidean space R3 preserve the orientation and the angles.
Geometric objects in R3 like triangles and tetrahedra have a natural description with respect
to the group of direct similarities by measures of two and four angles. The quaternion algebra
H can be used for another description of similar triangles and tetrahedra. There is a well-
defined correspondence between the set of all triangles in R3 and H so that every two triangles
corresponding to the same quaternion are similar. This correspondence associates to any
tetrahedron an ordered pair of quaternions so that two tetrahedra corresponding to the same
pair are similar (see [3] for details). It is well-known that a regular space curve with non-zero
curvature, a so-called Frenet space curve, is determined up to a Euclidean motion of R3 by
its curvature and torsion (see [4], ch. 7).

The aim of this paper is to determine a Frenet space curve up to a direct similarity of R3

by a pair of real functions of class C1. We first discuss some differential-geometric invariants
of curves under the action of the group of direct similarities. Then, for a Frenet space curve
we introduce a shape as an ordered pair of two invariants called a shape curvature and a shape
torsion. The use of a spherical arc length parameter plays a key role in these considerations.
In Section 3 we prove that if for two Frenet space curves, the shape curvature and the shape
torsion coincide, then these curves are equivalent modulo a direct similarity. In the next
section we study the relation between a Frenet curve and its spherical tangent indicatrix.
In particular we show that the shape torsion of the Frenet space curve coincides with the
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geodesic curvature of the spherical indicatrix. Thus we obtain a direct constructive way for
determining a Frenet space curve by its shape curvature and shape torsion under some initial
condition. Finally we give examples for recovering a space curve with a given shape.

2. Differential geometric invariants of space curves under

the group of direct similarities

Any direct similarity of the Euclidean space R3 is a product of an orientation-preserving
homothety and a orthogonal mapping (see [1], p. 220). Denote by Sim+(R3) the group of the
direct similarities of R3. Then any f ∈ Sim+(R3) can be expressed as a product

f = g2 ◦ g1 ◦ h,

where h is a homothety centered at the origin and with a scaling factor λ > 0 ; g1 is an
orthogonal mapping preserving the origin, and g2 is a translation. Let H be the quaternion
algebra. We identify R3 with ImH. According to Hamilton’s Theorem (see [6], p. 216, or
[7], p. 130) there exists a unit quaternion n such that

ImH 3 z
g1→ n.z.n−1 ∈ ImH.

Thus we obtain
f(z) = λn.z.n−1 + a (z ∈ ImH ∼= R3)

for some fixed λ ∈ R, λ > 0 and a ∈ ImH.
Let

c : (t1, t2) 3 t → c(t) ∈ R3 ∼= ImH

be a curve of class C3. We denote the image of c under the direct similarity f by c0, i.e.,
c0 = f ◦ c. Then c0 can be expressed as

(t1, t2) 3 t c0→ λnc(t)n−1 + a ∈ ImH.

The arc length functions of c and c0 starting at t0 ∈ (t1, t2) are

s(t) =

∫ t

t0

∥∥∥∥
dc(u)

du

∥∥∥∥ du and s0(t) =

∫ t

t0

∥∥∥∥
dc0(u)

du

∥∥∥∥ du = λs(t).

Both curves have reparametrizations by the arc length parameter c : (s1, s2) → R3 and
c0 : (λs1, λs2) → R3. In this section we denote by primes the differentiation with respect to
s. It is well-known (see [4], p. 125 and p. 127) that the Frenet curvature κ1 and the torsion
κ2 of c are given by

κ1(s) = ‖c′′(s)‖, κ2(s) =
det(c′(s), c′′(s), c′′′(s))

‖c′′(s)‖2
.

