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Abstract. Here we continue from the paper [1] our study of the following ge-
ometric configuration. Let BR1R2C, CR3R4A, AR5R6B be rectangles build on
sides of a triangle ABC such that oriented distances |BR1|, |CR3|, |AR5| are
λ |BC|, λ |CA|, λ |AB| for some real number λ. We explore the homology and
orthology relation of the triangle on central points of triangles AR4R5, BR6R1,
CR2R3 (like centroids, circumcenters, and orthocenters) and several natural tri-
angles associated to ABC (as its orthic, anticomplementary, and complementary
triangle). In some cases we can identify which curves trace their homology and
orthology centers and which curves envelope their homology axis.
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1. Introduction

This paper is the continuation of the author’s preprint [1] where an improvement of three
recent papers [3], [6], and [7] by L. Hoehn, F. van Lamoen, and C.R. Pranesachar and
B.J. Venkatachala was presented. These articles considered independently the classical
geometric configuration with squares BS1S2C, CS3S4A, and AS5S6B erected on sides of a
triangle ABC and studied relationships among central points (see [4]) of the base triangle
τ = ABC and of three interesting triangles τA = AS4S5, τB = BS6S1, τC = CS2S3 (called
flanks in [6] and extriangles in [3]). In order to describe their main results, recall that triangles
ABC and XY Z are homologic provided lines AX, BY , and CZ are concurrent. The point P
in which they concur is their homology center and the line ` containing intersections of pairs
of lines (BC, Y Z), (CA, ZX), and (AB, XY ) is their homology axis. In this situation we

use the notation ABC
P
./
`
XY Z where ` or both ` and P can be omitted. Let Xi = X i(τ),

X
j
i = X i(τj) (for j = A,B,C), and σi = XA

i X
B
i X

C
i , where X i (for i = 1, . . .) is any of the

triangle central point functions from Kimberling’s lists [4] or [5].
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Instead of homologic, homology center, and homology axis many authors use the terms
perspective, perspector, and perspectrix. Also, it is customary to use letters I,G,O,H, F,K,
and L instead of X1, X2, X3, X4, X5, X6, and X20 to denote the incenter, the centroid, the
circumcenter, the orthocenter, the center of the nine-point circle, the symmedian (or Grebe-
Lemoine) point, and the de Longchamps point (the reflection of H about O, respectively.

In [3] Hoehn proved τ ./ σ3 and τ
Xj

./ σi for (i, j) = (1, 1), (2, 4), (4, 2). In [7] C.R.
Pranesachar and B.J. Venkatachala add some new results because they show that

τ
Xj

./ σi for (i, j) = (1, 1), (2, 4), (4, 2), (3, 6), (6, 3). Moreover, they observe that if τ
X
./

XAXBXC and Y, YA, YB, and YC are isogonal conjugates of points X,XA, XB, and XC with

respect to triangles τ, τA, τB, and τC , respectively, then τ
Y
./ YAYBYC . Finally, they also answer

in negative the question by Prakash Mulabagal of Pune if τ ./ XY Z, where X, Y , and Z
are points where incircles of triangles τA, τB, and τC touch the sides opposite to A, B, and
C, respectively.

In [6] van Lamoen says that Xi befriends Xj when τ
Xj

./ σi and shows first that τ
Xj

./ σi

implies τ
Xn
./ σm where Xm and Xn are isogonal conjugates of Xi and Xj. Also, he proves that

τ
Xj

./ σi is equivalent to τ
Xi
./ σj and that τ

Xj

./ σi for (i, j) = (1, 1), (2, 4), (3, 6), (4, 2), (6, 3).

Then he notes that τ
K(π

2
−φ)

./ K(φ), where K(φ) denotes the homology center of τ and the
Kiepert triangle formed by apexes of similar isosceles triangles with the base angle φ erected

on the sides of ABC. This result implies that τ
Xi
./ σi for i = 485, 486 (Vecten points — for

φ = ±π
4
) and τ

Xj

./ σi for (i, j) = (13, 17), (14, 18) (isogonic or Fermat points X13 and X14

— for φ = ±π
3
and Napoleon points X17 and X18 — for φ = ±π

6
). Finally, van Lamoen

observed that the Kiepert hyperbola (the locus of K(φ)) befriends itself; so does its isogonal
transform, the Brocard axis OK.

The idea of our generalization in [1] was in replacing squares with rectangles whose ratio
of nonparallel sides is constant (see Fig. 1). More precisely, let BR1R2C, CR3R4A, AR5R6B

be rectangles build on sides of a triangle ABC such that the oriented distances |BR1|, |CR3|,
|AR5| are λ |BC|, λ |CA|, λ |AB| for some real number λ. Let τ λA = AR4R5, τ

λ
B = BR6R1,

and τλC = CR2R3 and let Xj
i (λ) (for j = A, B, C) and σλi have obvious meaning. The most

important central points have their traditional notations so that we shall often use these
because they might be easier to follow. For example, HA(λ) is the orthocenter of the flank
τλA and σλG is the triangle GA(λ)GB(λ)GC(λ) on the centroids of flanks.

Since triangles AS4S5 and AR4R5 are homothetic and the vertex A is the center of this
homothety (and similarly for pairs BS6S1, BR6R1 and CS2S3, CR2R3) we conclude that
{A, XA

i , X
A
i (λ)}, {B, XB

i , X
B
i (λ)}, and {C, XC

i , X
C
i (λ)} are sets of collinear points so that

most statements from [3], [7], and [6] concerning triangles σi are also true for triangles σλi .

