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Abstract. We investigate the computation of parametrizations of convolution
surfaces of paraboloids and arbitrary parametrized surfaces. In particular it will
turn out that the addressed problem is linear such that the convolution of a
paraboloid and a rational surface admits rational parametrizations. In addition,
the convolution of paraboloids and surfaces from special classes, like ruled surfaces
or surfaces of rotation will be studied.
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1. Introduction and definitions

In several contributions the problem has been investigated whether a one- (or two-) parameter
family of quadrics possesses a rational envelope and how to construct possible parametriza-
tions. Especially, families of spheres, defined by rational functions have been studied in
[4, 7, 8, 13, 16]. In this article we will discuss the construction of the convolution surface (de-
fined in (1)) of a paraboloid and a parametrized surface and we study parametrizations and
geometric properties. To introduce to the subject we start with the definition of Minkowski
sums of geometric objects.

Given two objects P,Q in R3, their Minkowski sum P ⊕Q is defined to be the set

P ⊕Q := {p+ q, with p ∈ P, q ∈ Q},

where p and q denote coordinate vectors of arbitrary points in P and Q. Let A = ∂P and
B = ∂Q be boundaries of P and Q. Then, the computation of the boundary ∂(P ⊕ Q) is
related to the computation of the convolution surface A+B of the two boundary surfaces A
and B. We always assume in the following that A and B are smooth surfaces with normal
vector fields nA and nB, respectively. The convolution surface is defined to be

A+B := {a+ b, with a ∈ A, b ∈ B, and nA(a) ‖ nB(b)}, (1)
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where nA(a) and nB(b) are parallel (nA(a) ‖ nB(b)) surface normal vectors at a and b. In
particular, if P and Q are convex objects, the boundary ∂(P ⊕ Q) of the Minkowski sum
P ⊕ Q is exactly given by the convolution surface A + B. Unfortunately, for non–convex
objects this property is no longer true. In general, the boundary ∂(P ⊕Q) of the Minkowski
sum is contained in the convolution surface A + B, formed by the boundaries A = ∂P and
B = ∂Q, respectively.

The computation of convolution curves/surfaces and Minkowski sums of objects occurs
in various areas, like computer graphics, computational geometry and motion planning. The
algorithmic problem for polynomial and polyhedral shapes as well as approximations of the
convolution and Minkowski sum have been studied, see for instance [1, 3, 5, 6, 15] and the
references therein.

The convolution surface is often denoted by A?B. Since we are working with parametriza-
tions only it is more convenient to denote the convolution by A + B and we call it also sum
of A and B.

In general, the computation of the convolution surface A + B of two smooth surfaces A and
B results in the following problem. Assume that the surfaces A and B are parametrized
by a(u, v) and b(s, t), respectively and that the normal vectors are denoted by nA(u, v) and
nB(s, t). The convolution surface A + B is formed by the sums of vectors a, b whose normal
vectors nA, nB are parallel. Thus, we have to find parametrizations a(u(s, t), v(s, t)) = a(s, t)
and b(s, t) of parts of A and B over a common parameter domain of the st-plane with the
property that the normal vectors nA(s, t) and nB(s, t) at a and b are parallel. Let us point
out that in case of an arbitrary surface B there is no one-one correspondence between points
a ∈ A and b ∈ B with nA(a) ‖ nB(b).

The construction of the convolution A + B admits a kinematic interpretation in the
following way: Consider the surface A together with the origin O as movable system Σt and
let B be fixed. We may denote the different positions of A and O by At and Ot. The system
Σt is now moved translatory in the way that the point Ot travels on B, and the convolution
A+B is obtained as envelope of At under this translatory motion, see Fig. 1, where different
positions of Σ are displayed. Another kinematic generation of A+B is discussed in [10].
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Figure 1: Kinematic generation of the convolution surface
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Remarks:
1. The construction of convolution surfaces is related to the offset computation in the

following way: Let A be a sphere with radius d, centered at O, then the convolution
surface A+B becomes the offset surface of B at distance d.

2. The computation of convolution surfaces is affinely invariant, since the construction of
corresponding points a, b of A,B only requires parallel surface normal vectors nA, nB .
Thus, we always can work with an affine normal form of one of the surfaces we are
considering. Additionally, applying a translation with vector c to one surface, say A,
yields a translated convolution surface (A+ c) +B, since the normal vectors (of A and
B) are not changed by a translation.