Since ds
ds0
= 1

λ
(= const.), the curvature κ10(s0) = κ10(λs) and the torsion κ20(s0) = κ20(λs)

of the curve c0 are given by

κ10 =
1

λ
κ1(s), κ20 =

1

λ
κ2(s) (1)
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Thus we obtain κ1ds = κ10ds0 and κ2ds = κ20ds0.
Any curve in the Euclidean space with non-zero curvature, or equivalently a Frenet space

curve, admits a reparameterization by an arc length parameter of its spherical image (see [5]
and [9]). If we denote by σ and σ0 the spherical arc length parameters of c and c0, respectively,
we have that

dσ = κ1ds = κ10ds0 = dσ0. (2)

Hence, dσ = κ1ds is invariant under the group of the direct similarities of R3.
Let e1, e2, e3 be a Frenet frame field along the curve c parameterized by the spherical arc

length parameter σ. Then the structure equations of c are given by

dc

dσ
=
1

κ1
e1 ,

de1

dσ
= e2 ,

de2

dσ
= −e1 +

κ2

κ1
e3 ,

de3

dσ
= −κ2

κ1
e2 .

Moreover, we have
d2c

dσ2
= − dκ1

κ1dσ
· dc
dσ
+
1

κ1

e2 . (3)

Similarly,
d2c0

dσ2
0

= − dκ10

κ10dσ
· dc0

dσ0
+
1

κ10
e20, where e10, e20, e30 is a Frenet frame field along the

curve c0 = f ◦ c. Using (1) and (2) we get

− dκ10

κ10 dσ0
= −d

1
λ
κ1

dσ
· 11
λ
κ1

= − dκ1

κ1 dσ
and

κ20

κ10
=

1
λ
κ2

1
λ
κ1

=
κ2

κ1
.

By above considerations we obtain the following

Lemma 1 The functions κ̃1 = −
dκ1

κ1dσ
and κ̃2 =

κ2

κ1

are invariants under the group of the

direct similarities of the Euclidean space.

The equation (3) and the structure equations of c can be rewritten in the form

d2c

dσ2
= κ̃1

dc

dσ
+
1

κ1

e2 ,
de1

dσ
= e2 ,

de2

dσ
= −e1 + κ̃2e3 ,

de3

dσ
= −κ̃2e2

and then the invariants κ̃1 and κ̃2 can be expressed as

κ̃1(σ) =

〈
d2c
dσ2 ,

dc
dσ

〉

〈
dc
dσ
, dc
dσ

〉 , (4)

κ̃2(σ) = det

(
dc

dσ
,
d2c

dσ2
,
d3c

dσ3

)
.

[ (
dc
dσ

)2
(
dc
dσ

)2 ( d2c
dσ2

)2 −
〈
dc
dσ
, d2c
dσ2

〉2

]3/2

. (5)

Definition 1 Let c : I → R3 be a Frenet space curve of the class C3 parameterized by a
spherical arc length parameter σ. Let κ1(σ) and κ2(σ) be the curvature and the torsion of c,
respectively. The functions

κ̃1 = −
dκ1

κ1dσ
and κ̃2 =

κ2

κ1

are called shape curvature and shape torsion of c. The ordered pair (κ̃1, κ̃2) is called a (local)
shape of the curve c.
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For an arc length parameter s we have

κ̃1 = −
dκ1

ds
· ds
dσ
· 1
κ1
= −κ

′
1

κ2
1

=

(
1

κ1

)′
=
(log ‖c′′(s)‖−1)′

‖c′′(s)‖ ,

κ̃2 =
κ2

κ1
=
det(c′(s), c′′(s), c′′′(s))

‖c′′‖3
,

and more generally for an arbitrary parameter t

κ̃1 = −
dκ1

dt
· dt
dσ
· 1
κ1

=
3
∥∥∥dcdt × d2c

dt2

∥∥∥
2 〈

dc
dt
, d2c

dt2

〉
−
∥∥dc
dt

∥∥2
〈
dc
dt
× d2c

dt2
, dc

dt
× d3c

dt3

〉

∥∥dc
dt
× d2c

dt2

∥∥3 ,

κ̃2 =
κ2

κ1

=

∥∥dc
dt

∥∥3
. det

(
dc
dt
, d2c

dt2
, d3c

dt3

)

∥∥dc
dt
× d2c

dt2

∥∥3

In case of plane curves other formulas for κ̃1 are given in ([8], p. 53) and ([10], p. 105). Note
that the invariants κ̃1 and κ̃2 were introduced by É. Cartan in [2].