But, since instead of a single square on each side we have a family of rectangles it is possible
to get additional information. The results in [1] explored cases when the base triangle τ is
either homologic or orthologic with the triangles σλi .

The purpose of this paper is to investigate the relations of both homology and orthology
for triangles σλi with some important triangles associated to τ like its anticomplementary
triangle τa, the first Brocard triangle τb, the Euler triangle τE, the complementary triangle
τg, the orthic triangle τh, the tangential triangle τt, the Torricelli triangles τu and τv, and the
Napoleon triangles τx and τy.
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Figure 1: The triangle ABC with three rectangles and three flanks

2. The anticomplementary triangle τa

Let τa denote the anticomplementary triangle AaBaCa of ABC whose vertices are intersections
of parallels to sidelines through opposite vertices.

Theorem 1 For every λ ∈ R the triangles τa and σλG are homologic and their homology
centers trace the Kiepert hyperbola of τa (see Fig. 2).

Proof: In our proofs we shall use trilinear coordinates. Recall that the actual trilinear

coordinates of a point P with respect to the triangle ABC are signed distances f, g, h of P
from the lines BC, CA, and AB. We shall regard P as lying on the positive side of BC if P
lies on the same side of BC as A. Similarly, we shall regard P as lying on the positive side of
CA if it lies on the same side of CA as B, and similarly with regard to the side AB. Ordered
triples x : y : z of real numbers proportional to (f, g, h) (that is such that x = mf , y = mg,
and z = mh, for some real number m different from zero) are called trilinear coordinates of
P . The advantage of their use is that a high degree of symmetry is present so that it usually
suffices to describe part of the information and the rest is self evident. For example, when we
writeX1(1) or I(1) or simply say I is 1 this indicates that the incenter has trilinear coordinates
1 : 1 : 1. We gave only the first coordinate while the other two are cyclic permutations of the
first. Similarly, X2

(

1
a

)

or G
(

1
a

)

say that the centroid has trilinears 1
a
: 1
b
: 1
c
, where a, b, c are

the lengths of sides of ABC.
The expressions in terms of sides a, b, c can be shortened using the following notation.

da = b− c, db = c− a, dc = a− b, za = b+ c, zb = c+ a, zc = a+ b,

t = a+ b+ c, ta = b+ c− a, tb = c+ a− b, tc = a+ b− c,

m = abc, ma = bc, mb = ca, mc = ab, T =
√
ttatbtc.
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Figure 2: The homology centers of triangles τa and σλG trace
the Kiepert hyperbola of τa (Theorem 1)

For an integer n, let tn = an+ bn+ cn and dna = bn− cn and similarly for other cases. Instead
of t2, t2a, t2b, and t2c we write k, ka, kb, and kc. Let ω denote the Brocard angle of ABC.

In order to achieve even greater economy in our presentation, we shall describe coordinates
or equations of only one object from triples of related objects and use cyclic permutations
ϕ and ψ to obtain the rest. For example, the first vertex Aa of the anticomplementary
triangle AaBaCa of ABC has trilinears − 1

a
: 1
b
: 1
c
. Then the trilinears of Ba and Ca need

not be described because they are easily figured out and memorized by relations Ba = ϕ(Aa)
and Ca = ψ(Aa). One must remember always that transformations ϕ and ψ are not only
permutations of letters but also of positions, i.e., ϕ(a, b, c, 1, 2, 3 → b, c, a, 2, 3, 1) and
ψ(a, b, c, 1, 2, 3→ c, a, b, 3, 1, 2). Therefore, the trilinears of Ba and Ca are 1

a
: −1

b
: 1
c
and

1
a
: 1
b
: −1

c
.

The trilinears of the points R1 and R2 are equal to

−2λm : c(T + λkc) : λbkb and − 2λm : λckc : b(T + λkb)

(while R3 = ϕ(R1), R4 = ϕ(R2), R5 = ψ(R1), and R6 = ψ(R2)). It follows that the centroid

XA
2 (λ) or G

A(λ) of the triangle AR4R5 is
3T + 2a2λ

−a
:
kcλ

b
:
kbλ

c
.

Hence, the line AaG
A(λ) is

3T + 6daza
a

x+
Tλ+ 3(ka + 2b2)

−b y +
Tλ+ 3(ka + 2c2)

c
z = 0.
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It follows that the homology center of τa and σλG is
(T 2 + 2kbkc)λ

2 − 6Tkaλ− 9T 2

a
. This point

traces the conic with the equation

a2(b2 − c2)x2 + b2(c2 − a2)y2 + c2(a2 − b2)z2 = 0 or (in shorter notation)
∑

a2dazax
2 = 0.

Since the vertices of τa, the common centroid G of τ and τa, and the orthocenter of the

anticomplementary triangle X20

(

T 2+2kbkc
a

)

(known also as the de Longchamps point L of

ABC) are on this curve, we conclude that it is the Kiepert hyperbola of the anticomplementary
triangle.

Theorem 2 The homology axis of τa and σλG envelope the Kiepert parabola of τa.

Proof: The line BaCa has the equation by + cz = 0 while the line GB(λ)GC(λ) is

a
(

Tλ2 + 6(b2 + c2)λ+ 9T
)

x+ bλ(Tλ+ 3kc)y + cλ(Tλ+ 3kb)z = 0.

It follows that their intersection is
6daza

a
: −Tλ2 + 6(b2 + c2)λ + 9T

b
:

Tλ2 + 6(b2 + c2)λ + 9T

c
.

