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Abstract. A map, or a cellular division of a compact surface, is often viewed as
a cellular imbedding of a connected graph in a compact surface. It generalises to
a hypermap by replacing “graph” with “hypergraph”. In this paper we classify
the non-orientable regular maps and hypermaps with size a power of 2, the non-
orientable regular maps and hypermaps with 1, 2, 3, 5 faces and give a sufficient
and necessary condition for the existence of regular hypermaps with 4 faces on
non-orientable surfaces. For maps we classify the non-orientable regular maps
with a prime number of faces. These results can be useful in classifications of non-
orientable regular hypermaps or in non-existence of regular hypermaps in some
non-orientable surface such as in [5].
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1. Introduction

A surface, which can be orientable or non-orientable, is a compact, connected 2-manifold
(without boundary). A map is an embedding of a graph in a surface S so that each connected
component of the complement of the graph in the surface is simply-connected (i.e., homeo-
morphic to an open disk). Such a region is called a face of the map. Denote by V , E, F the
number of vertices, edges and faces in the mapM. The integer N = N(M) = E − F − V is
determined by the surface; that is, it is constant over all mapsM on a fixed surface S, simply
because each face in a map is simply connected. This N = N(S) is just the negative of the
Euler characteristic of S. Orientable surfaces have N = −2, 0, 2, 4, 6, . . . while non-orientable
surfaces have N = −1, 0, 1, 2, 3, 4, . . .
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Others convenient ways of coding maps besides the purely topological will be considered,
such as the algebraic notion of a map as a connection group acting on a set, and the related
notion of an edge-coloured graph of a certain kind. Both are motivated by the following
construction:

For each face in the map M, choose a point in its interior to call its center. Similarly
choose a midpoint in each edge. Subdivide the map by joining each face-center to each vertex
and edge-midpoint surrounding it (this is often called the barycentric subdivision). This
divides the faces into subregions called flags, each of which we can think of a “right triangle”
with the right angle at the edge-midpoint. Fig. 1 illustrates the subdivision and shows the
neighbours of one flag f .

1f r

2f r

f r0 f

Figure 1: Neighbours of a flag

For any flag f , its three neighbours are fr0, fr1, and fr2; fr1 is its neighbour across its
hypotenuse, fr2 across the leg which is along an edge and fr0 across its other leg. If we let Ω
stand for the collection of flags, then each of the ri’s is a permutation on Ω. Let C = C(M)
be the subgroup of S

Ω
generated by r0, r1, and r2. C is the connection group (also called the

monodromy group) of the mapM, and from Fig. 1 we can see that for any flag f , fr0r2 must
be the same flag as fr2r0. Thus (r0r2)

2 must be the identity I in C.

Conversely, suppose that C is any group of permutations on a set Ω which is generated
by three involutions r0, r1 and r2 which satisfy (r0r2)

2 = I. We take right triangles and label
them with the elements of Ω. Then joining these triangles in the appropriate ways by the ri’s
we get a map on a surface (though the map might be degenerate in one of the ways described
below). Such a group C can be considered to be the algebraic equivalent of a map.

Consider again the subdivision of the map into flags. We form a graph (we will use the
language of “nodes” and “arcs” for this graph to distinguish them from the vertices and edges
of the map) by first placing one new node in each flag, and then by joining each node to those
in the three neighbouring flags. Let us assign the colour 0 to all arcs from a flag f to the flag
fr0 and similarly for colours 1 and 2. This gives us a coloured graph which is a combinatorial
equivalent of the map [2]. Again reversing our point of view, suppose we have a graph Γ
whose arcs are coloured 0, 1, 2 so that every node meets exactly one arc of each colour. Then
the subgraph consisting of arcs numbered 0 and 1 only has 2-valent nodes and so is a union
of disjoint cycles. We can call these the “faces” of the map; similarly the 0-2 cycles are the
“edges” and the 1-2 cycles are the “vertices”. If we want Γ to have the structure of a map we
must require the 0-2 cycles to have length 4.

We then have three distinct ways to look at a map: as a topological map M, as a
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connection group C on a set Ω, or as a tri-coloured graph Γ. These are equivalent objects
and we can expect properties of one to be reflected by properties of another. An excellent
example of this correspondence of properties is given by the following theorem, which we
present without proof:

Theorem 1 These three conditions are equivalent:
(1) the mapM is orientable

(2) the tri-coloured graph Γ is bipartite

(3) the group C+ generated by r0r1 and r1r2 is not transitive on Ω.

1.1. Hypermaps

An hypermap is a natural generalisation of map and this generalisation is easiest to see in
the algebraic and combinatorial settings. If we remove the restriction on C that (r0r2)

2 = I
or the property in Γ that 0-2 cycles have length 4, the resulting group or graph corresponds
to a hypermap. In the topological viewpoint, we may think of an edge of a map, together
with its midpoint, to be a 2-star, i.e. a point with two half-edges emanating from it. If we
allow edges to become 3-stars, 4-stars, etc, we have a topological hypermap. The hypermap
becomes a map in which faces are surrounded by two kinds of points: one called “vertices”
and one called “edges”. This map is the Walsh map [3] of the hypermap.

Once we have made this generalization, the special role that edges play in maps disappears.
By swapping indices among r0, r1, r2 in C, or by a consistent re-assignment of colours 0, 1,
2 in Γ, we can produce a superficially new hypermap on the same surface. There may be as
many as 6 different hypermaps we can construct in this way from one group or graph, and
we will refer them all as duals of one another.