It is easy to see that both κ̃1 and κ̃2 are not affine invariants. For example, a circle
and an ellipse are always affine equivalent but they have different shape curvature functions.
Similarly, two circular helices c1(t) = (a cos t, a sin t, bt) and c2(t) = (b cos t, b sin t, at), where
a > b > 0, are affine equivalent but their shape torsion functions b/a and a/b are different.

3. Uniqueness theorem

The definition of the “shape curvature” in terms of a spherical arc length parameter suggests
to recognize the curve from its “shape data”. Two Frenet curves with the same torsion and
the same always positive curvature are equivalent modulo a Euclidean motion. This statement
can be extended for the Frenet curves with the same shape curvature and shape torsion.

Theorem 1 (Uniqueness Theorem) Let I ⊂ R be an open interval and let ci : I → R3,
i = 1, 2 , be two Frenet curves of class C3 parameterized by the same spherical arc length
parameter σ. Assume that c1 and c2 have the same shape curvature κ̃1 and the same shape
torsion κ̃2 for any σ ∈ I. Then there exists a direct similarity f of R3 such that c2 = f ◦ c1.

Proof: Let κi1 6= 0 and κi2 be the curvature and the torsion of the curve ci, i = 1, 2 . Denote
by κ̃i1 and κ̃i2 the shape curvature and the shape torsion of ci. Using κ̃11 = κ̃21 we obtain
dκ11/κ11 = dκ21/κ21 or equivalently log κ11 = log κ21 + log λ , where λ is a positive real
constant. Then κ11 = λκ21 for any σ ∈ I. Applying κ̃12 = κ̃22 we also get κ12 = λκ22 for
any σ ∈ I. Let eij, j = 1, 2, 3 , be a Frenet frame field on ci, i = 1, 2 , and let σ0 ∈ I.
Since ‖eij‖ = 1 there exists an orientation-preserving Euclidean motion h of R3 such that
h(c1(σ0)) = c2(σ0) and h(e1j(σ0)) = e2j(σ0) for j = 1, 2, 3 . Consider the function φ : I → R
given by

φ(σ) = ‖h(e11(σ))− e21(σ)‖2 + ‖h(e12(σ))− e22(σ)‖2 + ‖h(e13(σ))− e23(σ)‖2
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for σ ∈ I. Then

dφ

dσ
= 2

〈
d

dσ
h(e11(σ))−

d

dσ
e21(σ), h(e11(σ))− e21(σ)

〉
+

+ 2

〈
d

dσ
h(e12(σ))−

d

dσ
e22(σ), h(e12(σ))− e22(σ)

〉
+

+ 2

〈
d

dσ
h(e13(σ))−

d

dσ
e23(σ), h(e13(σ))− e23(σ)

〉
.

Since ‖h(e1j)‖2 = ‖e1j‖2 = 1 and ‖e2j‖2 = 1 we have

〈
d

dσ
h(e1j(σ)), h(e1j(σ))

〉
= 0 and

〈
de2j

dσ
(σ), e2j

〉
= 0, j = 1, 2, 3 .

Hence,

dφ

dσ
= −2

〈
h
(de11

dσ
(σ)
)
, e21(σ)

〉
− 2

〈
de21

dσ
(σ), h(e11(σ))

〉
− 2

〈
h
(de12

dσ
(σ)
)
, e22(σ)

〉
−

−2
〈
de22

dσ
(σ), h(e12(σ))

〉
− 2

〈
h
(de13

dσ
(σ)
)
, e23(σ)

〉
− 2

〈
de23

dσ
(σ), h(e13(σ))

〉
.

Using the structure equations

dei1
dσ

= ei2 ,
dei2
dσ

= −ei1 + κ̃i2ei3 ,
dei3
dσ

= −κ̃i2ei2 , i = 1, 2 ,

we obtain

dφ

dσ
= −2κ̃12 〈h(e13(σ)), e22(σ)〉 − 2κ̃22 〈e23(σ), h(e12(σ))〉+
+2κ̃12 〈h(e12(σ)), e23(σ)〉+ 2κ̃22 〈e22(σ), h(e13(σ))〉 .