Hence, the homology axis of τa and σλG has the following equation

∑

a[T 2(81− λ4)− 6Tλ(k + a2)(λ2 + 9) + 18λ2(T 2 − 4a2(b2 + c2))]x = 0.

It envelopes
∑

[a2(ka − a2)2 x2 + 2bc(T 2 + b2kc + c2kb + m2
a) y z] = 0. In order to see that

this is the Kiepert parabola of τa it suffices to check that lines BaCa, CaAa, AaBa, the line at
infinity, and the Lemoine line of τa (the homology axis of τa and its tangential triangle) are
its tangents (see [2]).

Indeed, by+ cz = 0, cz+ax = 0, ax+ by = 0,
∑

ax = 0, and
∑

a3(b2+ c2)x = 0 are their
equations. By solving in one variable any of them and substituting into the left hand side of
the equation of the above conic we get remaining variables in a complete square which means
that these lines have a point of tangency with the conic and our proof is accomplished.

Recall that triangles ABC andXY Z are orthologic provided the perpendiculars at vertices
of ABC onto sides Y Z, ZX, and XY of XY Z are concurrent. The point of concurrence
of these perpendiculars is denoted by [ABC, XY Z]. It is well-known that the relation of
orthology for triangles is reflexive and symmetric. Hence, the perpendiculars at vertices of
XY Z onto sides BC, CA, and AB of ABC are concurrent at the point [XY Z, ABC].

Since G befriends H it is clear that triangles τa and σλG are orthologic and [σλG, τa] = H

(the orthocenter). Our next result shows that points [τa, σ
λ
G] trace the Kiepert hyperbola of

τa.

Theorem 3 The locus of the orthology centers [τa, σ
λ
G] of τa and σλG is the Kiepert hyperbola

of AaBaCa (see Fig. 3).

Proof: The perpendicular from Aa onto the line GB(λ)GC(λ) has the equation

6ad2ax+ b(Tλ+ 3kc)y − c(Tλ+ 3kb)z = 0.

Therefore, the orthology center [τa, σ
λ
G] is

T 2λ2 + 6Tλka + 9(T 2 − 2kbkc)

a
. This point traces the

conic with the equation
∑

a2d2ax
2 = 0 that was recognized as the Kiepert hyperbola of τa in

the proof of Theorem 1.
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Figure 3: The orthology center [τa, σ
λ
G] of triangles τa and σλG traces

the Kiepert hyperbola of τa (Theorem 3)
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Figure 4: The homology centers of τa and σλO trace the line GK (Theorem 4)
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Theorem 4 For every λ ∈ R the triangles τa and σλO are homologic and their homology
centers trace the line GK (see Fig. 4).

Proof: The point
T + z2aλ

−m
:
λ

c
:
λ

b
is the circumcenter OA(λ) of the flank AR4R5. The line

AaO
A(λ) is aλd2ax + b(T + λb2)y − c(T + λc2)z = 0. Hence,

λka + T

a
is the homology center

of τa and σλO. It traces the line
∑

ad2ax = 0 that goes through points G
(

1
a

)

(the centroid)
and K(a) (the symmedian or Grebe-Lemoine point).

Theorem 5 For every λ ∈ R \ {− cotω}, the triangles τa and σλO are orthologic. The orthol-
ogy center [ τa, σ

λ
O ] is the de Longchamps point L or X20 of τ (or the orthocenter of τa) while

the orthology centers [σλO, τa ] trace the line HK (see Fig. 5).
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Figure 5: The orthology center S1 = [τa, σ
λ
O] is X20 while the orthology centers

S2 = [σλO, τa] trace the line HK (Theorem 5)

Proof: The triangle σλO degenerates to a point if and only if λ = − cotω. Since the triangles τ
and σλO are homothetic and their center of similitude is the symmedian point K, the triangles
τa and σ

λ
O have parallel corresponding sides. It follows that τa and σ

λ
O are orthologic and that

[ τa, σ
λ
O ] = X20. The perpendicular from OA(λ) onto the line BaCa is

aλd2akax+ b(λd2aka − Tkb)y + c(λd2aka + Tkc)z = 0.
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Hence, [σλO, τa ] has coordinates
(kkbkc − a2T )λ + Tkbkc

a
. We infer that this orthology center

traces the line HK because we get its equation
∑

ad2ak
2
ax = 0 by eliminating the parameter

λ.

Since H befriends G and the line AHA(λ) is the median AG that goes through the point
Aa, it is clear that triangles τa and σλH are homologic and that their homology center is G
(the centroid). The axis of these homologies envelope a complicated quartic.

Theorem 6 The locus of the orthology centers [τa, σ
λ
H ] of τa and σλH is the Kiepert hyperbola

of τa. The locus of the orthology centers [σλH , τa] of σλH and τa is the line HK (see Fig. 6).
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Figure 6: The orthology centers S1 = [τa, σ
λ
H ] and S2 = [σλH , τa] trace

the Kiepert hyperbola of τa and the line HK (Theorem 6)

Proof: The point
T − 2λka

aka
:

λ

b
: λ
c
is the orthocenter HA(λ) of the flank AR4R5. The line

HB(λ)HC(λ) is

3kbkcλ
2 − 4a2Tλ+ T 2

bc
x+

λkb(3kcλ− T )

ca
y +

λkc(3kbλ− T )

ab
z = 0.

The perpendiculars from Aa and HA(λ) onto lines HB(λ)HC(λ) and BaCa have equations

2daza(T − 2kλ)

bc
x+

Tkc + (T 2 − 2kkc)λ

ca
y − Tkb + (T 2 − 2kkb)λ

ab
z = 0

and
2dazakaλ

bc
x+

Tkb + 2dazakaλ

ca
y +

Tkc − 2dazakaλ

ab
z = 0.