When we need more preciseness from our notation, we will give names such as D01 or D021

to the different dualities; D01(M), for example is the hypermap that results from switching
labels 0 and 1 in the coloured graph version ofM, and D021(M) is D01(D02(M)). IfM is a
map, we will continue to use D for D02, the usual duality in maps.

1.2. Degenerate cases

There are two kinds of situations that can occur in C or Γ which correspond to undesirable
situations in the topological viewpoint:
I: It is possible that in Γ, some two nodes are joined by more than one arc, as, for example
if fr2 = fr0 for some flag f . This corresponds to a map-like object which has a “free”
edge or “half-edge”. This can be regarded as an edge which has a vertex at only one of
its two ends, or as a loop which has been pinched at the mid-point to identify its two
halves.

II: It is possible that in Γ, some node is joined to itself by some arc, as, for example, if
fr2 = f for some flag f . We can model this on a surface by allowing the surface to have
boundary. Then the flag f must have its corresponding side on this boundary.

1.3. Regularity

We give three definitions for a symmetry (often called an automorphism) of a map:

Definition 1 A symmetry of a hypermapM on a surface S is a rearrangement of its vertices,
edges and faces which can be accomplished by a homeomorphism of S onto itself.
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Definition 2 A symmetry of a hypermap (Ω, C) is an element of S
Ω
which commutes with

every element of C.

Definition 3 A symmetry of a hypermap Γ is an automorphism of the graph Γ which pre-
serves edge-colour.

The symmetries of M form a group G = G(M) under composition. Our general term
for a map with a sufficiently large symmetry group is “regular”, but there are two kinds of
regularity to be considered:

Definition 4 A hypermapM is rotary provided that G(M) contains symmetries R and S
which act on the map as rotations one step about some face and some vertex incident to that
face, respectively.

Definition 5 M is reflexible provided that (1) it is rotary and (2)G(M) contains a symmetry
which acts as a reflection in some face.

One easily sees that if M is rotary, then G(M) is transitive on faces, on edges, and on
vertices. IfM is rotary and non-orientable (and these are the maps of interest in this paper)
thenM must be reflexible. And ifM is reflexible, then G(M) is transitive on flags.

Suppose that M is reflexible, and choose some flag I ofM to be a root. Then because
G = G(M) is transitive on flags, there must exist symmetries α0, α1, α2 such that each αi

sends I to Iri. Then G is generated by α0, α1, α2, and G is isomorphic to C; indeed, the
correspondence αi ↔ ri generates an anti-isomorphism of G onto C. IfM is orientable, then
G+(M) = 〈R = α0α1, S = α2α1〉 is the group of orientation-preserving symmetries of M,
while if M is non-orientable, then G+ = G. Conversely, any group G generated by α0, α1,
α2 such that each αi

2 is the identity is the group of some reflexible hypermap M. M is
non-degenerate if and only if each αi has order 2 and each αiαj has order at least 2. We can
form this M uniquely from G by letting the elements of G be the flags ofM, and defining
gri to be αig for each flag g.

A non-degenerate rotary hypermapM has a group which is transitive on faces, on edges
and on vertices. Thus all of the faces have the same number of flags, as do the vertices and
edges. We say M is of type {e, p, q} provided that e is the order of r0r2, p is the order of
r0r1 and q is the order of r1r2. Then e, p, q are also the orders of α0α2, R = α0α1, S = α2α1

respectively, in G. In Γ, then, edges are 2e-cycles, faces are 2p-cycles and vertices are 2q-
cycles. If, as before, V , E, F stand for the number of vertices, edges and faces, and if we let
2J be the number of flags, then an easy counting argument shows that J = eE = pF = qV .
It is not hard to show then that N(M) = J − (E + F + V ). WhenM is a map, of course,
then e = 2, J = 2E and N = E − F − V , as usual. We will call [N , {e, p, q}, {E, F , V },
|G| = 2J ] the data line for M. To generalize that slightly, if e, q, p, E, V , F , J are any
integers satisfying J = eE = pF = qV and N = J − (E + F + V ), we will call [N , {e, p, q},
{E, F , V }, 2J ] a viable line for N .

If a degeneracy occurs at one flag, it occurs at all flags. If the degeneracy is of the first kind
(say, fr0 = fr2), then the map must be ∗k; this is a map of k half-edges meeting at a single
vertex on the sphere. Its group isDk of order 2k, and its data line is [−2, {1, k, k}, {k, 1, 1}, 2k],
though some might quibble over whether k half-edges should give E = k or E = k/2. If the
degeneracy is of the second kind (fr2 = f), then the “map” consists of a single k-gon, with
the edges forming the border of the bordered surface. We call this degenerate structure Pk (P
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is for Polygon); its group is Dk of order 2k. In this paper we will use “M is non-orientable”
as short for “M is a reflexible hypermap on a non-orientable surface (without boundary)”;
this excludes the degenerate cases.

1.4. Projections, coverings and homomorphisms

If N andM are hypermaps, a projection of N ontoM is (1) a continuous function from the
surface of N onto that ofM which preserves faces, vertices, and edges; (2) a function ϕ from
Ω(N ) onto Ω(M) such that ari = b in N implies ϕ(a)ri = ϕ(b) inM; (3) a function from t
he nodes of the coloured graph of N onto those ofM which sends nodes joined by an arc to
nodes joined by an arc of the same colour. We callM a projection of N and N a covering of
M.