3. The parametrizations a(s, t) and b(s, t) of A and B, respectively, with parallel normal
vectors nA(s, t) and nB(s, t) lead to a relative differential geometric interpretation as
follows: We assume that the tangent planes of A do not contain the origin O and
so we can equip the surface B with a new ’normal’ vector a(s, t) at points b(s, t).
Since the normal vectors at points a(s, t) ∈ A and b(s, t) ∈ B are parallel, the partial
derivatives ∂a/∂s and ∂a/∂t at b(s, t) are tangent to B. Thus, a(s, t) is called a relative
normalization of the surface B. The surface A is called relative sphere, playing the role
the Euclidean sphere S2 does as spherical image in Euclidean differential geometry. The
surface A+B parametrized by (a+ b)(s, t) is a generalized offset at distance 1, see [14].
In a natural way, a relative curvature theory can be based on the relative Weingarten
mapping ω, expressing the partial derivatives of a(s, t) by those of b(s, t). In case
of a locally strongly convex surface A, the eigenvectors of ω are always real. The
corresponding relative lines of curvature can be characterized as in the Euclidean case:
The relative normals along these curves form developable surfaces, see [18], p. 215.

The contribution of this article is the investigation of parametrizations of convolution
surfaces of paraboloids and parametrized surfaces. In particular we show in Section 2 that
if one surface (A) is a paraboloid and the other surface (B) is parameterizable, then the
sum A+B possesses explicit parametrizations, too. Convolution surfaces of paraboloids and
quadrics and their relation to offsets of paraboloids are discussed in Section 3. Additionally,
in Section 4, we study the sum of a paraboloid and surfaces from special classes, like surfaces
of rotation, surfaces of translation and ruled surfaces.

2. Paraboloid and parametrized surface

In this section we want to investigate parametrizations of the sum A + B of a paraboloid A
and a parametrized surface B. We assume that a coordinate system has been chosen in a way
that the paraboloid A is given by the equation

FA = z − x2 − cy2 = 0, with c 6= 0.

This implies that A is representable by a(u, v) = (u, v, u2 + cv2) and it is either an elliptic or
a hyperbolic paraboloid depending on whether c > 0 or c < 0. The surface B is assumed to
admit a local parametrization b : (s, t) ∈ G ⊂ R2 → R3, which is a smooth mapping.

Two points a ∈ A and b ∈ B are corresponding if the normal vectors nA and nB at a and
b, respectively, are linearly dependent,

nA(a) = λnB(b), λ 6= 0. (2)
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Then, a+ b is a point of the convolution surface A+B. So, let nB(s, t) = (n1, n2, n3)(s, t) be
a normal vector of B, we rewrite condition (2) in coordinates and obtain

(−2u,−2cv, 1) = λ (n1(s, t), n2(s, t), n3(s, t)) .

In case n3(s, t) 6= 0 we have λ = n3(s, t)
−1 and

u(s, t) =
−n1

2n3

(s, t), v(s, t) =
−n2

2cn3

(s, t). (3)

Denoting this reparametrization by φ : (s, t)→ (u(s, t), v(s, t)), the parametrization a(φ(s, t))
represents in general only a part of A. Equation (3) is a regular reparametrization exactly if
the determinant of the Jacobian Jφ does not vanish. Elaborating this we find

det(Jφ) =
1

4cn3
3

det(n, ns, nt) =
1

4cn3
3

∆2K, (4)

where ∆ is the determinant of the first fundamental form (or metric) of B and K denotes B’s
Gaussian curvature. This says in particular that for developable surfaces the reparametriza-
tion (3) is not invertible. The final representation of the sum A+B is

(a+ b)(s, t) =

(

−n1

2n3

+ b1,
−n2

2cn3

+ b2,
1

4cn2
3

(cn2
1 + n2

2) + b3

)

(s, t). (5)

Theorem 1 The convolution surface A+B of a paraboloid A and a parametrized surface B
possesses the explicit parametrization (5). If B is a rational surface, A+B is rational too.