Z. Čerin: Homology and Orthology with Triangles 9

The orthology center [ τa, σ
λ
H ] is

bc [(8a2kT 2 − 16a2k2ka + 8kkaT
2 − T 4)λ2 − 2T ((6a2 − k)T 2+

+4ka(kbkc − 4a4))λ+ T 2(2kbkc − T 2)]

while the orthology center [σλH , τa ] has coordinates Tkbkc+2(a2T 2−kkbkc)λ. In order to see
what curves trace these orthology centers we must eliminate the parameter λ. For [ τa, σ

λ
H ]

we get the equation for the Kiepert hyperbola of τa as in Theorem 1 and for [σλH , τa ] the
equation for the line HK as in Theorem 5.

3. The first Brocard triangle τb

Let τb = AbBbCb denote the first Brocard triangle of ABC. Its vertices are projections of the
symmedian point K onto perpendicular bisectors of sides.

Theorem 7 For every λ ∈ R the triangles τb and σλG are homologic and their homology
centers trace the Kiepert hyperbola of τb (see Fig. 7).

PSfrag replacements

A B

C

R1

R2

R3

R4

R5
R6

Ab

Bb

Cb

GA(λ)
GB(λ)

GC(λ)

K

Figure 7: The homology centers of τb and σ
λ
G trace the Kiepert hyperbola of τb (Theorem 7)

Proof: The line AbG
A(λ) is

kdazaλ

bc
x+

a2kλ+ 3b2T

ca
y − a2kλ+ 3c2T

ab
z = 0
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Z. Čerin: Homology and Orthology with Triangles 11

since Ab is abc : c3 : b3. Hence,
a2kak

2λ2 + 3kT (b4 + c4)λ + 9m2
aT

2

a
is the homology center of

τb and σλG. This center will trace the curve
∑

daza(a
4 x2 + ma(b

2 + c2)yz) = 0 while the
parameter λ changes. Since the vertices of τb, the common centroid G

(

1
a

)

of τ and τb, and

the orthocenter 2a(T 2− a2ka− 2m2
a)−

kkbkc

a
of the first Brocard triangle τb are on this curve,

we conclude that it is the Kiepert hyperbola of τb. Notice that the circumcenter O(a ka) and
the 3rd Brocard point X76

(

1
a3

)

are also on this hyperbola.

Theorem 8 For every λ ∈ R the triangles τb and σλG are orthologic. The locus of the
orthology centers [τb, σ

λ
G] and [σλG, τb] is the Kiepert hyperbola of τb and the line X2X98

joining the centroid with the Tarry point of ABC, respectively (see Figs. 8 and 9).

Proof: The perpendicular from Ab onto the line GB(λ)GC(λ) has the equation

ad2a(Tλ+ 3k)x+ b(Tz2cλ+ 3a2k) y − c(Tz2cλ+ 3a2k) z = 0.

Therefore, the orthology center [τb, σ
λ
G] is

T 2(2 k − a2)λ2 + 6Tλ(a2ka + z4a) + 9a2kka

a
. This point

traces the conic with the equation
∑

d2a(a
4x2 + maz2ayz) = 0 that was recognized as the

Kiepert hyperbola of τb in the proof of Theorem 7.
The perpendicular from GA(λ) onto the line BbCb has the equation

ad2aTx+ b
(

d2aTλ− 3(c4 − a2 ka)
)

y + c(d2aTλ+ 3(b4 − a2 ka))z = 0.

So, the orthology center [σλG, τb ] is
T (kkbkc + a2(a2ka − 2T 2) + 2m2)λ + 3(b4 − a2ka)(c

4 − a2ka)

a
. This

point traces the line with the equation
∑

d2a(kbkc + a2ka − 2m2
a)x = 0. The points X2

(

1
a

)

and X98

(

1

a(z4a − a2z2a)

)

are on it. Note that the points X110

(

a

d2a

)

(the focus of the Kiepert

parabola), X114

(

(a2 k − T 2)(z4a − a2z2a)

a

)

(the Kiepert antipode), and X125

(

d2
2aka

a

)

(the center

of the Jerabek hyperbola) also belong to this line.

Since the vertices of τb are on perpendicular bisectors of sides of τ and triangles τ and σλO
are homothetic it follows that τb and σ

λ
O are orthologic and [ τb, σ

λ
O ] = O.

Theorem 9 The locus of the orthology centers [σλO, τb] of the triangles σλO and τb is the line
X6X98 joining the symmedian point X6 with the Tarry point X98 (see Fig. 10).

Proof: The perpendicular from the point OA(λ) onto the line BbCb has the equation

λd2aka

bc
x+

λd2aka − Tkb

ca
y +

λd2aka + Tkc

ab
z = 0.

Hence,
λ(kkbkc − a2T 2) + Tkbkc

a
is the orthology center [σλO, τb]. It traces the line with the

equation
∑

ad2a(a
2 ka + 2m2

a)(z4c − a2 z2c)x = 0.

One can easily check that the points X6 and X98 are on this line.

Theorem 10 For every number λ ∈ R and j = 4, 5, 20 the triangles τb and σλj are orthologic.
The locus of the orthology centers [ τb, σ

λ
j ] of the triangles σλj and τb is the Kiepert hyperbola

of τb. The orthology centers [σλj , τb ] trace the line X4X98 for j = 4, the line through X98

parallel to the line X3X66 for j = 5, and a line through X98 for j = 20.