If M and N are reflexible, the projection induces a homomorphism from G(N ) onto
G(M). If K is the kernel of this homomorphism then |K| flags are sent to each flag of M
and we say N is a |K|-fold covering of M. Given a reflexible hypermap N and a normal
subgroup K of G(N ), we can form M = N/K from N by identifying two vertices, faces,
edges, flags, points of the surface of N if some element of K sends one to the other. M is
a reflexible hypermap and G(M) is isomorphic to G(N )/K. M is non-degenerate if none of
the αi’s or αiαj’s is in K.

1.5. Some families of non-orientable reflexible maps

On the projective plane (a surface with negative Euler characteristicN = −1), besides the four
maps formed from the regular polyhedra by identifying antipodal points, there is an infinite
family {δk } of regular maps consisting of a single 2k-gon with opposite edges identified non-
orientably. For example, Fig. 2 shows δ5. The data line for δk is [−1, {2, 2k, 2}, {k, 1, k}, 4k].
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Figure 2: The map δ5

Two families of non-orientable regular maps are Γk and B∗(k, 2c), described in [4]. Γk

is defined for all positive integers k and has data line [3k − 4, {2, 4, 3k}, {6k, 3k, 4}, 24k];
oppB∗(k, 2c) is defined and non-orientable whenever k and c are both odd. It has data line
[(k−1)(c−1)−1, {2, 2c, 2k}, {kc, k, c}, 4kc]. When k is even, k = 2m, then DΓ2m is bipartite
and thus it can be viewed as the Walsh map for a hypermap we will call GWm; this leads to
a family of hypermaps GWm with data line [6m− 4, {4, 3m, 4}, {3m, 4, 3m}, 24m].

For future use, let us note now that from [4] we can deduce that the map Γk satisfies and
is characterized by the relation I = α1α2α1α0α1α2α0α1α0. From that, we gather that GWm

satisfies and is characterized by the relation I = α0α2α0α2α1α2α1. Because the choice of which
class of vertices of the map DΓ2m are to be the vertices and which the edges of the hypermap
GWm is arbitrary, GWm = D01(GWm), and so GWm also satisfies α1α2α1α2α0α2α0 = I.
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2. Non-orientable reflexible hypermaps with 1, 2 and 3 faces

To simplify notation, assume we are considering the dual of the hypermap in which 2 ≤ e ≤
p ≤ q (the case e = 1 happens only in the degenerate hypermap ∗k). We start by a theorem
whose proof is obvious.

Theorem 2 If M is a non-orientable hypermap in which e = p = 2 then M must be Dδk

for some k, with data line [−1, {2, 2, 2k}, {k, k, 1}, 4k].

The following two theorems classify non-orientable reflexible hypermaps with 1 and 2
faces. Although one- and two-faced regular hypermaps were classified in [1], for the sake of
completeness and illustration of the involvement of the three aspects of hypermaps (surface
embedding, connection group, coloured graph) we give here different proofs for the non-
orientable versions only.

Theorem 3 If M is a non-orientable reflexible hypermap with exactly one face, then M
must be δk for some k. It follows thatM must have data line [−1, {2, 2k, 2}, {k, 1, k}, 4k].

Proof: In this proof, we illustrate the use of the coloured-graph approach to hypermaps. If
M has just one face of order k, then the nodes of the coloured graph may be labelled fi,
gi so that arcs coloured 0 join fi to gi, arcs coloured 1 join gi to fi+1, where the indices are
numbers mod k, as in Fig. 3:

f 0
g

0 f 1
g

1

gk-1
f k-1

gk-2 f2

Figure 3: A hypermap with one face

Because M is non-orientable, this coloured graph must not be bipartite, so some edge
coloured 2 must join some fi to some fj (i. e., fir2 = fj). Without any loss of generality,
assume f0r2 = fj. By symmetry, we must have f1r2 = fj+1, . . . in general, fir2 = fi+j.
But then f0r2 = fj, and fjr2 = fj+j = f2j, and since r2 is an involution, we conclude that
2j = 0mod k. Because M is non-degenerate, j = 0 is impossible, so we must have k = 2j
and each fi is connected by edges coloured 2 to fi+j = fi−j , and the same must be true for
the gi’s. These are precisely the connections for the map δk, as required.

Theorem 4 If M is a non-orientable reflexible hypermap with exactly two faces, then M
must be a dual of Dδ2 shown in Fig. 4, having data line [−1, {2, 2, 4}, {2, 2, 1}, 8].

Proof: In this proof, we argue from a group-theoretic point of view. Let A be the face of
M which contains the root flag I. Then α0 and α1 generate the stabilizer of face A. This
must be a dihedral group Dk for some k, and α0α1 generates the cyclic subgroup Ck of Dk.
Because there are only two faces, Dk must have index 2 in G and so must be normal in G.
Consider the product ρ = α2α0α1α2. This conjugate of α0α1 must be in Dk. Can it be in Ck?
If so, then α2 must conjugate Ck to itself and the coset Ckα0 = Ckα1 to itself, also. Consider
a word in G+; pairs of α2’s enclosing a sequence of α0’s and α1’s can be replaced by another
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string of α0’s and α1’s with a length of the same parity. Continuing this gives a word of even
length in α0 and α1, or a word in α0 and α1 of odd length followed by α2. Thus G

+ must be
contained in Ck ∪ Ckα0α2. This contradicts the non-orientability ofM.

Then ρ must be in the coset Ckα0. Since everything in the coset has order 2, α0α1, as
a conjugate of ρ, must be of order 2 and so k = 2. Then Ckα0 has exactly two elements,
α0 and α1. Thus ρ is one of these two. Suppose it is α1. Then the relations I = (α0)

2 =
(α1)

2 = (α2)
2 = (α0α2)

2 = (α0α1)
2 = (α0α2)

2 = α2α0α1α2α1 hold in G; but these are exactly
the defining relations for Dδ2. If, on the other hand, ρ is α0, we get the defining relations for
D01(Dδ2).

