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Abstract. The remarkable points orthocentre H, circumcentre U , in-centre
I, Torricelli’s point T1 and the first isodynamic point D1 (see [3, 4]) of a given
triangle ∆ in the Euclidean plane lie on a naturally defined curve f which we
call the Balaton-curve of ∆. We determine all triangles for which this curve is
algebraic and investigate it when it is algebraic, and when it is transcendental as
well. In the algebraic case we determine its irreducible equation in the projective
plane over C.
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Figure 1: The Balaton-curve f of a triangle ABC

Fig. 1 shows the Balaton-curve of a triangle; the right angle at B does not affect generality.
Other points of the curve (indicated by small black squares) may also be considered as being
“remarkable”.
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1. The angle coordinates of a triangle

Let a triangle ∆ with angles α, β, γ and side-lengths a, b, c be given. For many purposes of
triangle geometry it is favourable to introduce a coordinate system (depending on the given
triangle) by relating to every point P (x, y) of the triangle those three angles α∗, β∗ and γ∗

under which the sides a, b and c can be seen from the given point P . As α∗+β∗+γ∗ = 2π, it
suffices to assign only two of the three angles α∗, β∗, γ∗. We have made the arbitrary choice
(α∗, β∗) (see also Fig. 2).

In the following let us work out the coordinate transformation between the Cartesian
coordinate system (x, y) and the angle coordinates (α∗, β∗). In the sense of geodesy we use
back-cuts. In order to measure angles we shall use the radian measure; furthermore we restrict
ourselves to triangles with the vertices A = (0, 0), B = (2, 0), i.e., c = 2, and whose third
vertex lies in the upper half plane.

Figure 2: The angle coordinates of the point P

Proposition 1.1 We have











tan(α∗ + β∗) = − 2y

x2 + y2 − 2x
,

tan β∗ = b
x sinα− y cosα

x2 + y2 − b(x cosα+ y sinα)
.

Proof: We follow the notation of Fig. 3 and make repeatedly use of

tan(v + w) =
tan v + tanw

1− tan v tanw

and notice that tanα1 = y/x, tan(π
2
− v) = cot v, and tan(α∗ + β∗ − π − α1) = y/(2 − x).

Therefore (see Fig. 3)

− tan(α∗ + β∗) = tan(2π − α∗ − β∗) = tan
(

π
2
− α1 +

π
2
− (α∗ + β∗ − π − α1)

)

=

=
tan(π2 − α1) + tan(π2 − (α∗ + β∗ − π − α1))

1− tan(π2 − α1) tan(
π
2 − (α∗ + β∗ − π − α1))

=

=
cotα1 + cot(α∗ + β∗ − π − α1)

1− cotα1 cot(α∗ + β∗ − π − α1)
=

x
y
+ 2−x

y

1− x(2−x)
y2

=
2y

x2 + y2 − 2x
.

This is the first formula. Furthermore, we have cosα1 = x/
√

x2 + y2, sinα1 = y/
√

x2 + y2

and therefore

h =
√

x2 + y2 sin(α− α1) =
√

x2 + y2(sinα cosα1 − cosα sinα1) = x sinα− y cosα.
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Furthermore

u =
√

x2 + y2 cos(α− α1) =
√

x2 + y2(cosα cosα1 + sinα sinα1) = x cosα+ y sinα.

From

tan(α− α1) =
h

u
and tan(π − β∗ − α+ α1) =

h

b− u

we get

tan β∗ = tan
(

π
2
− (α− α1) +

π
2
− (π − β∗ − α+ α1)

)

=

=
tan

(

π
2 − (α− α1)

)

+ tan
(

π
2 − (π − β∗ − α+ α1)

)

1− tan
(

π
2 − (α− α1)

)

tan
(

π
2 − (π − β∗ − α+ α1)

) =

=
cot(α− α1) + cot(π − β∗ − α+ α1)

1− cot(α− α1) cot(π − β∗ − α+ α1)
=

=
u
h
+ b−u

h

1− u(b−u)
h2

= b
h

h2 + u2 − ub
= b

x sinα− y cosα

x2 + y2 − b(x cosα+ y sinα)
.