Proof: We leave proofs of the statements of this theorem to the reader as an exercise because
they are similar to the above proofs.
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Figure 10: The orthology centers [σλO, τb] trace the line X6X98 (Theorem 9)

4. The Euler triangle

The Euler triangle τE = AEBECE has the midpoints AE, BE, CE of segments AH, BH, CH
joining vertices with the orthocenter H as vertices.

Since the lines AGA(λ), BGB(λ), CGC(λ) are altitude lines of ABC it is obvious that
for every λ ∈ R the triangles τE and σλG are homologic and their homology center is the
orthocenter H of τ .

Theorem 11 For every λ ∈ R the triangles τE and σλO are homologic and their homology
centers trace the line HK (see Fig. 11).

Proof: Since
T

a ka
− a :

kc

2b
:
kb

2c
are trilinears of AE and from the proof of Theorem 4 we know

that
T + (b2 + c2)λ

−m
:
λ

c
:
λ

b
are trilinears of OA(λ), we infer that AEO

A(λ) is

λad2ak
2
ax+ b [λM+ + Tkakb] y + c[λM− + Tkakc]z = 0,

where M± = z2aa
4 − 2z2

2aa
2 + d2a(d2az2a ± 4m2a). Note that the lines AEO

A(λ), BEO
B(λ),

and CEO
C(λ) are concurrent at the point

kbkcT + (3z2aa
4 − 2d2

2aa
2 − z2ad

2
2a)λ

a(2kλ + T )
. This point traces

the line HK whose equation is
∑

ad2ak
2
ax = 0.

Theorem 12 For every λ ∈ R the triangles τE and σλH are homologic and their homology
centers trace the Kiepert hyperbola of τE (see Fig. 12).
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Figure 11: The homology centers of σλO and τE trace the line HK (Theorem 11)
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Figure 12: The homology centers of σλH and τE trace the Kiepert hyperbola of τE (Theorem 12)
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Proof: Since
T

akaλ
− 2

a
:

1

b
:

1

c
are trilinears of HA(λ) and from the proof of the previous

theorem we know that
T

aka
− a :

kc

2b
:
kb

2c
are trilinears of AE, we infer that AEH

A(λ) is

2λad2akax−M+(b)y −M−(c)z = 0, where M±(b) = b
[

2λ(d2aa
2 − d4a ± T )∓ Tkb

]

.

The lines AEH
A(λ), BEH

B(λ), and CEH
C(λ) are concurrent at the point

4T (a4 + z2aa
2 − 2d2

2a)λ
2 − 2(3z2aa

4 − 2d2
2aa

2 − z2ad
2
2a)λ+ Tkbkc

a

that traces the conic whose equation is

∑

d2a[a
2k2

ax
2 + bc(a4 + 2z2aa

2 − 3d2
2a)yz] = 0.

Since it goes through the vertices of τE, its centroid
a4 + z2aa

2 − 2d2
2a

a
, and the common ortho-

center H of τ and τE, we conclude that it is the Kiepert hyperbola of τE.

The proof of the following theorem is left to the reader.

Theorem 13 For every number λ ∈ R and j = 2, 3, 4, 5, 20 the triangles τE and σλj are
orthologic. The orthology centers [τE , σ

λ
3 ] and [σλ2 , τE] are the orthocenter H. For i =

2, 4, 5, 20 the locus of orthology centers [τE, σ
λ
i ] is the Kiepert hyperbola of τE. The locus of

the orthology centers [σλi , τE] is the line HK for i = 3, 4, 5, 20.

5. The complementary triangle

The complementary triangle τg = AgBgCg has the midpoints Ag, Bg, Cg of sides BC, CA,
AB as vertices. It is also the Cevian triangle of the centroid G.

Since the lines AHA(λ), BHB(λ), CHC(λ) are median lines of ABC it is obvious that for
every λ ∈ R the triangles τg and σλH are homologic and their homology center is the centroid
G of τ .

Theorem 14 For every λ ∈ R the triangles τg and σλG are homologic and their homology
centers trace the Kiepert hyperbola of τg.

Proof: Since from the proof of Theorem 1 we know that
3T + 2a2λ

−a
:
kcλ

b
:
kbλ

c
are trilinears

of GA(λ) while the trilinears of Ag are 0 : c : b, we infer that AgG
A(λ) is

2λad2ax+M(b)y −M(c)z = 0, where M(b) = b(2λa2 + 3T ).

The lines AgG
A(λ), BgG

B(λ), and CgG
C(λ) concur at the point

4kaa
2λ2 + 6Tz2aλ + 9T 2

a
that

traces the conic whose equation is
∑

d2a[a
2x2 + bcyz] = 0. Since it goes through the vertices

of τg, the common centroid G of τ and τg, and the orthocenter O of τg, it follows that this is
the Kiepert hyperbola of τg.

Theorem 15 For every λ ∈ R the triangles τg and σλO are homologic and their homology
centers trace the line GK (see Fig. 13).



Z. Čerin: Homology and Orthology with Triangles 15

PSfrag replacements

A
B

C

Ag
Bg

Cg

OA(λ)

OB(λ)

OC(λ)

K

G

homology center of σλO and τg

line GK

Figure 13: The homology centers of σλO and τg trace the line GK (Theorem 15)

Proof: Now we recall from the proof of Theorem 4 that
T + z2aλ

−m
:

λ

c
:

λ

b
are trilinears of

OA(λ). Hence, the line AgO
A(λ) is λad2ax +M(b)y −M(c)z = 0, where M(b) is equal to

b(λz2a + T ). The lines AgO
A(λ), BgO

B(λ), and CgO
C(λ) concur at the point

z2aλ + T

a
that

traces the line whose equation is
∑

ad2ax = 0. One can easily check that the points G
(

1
a

)

and K(a) are on this line.