If B is in particular the graph of a function f(s, t) over the st-plane, the reparametrization is
obtained by u = 1/2fs, v = 1/(2c)ft, where fs, ft denotes partial derivatives of f with respect
to s and t. Finally, the sum A+B possesses the parametrization

(a+ b)(s, t) =

(

1

2
fs + s,

1

2c
ft + t,

1

4
f2

s +
1

4c
f2

t + f

)

(s, t).

Remarks: A regular point of B with n3(s, t) = 0 has no corresponding point on the paraboloid
A. If there is one point with this property then, in general, there exists a curve C ∈ B with
n3 = 0 along C. C is a shadow boundary of B with respect to an illumination parallel to A’s
axis. In this case the convolution A+B consists of non-connected parts.

Otherwise we do not need to make special assumptions on the surface B. In general, the
correspondence, defined by (3) between points on A and B will not be injective. We would
like to point to some geometrically special cases corresponding to a singular Jacobian (4) of
the reparametrization φ.
• If B is a linearly parametrized plane not parallel to A’s axis, the normal vector n does

not depend on s, t but is a constant vector. Since (3) gives a single point (u, v), there is
a single point a on A which is correspondent to all points of B. Thus, A+B is a plane
translated by the fixed vector a.

• If B is a developable surface which implies that its Gaussian curvature vanishes, φ maps
G ⊂ R2 onto a curve in the uv-plane. Thus, there is in general only a curve a(τ) ∈ A
which contributes to the construction of A + B. Section 4.3 shows that A + B is a
developable surface, too.
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3. Paraboloid and quadric

In this section we like to discuss the convolution surface A + B of a paraboloid A and a
quadric B and we will show the relations to offset computation. So, let FA, FB : R3 → R be
two quadratic functions

FA(x, y, z) = z − x2 − cy2

FB(x, y, z) = d+XT · C +XT ·M ·X,

where X = (x, y, z)T , and d ∈ R, C ∈ R3 and M a symmetric 3 × 3 matrix. Then, the
paraboloid A is the zero set of FA and the quadric B is the zero set of FB.

We assume that the quadric B is regular which shall mean that the extended 4×4 matrix

M̃ =

(

d CT

C M

)

has rank 4. The cases where B is a cone or cylinder will be treated in Section 4.3.

Let the paraboloid A be parametrized by a(u, v) = (u, v, u2 + cv2) and let b(s, t) be a
rational parametrization of B. Rational parametrizations of a quadric can be obtained by
stereographic projection. For instance, the unit sphere S2 : x2 + y2 + z2 − 1 = 0 can be
parametrized by the rational functions

x =
2s

1 + s2 + t2
, y =

2t

1 + s2 + t2
, z =

1− s2 − t2

1 + s2 + t2
. (6)

Expressing the reparametrization condition (2) for the quadratic polynomials FA, FB leads to
a condition for the gradient vectors

∇FA(a) = λ∇FB(b), (7)

which has to be satisfied at corresponding points a ∈ A and b ∈ B. We apply Theorem 1 and
obtain the following:

Corollary 2 The sum A + B of a paraboloid A and an arbitrary quadric B is a rational
surface.

This applies to a variety of special cases and leads to parametrizations of the offset surfaces
of paraboloids and to solutions of similar problems.

3.1. Offsets of parabolas

A good starting point are offsets of parabolas and we obtain the following well known result:

Corollary 3 The planar offset curves of parabolas are rational curves.

This and the rationality of the offsets of paraboloids have been proved for instance by LÜ,
see [7, 8]. He also has proved that the offsets of ellipsoids and hyperboloids are rationally
parametrizable and he has given a characterization of algebraic curves and surfaces which
possess rational offsets.

To prove the result in our context we set

A : y − x2 = 0, and B : x2 + y2 − 1 = 0
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and we use the parametrizations a(t) = (t, t2) and b(u) = (sin u,− cosu). The condition (7)
leads us to the reparametrization t = sin u/(2 cosu). After substituting the trigonometric
functions by rational functions we arrive at a rational parametrization of the offset curves
of a parabola, which are of algebraic order 6. As a generalization of this we can note the
following:

Figur 2: Convolution of
parabola and ellipse

Figur 3: Inner and outer offset
of an elliptic paraboloid

Corollary 4 The sum A+B of a parabola A and a conic B is a rational curve.