2

1

1

Figure 4: The map Dδ2

Theorem 5 If M is a non-orientable reflexible hypermap with exactly three faces, then M
or D01(M) must be
(1) the hypermap D02(GW1) whose Walsh map is shown in Fig. 5 or

(2) the map Γ1 (also called the hemi-cube; this map is shown in Fig. 6) or

(3) the map oppB∗(3, 4k + 2) for some k. [Notice that k = 0 gives Dδ3.]
These have data lines [2, {3, 4, 4}, {4, 3, 3}, 24], [−1, {2, 4, 3}, {6, 3, 4}, 24] and [4k−1, {2, 2(2k+
1), 6}, {3(2k + 1), 3, 2k + 1}, 12(2k + 1)], respectively.
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Figure 5: A Walsh map of a dual of GW1

Fig. 5 shows a Walsh map for the hypermap D02(GW1). It has three faces: A, B, and C,
four vertices: r, s, t and u and three edges: x, y and z.
Proof: We provide an outline of the proof, which relies on the Walsh map presentation for a
hypermap. Notation/convention: A Walsh map of a hypermap is bipartite; we will refer to its
white nodes as “edges”, its black nodes as “vertices” and the connections between nodes as
“arcs”. Interchanging the roles of white and black nodes is a duality (D01) of the hypermap.
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Figure 6: The hemi-cube

Let the faces be labelled A, B, C. The arcs in face A separate it from faces B and C.
There are two possibilities for the order in which faces B and C occur as we regard the arcs of
A in circular order: . . . B, C,B,C,B,C, . . . and . . . B, C,C,B,B,C,C,B, . . . In the first case,
it is easy to show that the surface must be orientable: we assign “clockwise” at each vertex
to be the direction in which the faces appear in the order A,B,C,A, . . . and at each edge
A,C,B,A, . . . This assignment is consistent throughout the hypermap and so the surface is
orientable. In the second case, we choose the dual in which each edge meets two faces and
each vertex meets all three, as in Fig. 7

...
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...
...

...
C

C

B
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B

B

C
AABA

A

A

Figure 7: Faces around face A in the Walsh map of a hypermap having 3 faces

Can it happen that an AB-edge x which meets face A more than once does so with
opposite orientations? If that is the case, then the rotation of A which sends x to x acts as a
reflection at x and so has order 2. Thus x meets A exactly twice, and so e = 4. That rotation
acts as a reflection about B. Then the first rotation about A which sends B to B must be a
reflection about B and so p = 4. The map must then be as in Fig. 8:

x

r

s
s

x

p

r

x

p

A B

Figure 8: Part of a map with three faces

The path shown in dotted lines passes through flags linked by r0r2r1r0r1r0r2 back to
its start. Thus α2α0α2α0α1α0α1 must evaluate to the identity in this map. Then the only
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possibility is D02(GW1).
Can it happen that there are edges x and y which meet A and B so that a path from x

through A to y through B to x is orientation reversing? If so then we can choose orientations
about x and y so that the hypermap must be as in Fig. 9:

x x

A B

y

Figure 9: Faces A, B in which edges x and y do and do not agree in orientation

Then let R be any rotation about A which sends y to x. Because edges x and y meet
faces A and B only, R must move B to B. Because R, as an action on B, sends y to x
with orientations not matching, it must be a reflection about some axis of B. Then the first
rotation about A which sends B to B is a reflection about B and so has order 2. Thus, p
must be 4 as in Fig. 9. Then x and y are the only edges joining A to B and each of these
edges occurs exactly once in each face. Thus e = 2; i.e.M is a map. Tracing the path from
edge to edge, we have I = r1r0r1r2r0r1r0r1r2 and so I = α2α1α0α1α0α2α1α0α1 holds also.
Thus,M is the map Γ1, the hemi-cube.

If neither of those things happen, then we can assign an orientation arrow to each of the
edges so that when seen from the center of A or B these arrows match but when seen from
the center of C, the AC edges do not match the BC edges in orientation. Then a rotation
one step about an edge joining A and B must send C onto itself with reversed orientations
on its edges. Thus it must be a reflection, and so of order 2. ThenM is a map and must be
oppB∗(3, 4k + 2) for some k by [4].

The same proof outline proves a more general theorem:

Theorem 6 If M is a non-orientable reflexible hypermap in which each face meets exactly
two others, thenM or D01(M) must be
(1) the hypermap D02(GWk),

(2) the map Γk,

(3) the map oppB∗(2k + 1, 4c+ 2) for some k, c, or

(4) Dδk for some k.

Proof: First note that if such a map hasm faces, we must be able to number them 0, 1, 2, . . . ,m−
1 so that face Fi meets faces Fi−1 and face Fi+1 (mod m) only. As in the proof of Theorem 5,
the arcs around Fi must separate it from Fi−1, Fi+1, Fi+1, Fi−1, Fi−1, Fi+1, etc, in circular
order, and without loss of generality, we can assume that the roles of edges and vertices are
chosen so that each edge meets exactly two faces and each vertex meets every face.

As in the proof of Theorem 5, if we assume that some edge meets a face with opposite
orientations, thenM must be D02(GWk) for some k, and if we assume that two edges x and
y joining the same pair of faces have orientations which disagree in one face and agree in the
other, thenM must be DΓk for some k.
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If neither of those happen then we can choose orientations so that the edges joining F0

and F1 agree in both faces, the edges joining F1 and F2 agree in both faces, and so on, up to
the edges joining Fm−1 = F−1 to F0 agree in both faces. Then within F0 the edges joining F0

to F1 either all do or all do not agree with the orientations of edges joining F0 to F−1. If they
did agree, thenM could be shown to be orientable.