Theorem 16 For every number λ ∈ R and j = 2, 3, 4, 5, 20 the triangles τg and σλj are
orthologic. The orthology center [τg, σ

λ
3 ] is the circumcenter O and [σλ2 , τg] is the orthocenter

H. For i = 2, 4, 5, 20 the locus of orthology centers [τg, σ
λ
i ] is the Kiepert hyperbola of τg.

The locus of the orthology centers [σλi , τg] is the line HK for i = 3, 4, 5, 20.

Proof for the locus of [τg, σ
λ
F ]. Since FA(λ) is

(a2 − ka)λ + 2T

a
:
d2bλ

b
:
d2cλ

−c
, the perpendicular

p
(

Ag, F
B(λ)FC(λ)

)

from the point Ag onto the line FB(λ)FC(λ) has the equation

ad2a(kλ− 2T )x+M(b)y −M(c)z = 0, where M(b) = b[(2a4 − z2aa
2 + d2

2a)λ− 2a2T ].

Then the perpendiculars

p
(

Ag, F
B(λ)FC(λ)

)

, p
(

Bg, F
C(λ)FA(λ)

)

, and p
(

Cg, F
A(λ)FB(λ)

)

concur at the point

(z4a − z2aa
2)(2a4 − z2aa

2 + d2
2a)λ

2 + T (2a6 − z2aa
4 − z2ad

2
2a)λ+ 2a2kaT

2

a

that traces the Kiepert hyperbola of τg (see the proof of Theorem 14).
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6. The orthic triangle

The orthic triangle τh = AhBhCh has the feet Ah, Bh, Ch of altitudes of ABC as vertices. It
is also the Cevian triangle of the orthocenter H.

Since the lines AGA(λ), BGB(λ), CGC(λ) are altitude lines of ABC it is obvious that
for every λ ∈ R the triangles τh and σλG are homologic and their homology center is the
orthocenter H of τ .

Theorem 17 For every λ ∈ R the triangles τh and σλO are homologic and their homology
centers trace the equilateral hyperbola that goes through the vertices of τh and the central
points H (the orthocenter), K (the symmedian point), X52 (the orthocenter of the orthic
triangle), and X113 (Jerabek antipode) of the triangle ABC. The homology axis trace a
parabola.

Proof: Since Ah is 0 :
1

b kb
:

1

c kc
and OA(λ) is

T + z2aλ

−m
:

λ

c
:

λ

b
, the line AhO

A(λ) has the

equation
λad2akax−M(b)y +M(c)z = 0, where M(b) = bkb(λz2a + T ).

It follows that the lines AhO
A(λ), BhO

B(λ), and ChO
C(λ) concur at the point

2a2z2aλ
2 + T (k + a2)λ+ T 2

a ka

that traces an equilateral hyperbola with the equation
∑

d2a(a
2x2 + bckbkcyz) = 0. One can

easily check that the vertices of τh, the orthocenter H
(

1

a ka

)

, the symmedian point K(a), the

orthocenter X52 (a(a
2ka − T 2)(2m2

a − T 2)) of the orthic triangle, and the Jerabek antipode

X113

(

(

T 2 − 3a2ka)(z2aa
4 − 2(z4a −m2

a)a
2 + z2ad

2
2a

)

a

)

all lie on it.

Theorem 18 For every real number λ and for j = O, K the triangles τh and σλj are ortho-
logic. The orthology center [τh, σ

λ
O] is the orthocenter H and [σλK , τg] is the circumcenter O.

The locus of orthology centers [τh, σ
λ
K ] is the rectangular hyperbola AhBhChH. The locus of

the orthology centers [σλO, τh] is the line OK (see Fig. 14).

Proof for the locus of [τh, σ
λ
K ]. Since the point KA(λ) is

2[T (3ka − 2a2) + (z2aa
2 − d2

2a)λ]

−a :M(b, c) :M(c, b)

where the function M(b, c) is btc[(kb + 2mb)
2 − T 2], the perpendicular p

(

Ah, K
B(λ)KC(λ)

)

from the point Ah onto the line KB(λ)KC(λ) has the equation

2λad2akaTx−M(b, c)y +M(c, b)z = 0,

where the function M(b, c) is bkb[T (k + 2a2)λ+ (3k − 4b2)(3k − 4c2)]. Then the lines

p
(

Ah, K
B(λ)KC(λ)

)

, p
(

Bh, K
C(λ)KA(λ)

)

, and p
(

Ch, K
A(λ)KB(λ)

)

concur at the point

T 2(k + 2a2)λ2 + 2T (3a4 + 7z2aa
2 + 8m2

a)λ+ (3k − 4a2)(3k − 4b2)(3k − 4c2)

ka

that traces the rectangular hyperbola with the equation
∑

(3k − 4a2)d2a[a
2k2

ax
2 +makbkcyz] = 0.

It is easy to check that the vertices of τh and the orthocenter H lie on it.
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Figure 14: Orthology centers [σλO, τh] and [σλO, τt] trace the line OK (Theorems 18 and 19)

7. The tangential triangle

Let pa, pb, and pc be perpendiculars at vertices A, B, and C to segments AO, BO, and
CO joining the vertices with the circumcenter. The tangential triangle τt = AtBtCt has the
intersections pb ∩ pc, pc ∩ pa, and pa ∩ pb as vertices. It is also the antipedal triangle of the
circumcenter O.