Since any conic B possesses rational parametrizations, this can be proved by specializing
Corollary 2 to planar quadrics.

3.2. Offsets of paraboloids

It is known that the offset surfaces of paraboloids are rational surfaces and that their parametriza-
tions can be calculated explicitly, see [7].

According to our approach the parametrization of the offset surfaces is a direct special-
ization of the convolution A+B with B as unit sphere.

Corollary 5 The offset surfaces of paraboloids are rational surfaces.

To derive parametrizations of offsets surfaces of paraboloids we may assume that a
paraboloid A is given by the equation z − x2 − cy2 = 0 such that it is parametrized by
(u, v, u2+ cv2). By the use of the rational parametrization (6) of the unit sphere S2 we obtain
a rational representation of the offset of A at distance d by

x(s, t) = −
s

1− s2 − t2
+ d

2s

1 + s2 + t2

y(s, t) = −
t

c(1− s2 − t2)
+ d

2t

1 + s2 + t2

z(s, t) =
s2

(1− s2 − t2)2
+

t2

c(1− s2 − t2)2
+ d

1− s2 − t2

1 + s2 + t2
.
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3.3. Generalized offsets of paraboloids

When defining offset surfaces one usually assumes R3 being a Euclidean space equipped with
the canonical scalar product 〈X1, X2〉 = XT

1 · I · X2 where I denotes the identity matrix.
Applying a fixed affine transformation α : R3 → R3 with

α : X 7→ X ′ = L ·X,

where L is a regular matrix (and we have ignored the unimportant translational part), the
unit sphere S2 is mapped onto an ellipsoid

E : X ′TL−T IL−1X ′ = 0, with L−T = (LT )−1.

Further, all spheres are mapped to ellipsoids being similar to E, which means that they possess
parallel principal axes and same ratios of their lengths. Since J = L−T IL−1 is a symmetric
and positive definite matrix, R3 equipped with the scalar product

〈X1, X2〉 = XT
1 · J ·X2 (8)

is a Euclidean space. Angles between vectors and distances between points are now measured
using the quadratic form (8). It is obvious that the offsets of paraboloids with respect to the
metric defined according to (8) are rational surfaces and they are affine images of the offsets
of A with respect to the unit sphere S2.

3.4. Paraboloid and hyperboloid

If the bilinear form in (8) is not positive definite but J is still a regular matrix, we can obtain
one of the following cases

J1 = diag(1, 1,−1), or J2 = diag(−1,−1, 1),

when we restrict the investigation to special Euclidean normal forms. The notion of offset
surfaces makes no longer sense, since the quadrics or ’unit spheres’ with respect to J1, J2 are
no longer convex but are hyperboloids

B1 : x2 + y2 − z2 − 1 = 0, B2 : −x
2 − y2 + z2 − 1 = 0.

A rational parametrization of B1 may look like

x =
2s

1 + s2 − t2
, y =

1− s2 + t2

1 + s2 − t2
, z =

2t

1 + s2 − t2
. (9)

It is obtained by mapping the parametrization (s, 0, t) of the plane y = 0 via the stereographic
projection with center (0,−1, 0) onto B1. Analogously we get

x =
2s

1− s2 − t2
, y =

2t

1− s2 − t2
, z =

1 + s2 + t2

1− s2 − t2
, (10)

by mapping the parametrization (s, t, 0) of the plane z = 0 via the stereographic projection
with center (0, 0,−1) onto B2.

Let a paraboloid A be given by z − (x2 + cy2) = 0 and parametrization (u, v, u2 + cv2).
The condition (7) leads to the reparametrization

u(s, t) =
x

2z
(s, t), v(s, t) =

y

2cz
(s, t)
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in both cases. Finally, the sums A+B1 and A+B2 are both given by

(

x

2z
+ x,

y

2cz
+ y,

( x

2z

)2

+ c
( y

2cz

)2

+ z

)

(s, t) ,

where we have to insert parametrizations (9) and (10), respectively.