So the edges around face 0 appear there with alternating clockwise and counterclockwise
orientations. We consider two cases based on the parity of m.
I. m is odd, say m = 2k + 1. Let x be any edge joining Fk to Fk+1. Then R, a rotation
one step about x, is a symmetry which switches Fk and Fk+1 = F−k while preserving
orientations of edges. R also switches Fk−1 and Fk+2 = F−(k−1) while preserving orien-
tation of edges. Finally, R switches F1 and F−1 while preserving orientations, and so
R send F0 to itself, preserving orientations of edges. Thus R acts on F0 as a reflection,
and so must have order 2. ThusM is a map, and the classification of [4] shows thatM
must be oppB∗(2k + 1, 4c+ 2) for some c, or Dδ2k+1.

II. m is even, say m = 2k for some k. Then similar considerations show that rotation one
step about Fk must be a reflection about F0 and so have order 2. Since p = 2, no edge
meets any face twice, so e = 2 as well. ThusM must be Dδ2k.

3. Non-orientable reflexible hypermaps of size a power of 2

Theorem 7 The only reflexible non-orientable hypermaps M for which the order of G(M)
is a power of 2 are duals of δk where k is a power of 2.

Proof: We begin this proof by proving two lemmas:

Lemma 8 The only reflexible 2-fold coverings of the degenerate hypermap Pk are P2k, εk (the
map formed by embedding a cycle of k vertices and edges around the equator of a sphere)
and δk.

Proof: Consider the coloured graph form of Pk. It has flag-nodes f1, f2, . . . , fk, g1, g2, . . . , gk

and arcs 0 link fi to gi, arcs 1 link gi to fi+1, arcs 2 link each node to itself. If N is a 2-fold
cover of Pk, we can describe it in terms of nodes f

′
i , f

′′
i , g

′
i, g

′′
i , where the projection of N

onto Pk merely erases the prime marks (dashes). With no loss of generality, we can assume
that arcs 0 link f ′

i to g
′
i and f

′′
i to g

′′
i for all i, and that arcs 0 link g

′
i to f

′
i+1 and g

′′
i to f

′′
i+1

for i = 1, 2, 3, . . . , k − 1. We then have two cases:
I: Arcs of colour 0 link g′k to f

′
1 and g′′k to f

′′
1 . Then N has two faces, and connectivity

requires some (and hence every) arc of colour 2 to join the one face to the other; more
precisely, colour 2 joins f ′

i to f
′′
i and g

′
i to g

′′
i . This is exactly the structure of the map

εk.

II: Arcs of colour 0 link g′k to f
′′
1 and g′′k to f

′
1. Then N has exactly one face of order 2k

and there are two possibilities for the arcs of colour 2:

A: Color 2 links each node to itself. This gives P2k.

B: Color 2 links f ′
i to f

′′
i and g′i to g

′′
i . This gives precisely the connections for the

map δk, as required. ¨

Lemma 9 The only 2-fold reflexible covering of δk is ε2k.
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Proof: Consider the coloured graph form of δk. It has flag-nodes f1, f2, . . . , f2k, g1, g2, . . . , g2k

and arcs 0 link fi to gi, arcs 1 link gi to fi+1, arcs 2 link fi to fi+k, gi to gi+k. If N is a 2-fold
cover of δk, we can describe it in terms of nodes f

′
i , f

′′
i , g

′
i, g

′′
i , where the projection of N onto

δk merely erases the prime marks (dashes). With no loss of generality, we can assume that
arcs 0 link f ′

i to g
′
i and f ′′

i to g
′′
i for all i, and that arcs 0 link g′i to f

′
i+1 and g′′i to f

′′
i+1 for

i = 1, 2, 3, . . . , 2k − 1. We then have two cases:
I: Arcs of colour 0 link g′2k to f

′
1 and g

′′
2k to f

′′
1 . Then N has two faces, and connectivity

requires some (and hence every) arc of colour 2 to join the one face to the other; more
precisely, colour 2 joins f ′

i to f
′′
i+k and g

′
i to g

′′
i+k. By re-labelling f

′′
i+k as f̂i and g

′′
i+k as

ĝi, we see that this is exactly the structure of the map εk.

II: Arcs of colour 0 link g′2k to f
′′
1 and g

′′
2k to f

′
1. Then N has exactly one face of order 4k.

Because the colour 2 arcs link f ′
i to f

′
i+k or f

′′
i+k, N is non-orientable. By the one-face

theorem (Theorem 3), N must be δ2k. But δ2k is not a covering of δk; the identification
of antipodal nodes in δ2k sends it onto Pk. This contradiction eliminates Case II, proving
the lemma. ¨

Returning to the proof of theorem, suppose thatM is a reflexible, non-orientable hypermap
and |G(M)| = 2r+1 for some r. Any two-group must contain a central involution t; factoring
out t induces a projection of M onto a reflexible hypermap M1 for which |G(M1)| = 2r.
Continuing this process gives a sequence of reflexible hypermapsM =M0 →M1 →M2 →
M3 . . . where Mi−1 is a 2-fold covering of Mi. After r + 1 steps the group will be trivial,
and so after some point, all the hypermaps must be degenerate. Let i be the first such that
Mi is degenerate. BecauseM is non-orientable, Mi cannot be ∗k, so it must be Pk, where
k = 2r−i. From the first lemma,Mi−1 must be δ2k, and from the second lemma, if i > 2, then
Mi−2 must be ε2k. But this orientable map cannot be a projection of the non-orientableM,
and so i is 1, and soM =M0 is δ2k, proving the theorem.