Since the lines AOA(λ), BOB(λ), COC(λ) are the symmedians of ABC it is obvious
that for every λ ∈ R the triangles τt and σ

λ
O are homologic and their homology center is the

symmedian point K of τ .

Theorem 19 For every number λ ∈ R and j = O, K the triangles τt and σλj are orthologic.
The orthology centers [τt, σ

λ
O] and [σλK , τt] are the circumcenter O. The locus of orthology

centers [τh, σ
λ
K ] is the rectangular hyperbola AtBtCtO. The locus of the orthology centers

[σλO, τt] is the line OK (see Fig. 14).

Proof for the locus of [σλO, τt]. Since the point OA(λ) is
T + z2aλ

−m
:
λ

c
:
λ

b
and At has trilinears

−a : b : c, the perpendicular p
(

OA(λ), BtCt

)

from the point OA(λ) onto the line BtCt has
the equation

2λabcd2ax+ c[2λb2d2a + kcT ]y + b[2λc2d2a − kbT ]z = 0.

Then the lines

p
(

OA(λ), BtCt

)

, p
(

OB(λ), CtAt

)

, and p
(

OC(λ), AtBt

)

concur at the point a(2λ(z2aa
2−z2a)−kaT ) that traces the line with the equation

∑

mad2ax =
0. It is easy to check that the circumcenter O and the symmedian point K lie on it.
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8. The Torricelli triangles

Let Au, Bu, and Cu be vertices of equilateral triangles built on sides BC, CA, and ABb of
ABC towards inside. When they are built towards outside then their vertices are denoted
Av, Bv, and Cv. The negative Torricelli triangle τu is AuBuCu while AvBvCv is the positive
Torricelli triangle τv of ABC.

Theorem 20 For every λ ∈ R the triangles τu and σλG are homologic and their homology
centers trace the Kiepert hyperbola of τu that goes through the vertices of τu and the central
points G (the centroid), O (the circumcenter), and X14 (the negative isogonic point) of the
triangle ABC.

PSfrag replacements

A
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C

Av

Bv

Cv

OA(λ)

OB(λ)

OC(λ)

G

homology center of σλG and τv

Kiepert hyperbola of τv

Figure 15: The homology centers of σλG and τv trace the Kiepert hyperbola of τv
(analogue of Theorem 20)

Proof: Since the point Au has trilinears −1 :
T
√

3− 3kc
6ab

:
T
√

3− 3kb
6ca

and the point GA(λ) is

3T + 2λa2

−a
:
λkc

b
:
λkb

c
, the line AuG

A(λ) has the equation

λad2a(3ka + T
√
3)x−M(b)y +M(c)z = 0,

where the function M(b) is equal to b[λ(3kad2a − z2aT
√
3) + (3kb − T

√
3)T ]. Hence, the lines

AuG
A(λ), BuG

B(λ), and CuG
C(λ) concur at the point

2kaa
2λ2 + 3[z2aT − (z2aa

2 − d2
2a)
√
3]λ+ 9[a4 + (z2a − T

√
3)a2 − 2d2

2a]

a
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that traces the conic
∑

d2a[a
2(3ka−T

√
3)x2−ma(3ka+T

√
3)yz] = 0. It is easy to check that

this is the Kiepert hyperbola of τu because it goes through the vertices of τu, the common cen-

troid G of τu and τ , and the orthocenter of τu with trilinears
(ka − 2a2)T

√
3 + a4 + 2z2aa

2 − 3d2
2a

a
.

In the same way one can prove that O (the circumcenter), and X14 (the negative isogonic
point) of the triangle ABC are also on it.

Theorem 21 For every λ ∈ R the triangles τu and σλ18 are homologic and their homology
center is the negative isogonic point X14.

Proof: The point XA
18(λ) is f : g(b, c) : g(c, b), where

g(b, c) = λmbtb(3kc + 6mc + T
√
3)(kc + 2mc − T

√
3),

and

f =
4T 2ma

[(

(ka − 3a2)T
√
3 + 3z2aa

2 − 3d2
2a

)

λ+ 3(3ka + 2a2)T − 5T 2
√
3
]

ta(ka + T
√
3)

.

One can easily check that this point lies on the line AuX14 and thus complete the proof.

Theorem 22 The triangle τu is orthologic to σλi for i = 2, 3, 4, 5, 14, 20. The orthology
centers [τu, σ

λ
O] and [σλ14, τu] are the circumcenter O and the second Napoleon point X18,

respectively. The locus of the orthology centers [τu, σ
λ
j ] is the Kiepert hyperbola of AuBuCu for

j = 2, 4, 5, 20. The orthology centers [τu, σ
λ
14] trace a hyperbola that goes through the vertices

of τu and the circumcenter O. The locus of the orthology centers [σλk , τu] for k = 2, 3, 4, 5, 20
are the lines GX18, KX18, HX18, X15X18, and a line through X18, respectively.

Proof of the case i = 14. The point XA
14(λ) has trilinear coordinates f : g(b) : g(c), where

g(b) = λmb(3b
2kb + T (2ka − b2)

√
3) and

f = ma

[(

(3ka − a2)T
√
3− 3d2

2a + 3z2aa
2
)

λ+ 3(3ka + 2a2)T − 3T 2
√
3
]

.