But κ̃12 = κ̃22 and then dφ/dσ = 0 for any σ ∈ I. On the other hand φ(σ0) = 0 and hence
φ(σ) = 0 for any σ ∈ I. This implies that h(e1j(σ)) = e2j(σ) for any σ ∈ I, j = 1, 2, 3 .
The map g = λh : R3 → R3 is a direct similarity of R3 because λ = κ11/κ21 is a positive real
constant.

We also consider the function ψ : I → R, defined by

ψ(σ) =

∥∥∥∥
d

dσ
g(c1(σ))−

d

dσ
c2(σ)

∥∥∥∥
2

for any σ ∈ I.

Then

dψ

dσ
= 2

〈
d2

dσ2
g(c1(σ))−

d2

dσ2
c2(σ),

d

dσ
g(c1(σ))−

d

dσ
c2(σ)

〉
=

= 2

〈
g
(d2c1

dσ2
(σ)
)
, g
(dc1

dσ
(σ)
)〉

− 2
〈
g
(d2c1

dσ2
(σ)
)
,
dc2

dσ
(σ)

〉
−

−2
〈
d2c2

dσ2
(σ), g

(dc1

dσ
(σ)
)〉
+ 2

〈
d2c2

dσ2
(σ),

dc2

dσ
(σ)

〉
.
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Using the properties of h we obtain

dψ

dσ
= −2λ2 κ̃11

κ2
11

− 2 κ̃21

κ2
21

+ 2λ
κ̃11

κ11κ21
+ 2λ

κ̃21

κ11κ21
.

From κ̃11 = κ̃21 and κ11 = λκ21 we conclude that

dψ

dσ
= −4 κ̃21

κ2
21

+ 4
κ̃21

κ2
21

= 0 .

Applying the structure equations of the curves g ◦ c1 and c2 we calculate

d

dσ
g(c1(σ0)) =

λ

κ11

e21(σ0),
d

dσ
(c2)(σ0) =

1

κ21

e21(σ0)

and then ψ(σ0) = 0. Hence, ψ(σ) = 0 for any σ ∈ I, or equivalently d
dσ

c2(σ) ≡ d
dσ
g(c1(σ)).

This means that there exists a constant vector q ∈ R3 such that c2(σ) = g(c1(σ)) + q . Let
g1 : R3 → R3 be the translation determined by the vector q. Then the image of c1 under the
direct similarity f = g1 ◦ g is the curve c2.

4. Representations of space curves by curves on the unit sphere

Izumiya and Takeuchi [5] show that any Bertrand curve can be constructed from the spher-
ical curve whose spherical evolute coincides with the spherical Darboux image of the Bertrand
curve. Using a shape curvature and a shape torsion we obtain a similar representation for
any Frenet curve.

Let γ : I → S2 be a unit speed spherical curve with σ as arc length parameter of γ.
Then t(σ) = dγ(σ)/dσ is the unit tangent vector of γ at σ. Consider the unit vector field
p(σ) = γ(σ) × t(σ). The orthogonal frame {γ(σ), t(σ), p(σ)} along γ is called the Sabban
frame of γ (see [5]). Then the following Frenet-Serret formulas hold

dγ(σ)

dσ
= t(σ),

dt(σ)

dσ
= −γ(σ) + kg(σ)p(σ),

dp(σ)

dσ
= −kg(σ)t(σ), (6)

where kg(σ) = det (γ(σ), t(σ), dt(σ)/dσ) is the geodesic curvature of γ at γ(σ).

Let k : I → R be a function of class C1. Then we may define a space curve c : I → R3

given by

c(σ) = b

∫
e

∫
k(σ)dσγ(σ)dσ + a , (7)

where a is a constant vector and b is a real constant. Obviously, σ is a spherical arc length
parameter of c, because dc

dσ
:
∥∥ dc
dσ

∥∥ = γ(σ). Under the above assumptions we can give a
description of all Frenet curves in R3.