4. Paraboloid and surfaces from special classes

In this section we will study the sum of a paraboloid A and surfaces B belonging to special
classes, like surfaces of rotation, surfaces of translation, ruled surfaces and especially devel-
opable surfaces. In particular we concentrate on surfaces B which are in a special position to
A.

4.1. Paraboloid and surface of rotation

Let A be an elliptic paraboloid which admits the representation

a(u, v) = (u, v, u2 + cv2), where c > 0,

and let B be affinely equivalent to a surface of rotation being generated by rotating a curve
around an axis parallel to z. Applying an affine mapping we may assume that B is generated
by a Euclidean rotation, and B admits a local parametrization

b(s, t) = (s cos t, s sin t, h(s)) .

Here, B is generated by rotating the curve (s, 0, h(s)) around the z-axis. According to (5), a
representation of the convolution A+B is

(a+ b)(s, t) =







(1
2
ḣ(s) + s) cos t

( 1
2c
ḣ(s) + s) sin t

1
4c
ḣ(s)2(c cos2 t+ sin2 t) + h(s)






, (11)

where the differentiation with respect to s is denoted by a dot. Special surfaces occur in the
following cases:

1. Let c 6= 1. A necessary condition for A + B to be affinely equivalent to a surface of
rotation is

1

2
ḣ(s) + s = µ

(

1

2c
ḣ(s) + s

)

.

This restricts the function h(s) to be of the form h(s) = αs2+d, so that B is a paraboloid
of rotation. We can ignore the unimportant vertical translation corresponding to d and
set d = 0. Then A+B is a paraboloid with equation

z =
α

α + 1
x2 +

αc

α + c
y2.

A + B is an elliptic paraboloid and hence affinely equivalent to a surface of rotation
exactly if (α + 1)(α+ c) > 0.
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Figure 4: Left: Surface of rotation generated by a Gaussian distribution function.
Right: Convolution of a paraboloid and this surface of rotation.

2. Let c = 1, then A is a paraboloid of rotation and the sum A+B is a surface of rotation,
parametrized by

(a+ b)(s, t) = (f(s) cos t, f(s) sin t, g(s)) ,

with f(s) = 1
2
ḣ(s) + s and g(s) = 1

4
ḣ(s)2 + h(s). The convolution is regular, exactly if

f2(ḟ2 + ġ2) 6= 0 and this is equivalent to the conditions

1

2
ḣ+ s 6= 0 and

1

2
ḧ+ 1 6= 0.

Similarly to the just discussed case is that if B is affinely equivalent to a surface parametrized
by

b(s, t) = (s cosh t, s sinh t, h(s)) .

These surfaces are called affine surfaces of rotation of hyperbolic type, see [18], p. 193. If we
choose A to be a hyperbolic paraboloid by

a(u, v) = (u, v, u2 − cv2), where c > 0,

then the convolution A + B has a similar parametrization to (11), but the trigonometric
functions have to be substituted by the hyperbolic functions (cos 7→ cosh, sin 7→ sinh). The
results in which cases even A + B is a surface of rotation hold also for the hyperbolic type,
with respect to the mentioned substitution.

4.2. Paraboloid and ruled surface

For the general solution of the convolution of a paraboloid A with parametrization

a(u, v) = (u, v, u2 + cv2), where c 6= 0,

and a ruled surface B with parametrization b(s, t) = r(s) + tg(s) we can use formula (5).
The parameter lines u = const. are cubic curves. It is proved in [10] that the computation of
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the convolution of two non-developable ruled surfaces A,B results in a linear problem. This
implies that the convolution A+B is rational for rational input surfaces A and B.

In this section we deal with those special ruled surfaces B whose generating lines G(s)
are horizontal (perpendicular to A’s axis). These surfaces are called conoidal ruled surfaces.
The orthogonal projections G′(s) of the generating lines G on the plane z = 0 form a one
parameter family of lines which can be represented by the equation

G′(s) : x sin s− y cos s− p(s) = 0,

where p(s) is the distance of G′ to the origin. The family G′(s) envelopes the planar curve

(p(s) sin s+ ṗ(s) cos s, −p(s) cos s+ ṗ(s) sin s) . (12)

Thus, a conoidal ruled surface B can be represented by

b(s, t) =





p(s) sin s+ ṗ(s) cos s+ t cos s
−p(s) cos s+ ṗ(s) sin s+ t sin s

z(s)