We infer easily that the perpendicular p
(

XA
14(λ), BuCu

)

from the point XA
14(λ) onto the line

BuCu has the equation b(kb − T
√
3)y − c(kc − T

√
3)z = 0 and it goes through the point X18

with the first trilinear coordinate
a4 + (T

√
3− 3z2a)a

2 + 2d2
2a

a
. This shows that the triangles σλ14

and τu are orthologic and that [σλ14, τu] = X18.
On the other hand, the perpendicular p

(

Au, X
B
14(λ)X

C
14(λ)

)

from the point Au onto the
line XB

14(λ)X
C
14(λ) has the equation fxx− g+(b, c)y + g−(c, b)z = 0, with

fx = ad2a(g1λ+ g2),

g1 = a4 + 10z2aa
2 − 5z4a + 16m2

a + (2a2 − 3k)T
√
3,

g2 = (3a4 + 6z2aa
2 − 3z4a + 8m2

a)
√
3− 3(k + 2a2)T, and

g±(b, c) = b{[9a6 + 4(d2a − b2)a4 + (2m2
a ± 7d4a − 4c4)a2 + 2(c2 ∓ d2a)d

2
2a+

+(−a4 + (2c2 ∓ d2a)a
2 ± 2b2d2a)T

√
3]λ+ g2a

2}.

The lines

p
(

Au, X
B
14(λ)X

C
14(λ)

)

, p
(

Bu, X
C
14(λ)X

A
14(λ)

)

, and p
(

Cu, X
A
14(λ)X

B
14(λ)

)
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concur at the point h2λ
2 + 2h1λ

√
3− 3a2kah0, where

h2 = h20

√
3 + 3Th21,

h20 = 18a10 − 65z2aa
8 + (68z4a + 49m2

a)a
6 − z2a(33z4a − 40m2

a)a
4+

+(14z8a − 9m2
az4a − 22m4a)a

2 − 2z2ad
2
2a(z4a − 5m2

a),

h21 = 12a8 − 7z2aa
6 − (z4a + 7m2

a)a
4 + z2a(2z4a + 3m2

a)a
2 − 2d2

2a(3z4a +m2
a),

h1 = h10

√
3 + 3Th21,

h10 = 12a10 − 32z2aa
8 + (12z4a +m2

a)a
6 + 3z2a(3z4a −m2

a)a
4+

+(2z4a + 17m2
a)d

2
2aa

2 − 3z2ad
2
2a(d

2
2a −m2

a),

h0 = h00

√
3 + 21T (m2

a +m2
b +m2

c), and at last

h00 = 6a6 − 9z2aa
4 − (9z4a + 29m2

a)a
2 + 3z2a(2d2a + c2)(d2a − c2).

In order to find the curve which traces this point we must eliminate the parameter λ. We
obtain an equilateral hyperbola that goes through the vertices of τu and the circumcenter O.

Of course, there are versions of the above three theorems for the positive Torricelli triangle
τv of ABC (see Fig. 15). Instead of numbers 18 and 14 now the numbers 17 and 13 play
important role.

9. The Napoleon triangles

Let Ax, Bx, and Cx be centers of equilateral triangles built on sides BC, CA, and AB of
ABC towards inside. When they are built towards outside then their vertices are denoted
Ay, By, and Cy. The negative Napoleon triangle τx is AxBxCx while AyByCy is the positive
Napoleon triangle τy of ABC.

Theorem 23 For every λ ∈ R the triangles τx and σλG are homologic and their homology
centers trace the hyperbola that goes through the vertices of τx and the central points G (the
centroid), O (the circumcenter), and X18 (the second Napoleon point) of the triangle ABC.

Proof: Since Ax has coordinates −1 :
kc − T

√
3

2mc

:
kb − T

√
3

2mb

, the line AxG
A
λ has the equation

2λad2ax+ b(2λa
2−
√
3 kb+3T )y− c(2λa2−

√
3 kc+3T )z = 0. It follows that the lines AxG

A
λ ,

BxG
B
λ , and CxG

C
λ concur at the point

2a2kaλ
2 + (3z2aT −

√
3(z2aa

2 − d2
2a))λ− 3

√
3 a2T − 3a4 + 9z2aa

2 − 6d2
2a

a
.

This point traces the equilateral hyperbola with the equation
∑

d2a[a
2(ka − T

√
3)x2 −ma(ka + T

√
3)yz] = 0.

It goes through the vertices of τx, the centroidG, the circumcenterO, and the second Napoleon
point X18.

Theorem 24 For every λ ∈ R the triangles τx and σλ14 are homologic and their homology
center is the second Napoleon point X18.

Proof: The point XA
14(λ) whose coordinates have been described in the proof of Theorem 22

is easily seen to lie on the line AxX18.
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Theorem 25 The triangle τx is orthologic to σλi for i = 2, 3, 4, 5, 18, 20. The orthology
centers [τx, σ

λ
O] and [σλ18, τx] are the circumcenter O and the second isogonic point X14. The

locus of orthology centers [τx, σ
λ
j ] is the hyperbola that goes through the vertices of τx and

points G, O, and X18 of the triangle ABC for j = 2, 4, 5, 20. The locus of the orthology
centers [σλk , τx] for k = 2, 3, 4, 5, 20 are the lines GX14, KX14, HX14, X14X16, and a line
through X14, respectively. The orthology centers [σλ18, τx] trace a hyperbola that goes through
the vertices of τx and O.

Proof: The proofs of the claims in this theorem are left to the reader as an exercise (see the
proof of Theorem 22).

Of course, there are versions of the above three theorems for the positive Napoleon triangle
τy of ABC. Instead of numbers 18 and 14 now the numbers 17 and 13 play important role.
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