Proposition 1 The curve c defined by (7) is a Frenet curve with shape curvature κ̃1(σ) =
k(σ) and shape torsion κ̃2(σ) = kg(σ). Moreover, all Frenet curves can be obtained in this
way.

Proof. First, we have that

dc

dσ
= b e

∫
k(σ)dσγ(σ),

d2c

dσ2
= b e

∫
k(σ)dσ

{
k(σ)γ(σ) +

dγ

dσ

}
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and
d3c

dσ3
= b e

∫
k(σ)dσ

{(
k2(σ) +

dk

dσ

)
γ(σ) + 2k(σ)

dγ

dσ
+
d2γ

dσ2

}
.

Since ‖γ(σ)‖ = 1 and ‖dγ/dσ‖ = 1 then
〈
γ(σ), dγ

dσ

〉
= 0 and γ(σ) × dγ

dσ
6= 0 for any σ ∈ I.

Hence,
dc

dσ
× d2c

dσ2
= b2 e 2

∫
k(σ)dσ

(
γ × dγ

dσ

)
6= 0 .

This means that c is a Frenet curve. Applying the equations (4) and (5) from Section 2 we
find that

κ̃1(σ) = k(σ) and κ̃2(σ) = det

(
γ,

dγ

dσ
,
d2γ

dσ2

)
= kg(σ).

Conversely, let c : I → R3 be a regular curve parameterized by a spherical arc length
parameter σ. Denote by κ1(σ) and κ2(σ) the curvature and the torsion of c, respectively.
Then

κ̃1(σ) = −
dκ1(σ)

κ1dσ
and κ̃2(σ) =

κ2(σ)

κ1(σ)

are the shape curvature and the shape torsion of c. Consider the spherical indicatrix γ of c,
i.e., the curve γ : I → S2 is given by

γ(σ) = e1 =
dc

dσ
:

∥∥∥∥
dc

dσ

∥∥∥∥ = κ1(σ)
dc

dσ
.

Obviously, σ is an arc length parameter of γ and kg = det
(
γ(σ), t(σ), dt(σ)

dσ

)
= κ̃2(σ) is the

geodesic curvature of γ. If k(σ) = κ̃1(σ), then

∫
e
∫
k(σ)dσγ(σ)dσ =

∫
e
∫
κ̃1(σ)dσe1(σ)dσ =

∫
e
−

∫
dκ1

κ1dσ
dσ

e1(σ)dσ =

=

∫
e
−

∫
dκ1

κ1 e1(σ)dσ = eb0
∫
1

κ1
e1(σ)dσ = eb0

∫
dc

dσ
dσ = eb0c(σ) + c0 ,

where c0 is a constant vector and b0 is a real constant. Thus,

c(σ) = b

∫
e

∫
k(σ)dσγ(σ)dσ + a.

Now we have a simple description of all cylindrical helices.

Corollary 1 The spherical curve γ is a circle if and only if the corresponding space curves
defined by (7) are cylindrical helices.

Proof: γ is a circle if and only if kg(σ) = κ̃2(σ) =
κ2(σ)

κ1(σ)
= const.

In order to give another relation between the spherical curve γ and the corresponding
space curve defined by (7) we recall the definitions of a spherical evolute and a Darboux
indicatrix (see [5] for more details). The spherical evolute of γ is given by

εγ(σ) =
1√

k2
g(σ) + 1

(kg(σ)γ(σ) + p(σ)) . (8)
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Let c : I → R3 be a curve parameterized by a spherical arc length parameter σ. If (e1, e2, e3)
is the Frenet frame field of c, then the Darboux vector of c is

D(σ) = κ2(σ)e1 + κ1(σ)e3.

The normalization of the Darboux vector

D0(σ) =
D(σ)

‖D(σ)‖ =
1√
κ̃2

2 + 1
(κ̃2e1 + e3) (9)

is called the spherical Darboux image or the Darboux indicatrix of c.