Even more generally useful is this theorem:

Theorem 10 Suppose thatM is a non-orientable, reflexible hypermap of type {a, b, c} whose
group has order 2kP , where P is an odd prime. If 2 is a primitive root modP , or if P = 7,
then exactly one of a, b, c, is divisible by P .

Proof: Let H be a 2-Sylow subgroup of G. Then G acts on the P right cosets of H by
right multiplication and this action gives a homomorphism ϕ of G into S

P
(often called the

right regular representation of G on the cosets of H). Let J = ϕ(G). Then J is transitive on
{1, 2, . . . , P}, so the order of J is 2rP for some r. J has a P -Sylow subgroup F , which we
can assume is generated by the P -cycle σ = (1 2 3 . . . P ). We wish to show that F is normal
in J .

First assume that 2 is a primitive root modP . Then the smallest power of 2 which is
equivalent to one modP is 2P−1. But r is no more than the power of 2 in P !, and this is given
by f(P ) = P−(the number of 1’s in the binary expansion of P ), which in turn is at most
P − 2. So no divisor of 2r is equivalent to 1modP except 20 = 1, and so by Sylow theory, F
is normal in J .

Next, assume that p = 7. Then r = 1, 2, 3, or 4 = f(7). If r = 1 or 2 then again, Sylow
theory implies that F is normal in J .

Suppose r = 3. Then |J | = 56 and if F were not normal, there would be 8 disjoint
conjugates of F . These would include (6)(8)=48 elements of order 7, leaving only 8 elements
to have other orders. Thus the remaining 8 must be a 2-Sylow subgroup T . But G, and hence
J , is generated by involutions; this is clearly impossible since all the involutions are in T .
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Finally suppose that r = 4. Then J contains a 2-Sylow subgroup of S7, and so it must
contain a transposition. Because F together with a transposition generate all of S7, that is
impossible.

Thus in any case, F is normal in J . In other words, J is contained in the normalizer of
F . It is not hard to show that all involutions in N(F ) belong to the dihedral group D

P
of

symmetries of the P -gon labelled 1, 2, 3, . . . , P in circular order. Thus J must be D
P
.

Now let ai = ϕ(αi), i = 0, 1, 2. Because each αi is an involution, each ai must be an
involution or the identity. At least two must be non-trivial in order to generate all of Dp,
but if all three were non-trivial, then all three of a0a1, a1a2, a2a0 would be in the subgroup
C

P
, which is impossible since α0α1, α2α0, α1α2, generate all of G. Thus two of the ai’s are

involutions and the third is trivial. Then one of a0a1, a1a2, a2a0 is of order P and the other
two of order 2. The theorem follows directly.

Of the primes less than 50, we can see that 3, 5, 7, 11, 13, 19, 29, 37 satisfy the hypotheses
of the theorem.

As a corollary to this theorem, we mention that if M is a map (i.e., e = 2) satisfying
the hypotheses of the theorem, then in addition, P divides the length of a Petrie path inM.
This length is the order of α0α2α1 in the group.

4. Classes of faces

A useful technique is to examine the action of the the group on refinements of the map. One
such action is in equivalence classes of faces:

Theorem 11 For each divisor k of p less than p/2, the relation ∼ defined by U ∼ T exactly
when rotation by k steps about U stabilizes T , is an equivalence relation on the faces ofM.

Proof: For any face W , let R
W
be a rotation by one step about W . If U ∼ T , then Rk

U

stabilizes T and has order p/k > 2. The elements of the stabilizer of T which have order p/k
are exactly those of the form Rj

T
where (j, p) = k. These are the generators of 〈Rk

T
〉. Thus we

have that U ∼ T iff 〈Rk
U
〉 = 〈Rk

T
〉 , and from this, it is easy to show that ∼ is an equivalence

relation.

Corollary 12 The group of the hypermapM acts on the equivalence classes, and the action
is transitive.

Because the group acts transitively on the classes, they must all be the same size and so:

Corollary 13 Let sk be the number of faces (including U) fixed by Rk
U
. Then sk must divide

F and the group has an action on the set of F/sk classes.

In a non-orientable regular hypermap other than δ2, s1 cannot be F ; in other words,
rotation by one step about a face must move some other face.

Theorem 14 Let h be some divisor of p such that the rotation Rh
U
by h steps about face U

stabilizes every face in m. If h < p/2 then 〈Rh
U
〉 is normal in G. If h = p/2 and neither M

nor D01(M) is: (1)Γk, (2) D12(GWk) or (3) D02(GWk) for some k, then also 〈Rh
U
〉 is normal

in G.
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Proof: Suppose that h < p/2. If g is an element of G such that Ug = T , then (R
U
)g = R

T
.

Thus every conjugate of 〈Rh
U
〉 is some 〈Rh

T
〉, and by the proof of Theorem 11, these are all

equal to 〈Rh
U
〉.

To address the case h = p/2, we need to introduce a lemma.

Lemma 15 Suppose that a reflection about some face in a non-orientable hypermapM fixes
every face ofM. ThenM or D01(M) must be
(1) the hypermap D02(GWk),

(2) the map Γk,

(3) the map oppB∗(2k + 1, 4c+ 2) for some k, c, or

(4) Dδk for some k.