 , (13)

with an arbitrary function z(s). From (5), the resulting parametrization of A+B is

(a+ b)(s, t) =







p sin s+ ṗ cos s+ t cos s− ż
2t
sin s

−p cos s+ ṗ sin s+ t sin s+ ż
2ct

cos s

z(s) + ż2

4ct2
(cos2 s+ c sin2 s)






. (14)

If we assume p ≡ 0, all generating lines G of B intersect the z-axis and if we additionally
require z(s) = ks, k 6= 0, B is a right helicoid, a helical surface which is generated by
rotating G around the z-axis and simultaneously translating G in direction of z. The velocity
of the vertical translation is proportional to the angular velocity of the rotation around z.
A realization of B is a staircase with winding stairs. Inserting the made assumptions in
formula (14) gives

(a+ b)(s, t) =







t cos s− k
2t
sin s

t sin s+ k
2ct

cos s

ks+ k2

4ct2
(cos2 s+ c sin2 s)






. (15)

The convolution A + B is itself a helical surface exactly if A is chosen to be a paraboloid of
rotation, that means c = 1. Then, its representation looks like

(a+ b)(s, t) =





cos s − sin s 0
sin s cos s 0
0 0 1



 ·





t
k
2t

( k
2t
)2



+





0
0
ks



 ,

which shows the rotational part around the z-axis and the translational part in direction of
z. The cubic curve (t, k/(2t), (k/(2t))2) generating the helical surface A + B is part of the
intersection of the two cylinders

xy = k/2, and z = y2,

which, additionally, share a common line at infinity (line at infinity of planes x = const.). The
singular points of A+B are contained in the helical curves which are obtained for parameter
values t = ±

√

k/2, if k > 0 or t = ±
√

−k/2, if k < 0. Fig. 5 shows a right helicoid B and
the sum A+B with a paraboloid of rotation A. The generating cubic curve and the singular
curve on A+B are plotted as tubes.
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Figure 5: Left: Right helicoid. Right: Convolution of a paraboloid and a right helicoid.

4.3. Paraboloid and developable ruled surface

A developable surface is a special kind of ruled surface which has the property that the tangent
planes along a fixed generating line are identical. Developable surfaces possess vanishing
Gaussian curvature. It is known that there are three basic types of developable surfaces,
cylinders, cones and tangent surfaces formed by the tangent lines of twisted space curves.
The last type is the general developable surface.

A tangent surface B of a twisted space curve l(s) admits a representation in the form

b(s, t) = l(s) + tl̇(s), l : R → R3,

and B’s normal vector field is

n(s, t) = bs(s, t)× bt(s, t) = −tl̇(s)× l̈(s), t 6= 0,

which shows that the normals in points of a fixed generating line l(s0) + tl̇(s0) are parallel.
In points of l(s) where t = 0 there is no surface normal and l(s) is a singular curve on B.

In case where B is a cone with vertex in O, a possible parametrization is b(s, t) = tv(s),
where v(s) denotes a vector field determining the directions of the generating lines of B.
Normal vectors of B are in this case given by n(s, t) = −tv(s)× v̇(s), (t 6= 0).

In case where B is a cylinder, a possible representation is b(s, t) = l(s) + tv, where l(s) is
a directrix curve and v is a constant vector representing the direction of B’s generating lines.
The normal vectors of B are n = l̇ × v.

We recognize in all three cases that the quotients n1/n3 and n2/n3 are functions of s only
and independent of t. Forming the convolution A+B according to (5) leads to

(a+ b)(s, t) =

(

−n1

2n3

,
−n2

2cn3

,
cn2

1 + n2
2

4cn2
3

)

(s) + (b1, b2, b3) (s, t) .
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For fixed s = s0 the convolution A+B carries a straight line b(s0, t) + a(s0), which is only a
translated version of b(s, t0) by the vector a(s0). Since the tangent plane of A+B at (a+b)(s, t)
is parallel to the tangent planes of B at b(s, t), it follows that A+B is developable too.

Remark: If B is a cylinder whose generating lines are not parallel to A’s axis, the unit normal
vectors of B are contained in a great circle Cg in the unit sphere S2. Since the tangent planes
of the sum A+B are all parallel to those of B, their unit normal vectors lie in Cg, too, which
proves that A+B is a cylinder.