Proposition 2 Let γ : I → S2 be a spherical curve and let c : I → R3 be a corresponding
space curve defined by (7). Then, the spherical Darboux image of c coincides with the
spherical evolute of γ .

Proof. We observe that e1(σ) = γ(σ) and

e3(σ) =
dc
dσ
× d2c

dσ2∥∥ dc
dσ
× d2c

dσ2

∥∥ = γ(σ)× dγ

dσ
(σ) = p(σ).

Hence, using (8) and (9) we get

D0(σ) =
1√
k2
g + 1

(kgγ(σ) + p(σ)) = εγ(σ).

Now we can show that the shape curvature and the shape torsion determine a Frenet
curve under some initial conditions.

Theorem 2 (Existence Theorem) Let fi : I → R, i = 1, 2 , be two functions of class C1.
Let e0

1, e
0
2, e

0
3 be an right-handed orthonormal triad of vectors at a point c0 in the Euclidean

space R3. Up to an orientation-preserving homothety with center c0 there exists a unique
Frenet curve c : I → R3, which satisfies the conditions:
(i) There is σ0 ∈ I such that c(σ0) = c0 and the Frenet frame of c at c0 is {e0

1, e
0
2, e

0
3}.

(ii) For any σ ∈ I, κ̃1(σ) = f1(σ) and κ̃2(σ) = f2(σ).

Proof: We consider the system of differential equations

dγ

dσ
= t(σ),

dt

dσ
= −γ(σ) + f2(σ)p(σ),

dp

dσ
= −f2(σ)t(σ) (10)

with respect to the vectorial functions γ(σ), t(σ) and p(σ). If we rewrite the coordinate
functions of these vectorial functions as rows of the matrix X(σ) then the system (10) may
be represented in the form

dX

dσ
(σ) =M(σ)X(σ), where M(σ) =




0 1 0
−1 0 f2(σ)
0 −f2(σ) 0


 . (11)

It is well-known that the system (11) has an unique solution

X(σ) = (γ(σ), t(σ), p(σ)) (12)
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satisfying the initial conditions X(σ0) = (e
0
1, e

0
2, e

0
3) for σ0 ∈ I. If tX(σ) denotes the trans-

posed matrix of X(σ) and E is the unit matrix then d
dσ
( tX(σ)) = tX(σ) tM(σ) and

d

dσ

(
tX(σ)X(σ)

)
= tX(σ)

(
tM(σ) +M(σ)

)
X(σ) =



0 0 0
0 0 0
0 0 0




because the matrix M(σ) is skew-symmetric. But tX(σ0)X(σ0) = E since e0
1, e

0
2, e

0
3 are

orthonormal. Consequently, tX(σ)X(σ) = E for any σ ∈ I. This implies that the vectorial
fields γ(σ), t(σ), p(σ) form a right-handed orthonormal frame field.

Let c : I → R3 be the space curve given by

c(σ) = c0 + b

∫ σ

σ0

e
∫
f1(σ)dσγ(σ) dσ, σ ∈ I, b > 0.

From Proposition 1 we have that the Frenet frame field of c is {e1 = γ(σ), e2 = t(σ), e3 =
p(σ)} and the Frenet frame at c0 = c(σ0) is {e0

1 = γ(σ0), e
0
2 = t(σ0), e

0
3 = p(σ0)}. Moreover,

the shape curvature and the shape torsion of c are the functions f1 and f2, respectively.

Combining Theorems 1 and 2 we obtain an analogue of the fundamental theorem of space
curves:

Theorem 3 Let fi : I → R, i = 1, 2 , be two functions of class C1. Modulo a direct similarity
of R3 there exists a unique Frenet curve with the shape curvature f1 and the shape torsion
f2.