Proof: Assume that the reflection is about an axis passing through the face-center and an
incident edge, as in Fig. 10, which shows face A being adjacent to faces v, u, t, x, y, z.

x

z

y

v

u
t

A

Figure 10: Neighbors of one face ofM

Because the reflection fixes all faces, we have that x = t, y = u, z = v. And because
x = t, the rotation about A which sends x to u must send t to u also; in other words, u = v.
Thus the face A meets only two others: one is x = t, the other is u = v = z = y, and soM
satisfies the hypothesis of Theorem 6. By that theorem, M must be one of the hypermaps
mentioned. ¨

Returning to the proof of the theorem, suppose h = p/2 and that U is a face such that R = Rh
U

fixes all faces. If R acts as a rotation about each face, then the same argument as for h 6= p/2
proves the theorem. If not, then R fixes some face T and acts as a reflection about T . Then
R satisfies the hypothesis of the lemma, and soM must be one of the four hypermaps named
there. But in the maps oppB∗(2k + 1, 4c + 2), rotation by h = p/2 = 2c + 1 steps about a
face does not fix all faces, so that family is excluded from our list of exemptions.

5. Non-orientable reflexible maps with P faces

Theorem 16 Suppose thatM is a non-orientable reflexible map (i.e., e = 2) having exactly
P faces, where P is a prime, P > 3. Then M is oppB∗(P, 2k) for some odd number k. This
has data line [(k − 1)(P − 1)− 1, {2, 2k, 2P}, {kP, P, k}, 4kP ].

Proof: Let G = G(M) and let f : G −→ G′ ≤ SP be the action of G on the P faces.
By Corollary 13, R = α0α1, acting on the faces, must have one fixed point and move the
remaining faces in cycles of one fixed length. This length, h, must divide P − 1. The image
of 〈α0, α1〉 in G′ must have order 2h and have P cosets, so |G′| = 2hP . Now, h | (P − 1),
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P > 3 implies that P divides neither h− 1 nor 2h− 1. Then a P -Sylow subgroup of G′ must
be normal. Assume the P -Sylow subgroup is T = 〈(1 2 3 . . . P )〉. Then G′ is contained in
the normalizer N of T in SP . But the only transitive subgroup of N generated by involutions
is DP , and so h = 2. So rotation R about one face moves all the others in pairs, and so the
one face can meet only two others; in other words, M is bicontactual. But the only non-
orientable BCT maps with a prime number of faces are oppB∗(P, 2k) for some odd number
k, as required.

Corollary 17 There is a reflexible non-degenerate map with exactly P faces (with P odd
prime) on the non-orientable surface S if and only if N(S) = −1mod 2(P − 1).

Proof: If P = 3 then by Theorem 5, the only non-orientable regular maps with 3 faces
are Γ1 and oppB

∗(3, 4k+ 2) with data lines [−1, {2, 4, 3}, {6, 3, 4}, 24] and [4k− 1, {2, 2(2k+
1), 6}, {3(2k + 1), 3, 2k + 1}, 12(2k+ 1)], respectively. Both have N(S) = −1mod 4. If P > 3
then by Theorem 16, there is only the family of non-orientable regular maps oppB∗(P, 2k),
for k odd and data line [(k − 1)(P − 1)− 1, {2, 2k, 2P}, {kP, P, k}, 4kP ]. Writing k − 1 = 2n
we get N(S) = −1mod 2(P − 1).

6. Non-orientable reflexible hypermaps with 4 and 5 faces

While a complete classification of 4-faced hypermaps still eludes us, we can establish the
following theorem.

Theorem 18 There is a reflexible non-degenerate hypermap with exactly four faces on the
non-orientable surface S if and only if N(S) = −1 mod 3.

Proof: First, if N(S) is of the form 3k − 4, then the map DΓk is a regular map on S. Now
suppose thatM is a non-orientable hypermap with 4 faces which lies on the surface S. Let
the faces be labelled A, B, C, D. What faces can A meet? If A meets only B, then B meets
only A and thus the map would be disconnected. If A meets only B and D, then B meets
only A and C, etc, soM satisfies the hypotheses of theorem 6. The only possibility forM
from that theorem is Dδ4 which lies on the projective plane, where N = −1.

So each face must meet all three other faces. Is it possible for each vertex to meet exactly
three of the four faces? If that is the case, assign the direction “clockwise” to each vertex so
that about each vertex the faces appear in clockwise order ABC, ACD, ADB, or BDC. This
assignment, we claim, is consistent in every face. In face A for example, rotation which moves
B → C → D → B will send a vertex ABC to ACD to ADB, and similar considerations hold
in each face. Therefore the map would be orientable.

Then each vertex (and, similarly, each edge) must meet two or four of the faces. If four,
then there are three kinds of vertices: those in which the order is ABCD, ABDC or ACBD
in one direction or the other. If two, then there are 6 kinds of vertices: those that meet AB,
AC, AD, BC, BD, or CD. If g is the number of each kind of vertex and h is the number
of each kind of edge, then there are 3g or 6g vertices, 3h or 6h edges and the number 2J of
flags is also divisible by three, J = 3a. Then N = J − (E + F + V ) = 3a− (3 or 6)g − (3 or
6)h− 4, which is of the form 3k − 4, as required.

Lemma 19 IfM is a non-orientable reflexible hypermap with exactly five faces, thenM or
D01(M) must cover map Dδ5, which has data line [−1, {2, 2, 10}, {5, 5, 1}, 20]. ThusM must
be of type {2a, 2b, 10c} or {10a, 2b, 2c} for some a, b, c.
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Proof: First note that the only map mentioned in Theorem 14 which has five faces is
oppB∗(5, 4c + 2), and this map is a (2c + 1)-fold covering of Dδ5, as required. Thus, we
can assume in what follows that any rotation which fixes all faces generates a normal sub-
group of G.