An analogous result for cones B does not hold. In general, A+B is a developable surface
sharing the same curve at infinity with B. If B is especially a cone of revolution, the following
holds. The unit normal vectors of B parametrize a small circle Cs in S

2. Constructing A+B,
its unit normals parametrize at least a part of Cs, but in general the sum A+B is a developable
surface of constant slope with respect to the direction which is perpendicular to the carrier
plane of Cs, see Fig. 6. If B is a cone of revolution whose axis is parallel to A’s axis and if
additionally A is a paraboloid of revolution, then A+B is again a cone of revolution.

Figure 6: Developable of constant slope as sum
of a paraboloid and a cone of revolution.

Corollary 6 The sum A + B of a paraboloid A and a developable surface B is itself a
developable surface. In case where B is a cylinder, A+B is a cylinder too. The sum A+B of
a paraboloid and a cone of rotation B is a developable surface of constant slope with respect
to the carrier plane of B’s spherical image.

4.4. Paraboloid and special translational surface

A surface B which is itself the sum of two curves G and H is called translational surface,
since it is generated by translating H along G (or G along H). A parametrization of B is
obtained by adding representations of G = G(s) and H = H(t).

Here, we study the sum of a paraboloid A and special translational surfaces which are
generated by planar curves G and H, whose carrier planes are vertical (parallel to A’s axis).
Additionally, we assume that the curves G and H are given by the following parametrizations

G : (s, 0, g(s)) and H : (0, t, h(t)).

This implies that the translational surface B is represented by

b(s, t) = (s, t, g(s) + h(t)) .



M. Peternell, F. Manhart: The Convolution of a Paraboloid and a Parametrized Surface 169

Figure 7: Left: Translational surface generated by translating a parabola along a cosine curve.
Right: Convolution of a paraboloid and the translational surface.

We show that the sum A + B of B and the paraboloid A with parametrization a(u, v) =
(u, v, u2 + cv2), is a translational surface again. It is a straight forward calculation and
according to (5) we obtain

(a+ b)(s, t) =

(

1

2
ġ(s) + s, 0,

1

4
ġ2(s) + g(s)

)

+

(

0,
1

2c
ḣ(t) + t,

1

4c
ḣ2(t) + h(t)

)

, (16)

where, for simplification, ’dot’ denotes both differentiations with respect to s and t. But since
g and h are univariate functions, it is always clear what ’dot’ means.

Corollary 7 Given a translational surface B and a paraboloid A in the way that the carrier
planes of the parameter curves of B are parallel to A’s axis. Then, A+B is again a transla-
tional surface with the property that the carrier planes of the parameter curves of A+B are
parallel to A’s axis.

We want to note that we have started with a surface B which is a graph surface over
the st-plane and whose parameter curves are also planar graph curves in planes x = const.
and y = const., respectively. The convolution A + B is a translational surface with curves
in planes x = const. and y = const., but in general A + B is not a graph surface over the
st-plane.

Fig. 7 shows on the left hand side a translational surface generated by translating a
parabola along a cosine curve, plotted as tube. Both curves are graphs over s and t, respec-
tively. The right hand side figure shows the convolution surface. One generating curve is again
a parabola, the second curve (plotted as tube) is parametrized by trigonometric functions and
is in general not a graph curve.

5. Conclusion

We have shown that the sum or convolution surface A+B of a paraboloid A and a quadric B
or an arbitrary parametrizeable surface B possesses explicit parametrizations. Offset surfaces
of paraboloids can be treated within this concept. Further we have investigated convolution
surfaces of paraboloids A and surfaces B from special families, like surfaces of rotation, skew
and developable ruled surfaces and translational surfaces. We have found special geometric
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properties of the convolution, if the surface B is in a special position to the paraboloid A
(parameter curves are situated in planes parallel or perpendicular to the axis of A).

The reason for the special behavior of a paraboloid A with respect to the construction of
the sum A+B with another surface B is the following: For any given plane E in space which
is not parallel to A’s axis, there exists exactly one point a at A in the way that the tangent
plane at a is parallel to E.
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