5. Recovering a space curve from its shape

As in previous sections, let c : I → R3 be a Frenet curve of class C3 defined in an open interval
I ⊂ R and parameterized by a spherical arc length parameter σ. Then, the shape of c is the
pair (k̃1(σ), k̃2(σ)), where k̃i : I → R (i = 1, 2) are functions of class C1 defined by (4) and
(5). From Theorem 3 we have that the curve c is determined uniquely by its shape up to a
direct similarity of the Euclidean space. In this section we shall construct space curves with
given shape using the procedure from the proof of Theorem 2. First we fix a right-handed
orthonormal triad of vectors e0

1, e
0
2, e

0
3 . The unique solution of the system of differential

equations
dγ

dσ
= t(σ),

dt

dσ
= −γ(σ) + k̃2(σ)p(σ),

dp

dσ
= −k̃2(σ)t(σ) (13)

with initial conditions e0
1, e

0
2, e

0
3, determine a spherical curve γ = γ(σ) such that γ(σ0) = e0

1

for some σ0 ∈ I. Let µ(σ) =
∫ σ
σ1
k̃1(σ) dσ for fixed σ1 ∈ I. Then applying the equation (7)

and Proposition 1 we find that the curve

c(σ) = c0 +

∫ σ

σ0

eµ(σ)γ(σ) dσ (14)

has a shape (k̃1(σ), k̃2(σ)) and passes through a point c0 = c(σ0). In simple cases the system
(13) and the equation (14) can be solved explicitly, but in the general case only a numerical
solution is possible. We now consider few examples of space curves constructed by the above
method.
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Example 1 Let c : I → R3 be a space curve with shape (0, a), where a is a non-zero real
constant. Then c is a circular helix.
We have µ(σ) = 0 for any σ ∈ I. Choose initial conditions

e0
1 =

(
0, − 1√

1 + a2
,

a√
1 + a2

)
, e0

2 = (1, 0, 0), e0
3 =

(
0,

a√
1 + a2

,
1√
1 + a2

)
.

Then the system (13) defines a spherical curve

γ = γ(σ) =

(
1√
1 + a2

sin (
√
1 + a2 σ), − 1√

1 + a2
cos (

√
1 + a2 σ),

a√
1 + a2

)

with γ(0) = e0
1. Solving the equation (14) we get

c(σ) =

(
− 1

1 + a2
cos q, − 1

1 + a2
sin q,

a

1 + a2
q

)
, where q = σ

√
1 + a2, σ ∈ I.
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Fig. 1. Fig. 2. Fig. 3.

Example 2 Let c : I → R3 be a space curve with shape (b, a), where a 6= 0 and b 6= 0 are
real constants. Then c is a conic spiral in R3.
We have µ(σ) =

∫ σ
0
b dσ = bσ for σ ∈ I. Choosing the same initial conditions as in Example 1

we get the same spherical curve γ = γ(σ) which is a circle with a radius 1/
√
1 + a2. Solving

the equation (14) and setting q = σ
√
1 + a2 we obtain

c(σ) =

(
emq sin (q − n)

(1 + a2)
√
1 +m2

, − emq cos (q − n)

(1 + a2)
√
1 +m2

,
aemq

m(1 + a2)

)
,

where m = b/
√
1 + a2 and n = arccos(b/

√
1 + a2 + b2).

The examined examples show that the only space curves with a constant shape are circular
helices and conic spirals. In the next example we consider a space curve with a non-constant
shape curvature.
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Example 3 Let I ⊂ R be an open interval, 0 6∈ I, and let c : I → R3 be a space curve with
a shape (κ̃1 = 1/σ, κ̃2 = a), where a is a non-zero real constant. Then c is a cylindrical helix
given by

c(σ) =

(
sin q − q cos q

(1 + a2)3/2
, −cos q + q sin q

(1 + a2)3/2
,

aq2

2(1 + a2)3/2

)
, where q = σ

√
1 + a2. (15)

As in the previous examples we take the same spherical curve γ = γ(σ). Since µ(σ) = log σ
then from (14) we get (15).

A lot of computer programs can be used effectively to determine numerically a space
curve with a given shape and then to construct it. The above figures illustrate space curves
with shapes (b, aσ) (see Fig. 1), (bσ, a) (see Fig. 2) and (bσ, aσ) (see Fig. 3), where a, b are
non-zero real constants.
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