IfM has 5 faces, then by the divisibility criterion, R, rotation around one face, must fix
one and move all of the others. There are two cases: (I) R moves the faces in one 4-cycle;
(II) R moves the faces in two 2-cycles.
(I) R moves the faces in one 4-cycle. Then L = M/〈R4〉 is a hypermap with 5 faces of

size 4, and so its group is of order 40. The action on the faces is the same so R in this
map must also move faces in a 4-cycle. The stabilizer of a face is a 2-Sylow subgroup
of G(L), and so the action on the 2-Sylows is the same as the action on the faces. But
we see in the proof of Theorem 10 that this action is a dihedral subgroup D5 of S5, and
so contains no 4-cycles. Thus, case (I) is impossible.

(II) R moves the faces in two 2-cycles. Then L =M/〈R2〉 is a hypermap with 5 faces of
size 2, and so its group is of order 20. Theorem 10 implies that e or q is divisible by 5,
and so the corresponding E or V is 1 or 2. From Theorems 3 and 4, L must be Dδ5.
SinceM covers L, this proves the theorem.

Theorem 20 If M is a non-orientable reflexible hypermap having exactly 5 faces then M
or D01(M) is a map.

Proof: LetM be a non-orientable reflexible hypermap with 5 faces and group G. Up to a
duality, by Lemma 19,M covers the mapDδ5, which has data line [−1, {2, 2, 10}, {5, 5, 1}, 20].
The symmetry groupH = G(Dδ5), then, is the dihedralD10 generated by α0, α1, α2, satisfying
the relations:

1 = α2
0 = α2

1 = α2
2 = (α0α2)

2 = (α0α1)
2 = (α1α2)

10 = α0(α1α2)
5 , (1)

ThusM must be of type {2b, 2c, 10a} for some a, b, c. To show thatM or D01(M) is a map,
we need to show that b = 1 or c = 1.

Let β0, β1, β2 be the corresponding generators in G = G(M), and let R stand for β0β1.
The hypermap M is a covering of Dδ5, and so αi 7→ βi defines a homomorphism of G onto
H. Because bothM and Dδ5 have the same number of faces, the kernel N must be the cyclic
group 〈R2〉.

The last relation in (1) implies that for some k in {1, 2, . . . , c},

β0(β1β2)
5 = R2k

This implies that (β1β2)
5 = β0R

2k = β0(β0β1)
2k is an involution, so a = 1. Moreover,

(β1β2)(β1β2)
4 = (β1β2)

5 = β0R
2k, so β2(β1β2)

4 = β1β0R
2k = R2k−1. Thus, R2k−1 is an

involution, and so 2k − 1 ≡ c(mod 2c). Then c must be odd, and

β2(β1β2)
4 = Rc = R−c (2)

It must also be true that for some j in {1, 2, . . . , c},

(β0β2)
2 = R2j

This implies that b divides c, and that

β2β0β2 = β0R
2j (3)
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Now, from (2), we see that

β2(β1β2)
4β0 = Rcβ0 = β0R

−c = β0R
c = β0β2(β1β2)

4

and so

β0 commutes with β2(β1β2)
4 (4)

From (2) and (3), we see that

(β2β0β2)(β2(β1β2)
4) = (β0R

2j)(Rc)

i.e., that

β2β0(β1β2)
4 = β0R

2j+c

which shows us that β2β0(β1β2)
4 is an involution and, thus, so is β0(β1β2)

4β2 = β0(β1β2)
3β1.

So β0(β1β2)
3β1 = (β0(β1β2)

3β1)
−1 = β1(β1β2)

−3β0 = β1(β2β1)
3β0 = (β1β2)

3β1β0. In short,

β0 commutes with (β1β2)
3β1 (5)

Combining (4) and (5), β0 commutes with (β1β2)
3β1β2(β1β2)

4 = (β1β2)
8 = (β1β2)

−2 and so

β0 commutes with (β1β2)
2 .

It follows from (4) that β2(β1β2)
4 = β0β2(β1β2)

4β0 = β0β2β0(β1β2)
4, and so that β2 = β0β2β0,

or, (β0β2)
2 = I. Since e = 2, the hypermap must be a map.

Combining this theorem with Theorem 16 we get

Corollary 21 The reflexible non-orientable hypermaps with 5 faces are the maps oppB∗(5, 2k)
for odd k.

7. Final Note

This paper support and establish results which are important for the paper “Surfaces having
no regular hypermaps” [5] which classifies the non-orientable surfaces from negative Euler
characteristic 2 up to 50 which do not support any reflexible map, or hypermap. The negative
Euler characteristicN is given byN = |G|

2
(1−(1

e
+ 1

p
+ 1

q
)) and so the order of the automorphism

group G of a reflexible hypermap (or map) on a surface of negative Euler characteristic N > 0
is given by

|G| =
2N

1− (1
e
+ 1

p
+ 1

q
)
≤

2N

1− (1
2
+ 1

3
+ 1

7
)
= 84N

This bound implies that the number of reflexible maps and hypermaps on an orientable or
non-orientable surface is finite, allowing us to list all possible data lines for a given N > 0. The
classification in that paper was carried out by eliminating all feasible data lines for N = 16,
22, 25, 37 and 46 — the only non-orientable surfaces with N > 1 up to 50 for which no
examples of reflexible maps were known.
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