Figure 3: Illustration to the proof of Proposition 1.1

Conversely we can express the Cartesian coordinates x and y in terms of α∗ and β∗:

Proposition 1.2 We have











x = 2b
sin(α∗ − α)(2 sinα∗ − a sin(α∗ + β∗) cos(β∗ − β))

(a sin(α∗ + β∗)− 2 sinα∗ cos(β∗ − β))2 + 4 sin2 α∗ sin2(β∗ − β)
,

y = −2ab sin(α∗ − α) sinα∗ + β∗) sin(β∗ − β)

(a sin(α∗ + β∗)− 2 sinα∗ cos(β∗ − β))2 + 4 sin2 α∗ sin2(β∗ − β)
.

Proof: Prop. 1.1 implies

{

x2 + y2 − 2x+ 2y cot(α∗ + β∗) = 0 ,
x2 + y2 − bx(cosα + cotβ∗ sinα)− by(sinα− sin β∗ cosα) = 0 .
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Hence we get the intersection of two circles. One of the points of intersection is (0, 0). From
this it is clear that the other point of intersection has coordinates which are rational functions
of cot(α∗+β∗), sin β∗ and b. By using b sinα = a sin β the formulae can easily be verified.

Although — from the geometric point of view — these formulae make only sense for
points P which lie inside the given triangle we shall desist from this restriction in the following
investigations.

For later purposes we study the mapping properties of the map (x, y) 7→ (α∗, β∗) in
Prop. 1.1. It maps the Euclidean plane (the three circles throught the vertices A, B and C
with diameters a, b and c are omitted) onto a dense subset of R2:

Proposition 1.3 Let k1, k2 and k3 be the circles defined by the equations
x2 + y2 − 2x = 0, x2 + y2 − b(x cosα + y sinα) = 0 and x2 − 2x+ y2 + 2y cot(α + β) = 0,

respectively. Let h denote the hyperbola uv − u cotα + v cotα + 1 = 0, g1 the straight line
u = tan(α+ β) and g2 the straight line v = tan β. Then the map

j : R2 \ (k1 ∪ k2 ∪ k3) → R2 \ (h ∪ g1 ∪ g2 ∪ {(0, 0)}),
(x, y) 7→ j(x, y) =

(

− 2y

x2 + y2 − 2x
, b

x sinα− y cosα

x2 + y2 − b(x cosα+ y sinα)

)

.

is an homeomorphism.

Proof: First we prove that the range of j lies in R2 \ (h ∪ g1 ∪ g2 ∪ {(0, 0)}): Assume that
(x, y) 6∈ k1 ∪ k2 ∪ k3,

u = − 2y

x2 + y2 − 2x
and v = b

x sinα− y cosα

x2 + y2 − b(x cosα+ y sinα)
.

If we had (u, v) ∈ h ∪ g1 ∪ g2 we would easily get (x, y) ∈ k3. Obviously the range of j does
not include (0, 0).

For (u, v) 6∈ h ∪ g1 ∪ g2, (u, v) 6= (0, 0) we put

B(v) := bv cosα + b sinα− 2v and C(u, v) := 2v + buv sinα− bu cosα.

Because of v 6= tan β we get B(v) 6= 0 and (uB(v), C(u, v)) 6= (0, 0). Hence the functions

x(u, v) = 2C(u, v)
B(v) + C(u, v)

u2B2(v) + C2(u, v)
, y(u, v) = −2uB(v)

B(v) + C(u, v)

u2B2(v) + C2(u, v)

are continuous. We put g(u, v) := (x(u, v), y(u, v)). As (u, v) 6∈ h, we get B(v)+C(u, v) 6= 0.
Hence x(u, v)2 + y(u, v)2 − 2x(u, v) 6= 0. As u 6= tan(α+ β) we get

x(u, v)2 + y(u, v)2 − b(x(u, v) cosα+ y(u, v) sinα) 6= 0 ,
x(u, v)2 + y(u, v)2 − 2x(u, v) + 2y(u, v) cot(α+ β) 6= 0.

By using Mathematica it is easily seen that g and j are inverse to each other.
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2. The Balaton-curve f

For a given triangle with angles α and β the remarkable points orthocentre H, in-centre I,
circumcentre U , Torricelli’s point T1, first isodynamic point D1 (for a detailed discussion see
[3, 4]) have angle coordinates (α∗, β∗) which obey the linear law

(

α∗

β∗

)

=
2π

3

(

1
1

)

+ t

(

α− π
3

β − π
3

)

, t ∈ R,

namely with t = −1, t = 1
2
, t = 2, t = 0, and t = 1, respectively. The cases t = −1,

t = 1
2
, t = 2 and t = 0 are illustrated in Fig. 4. This linear law represents a curve f in

Cartesian coordinates — the Balaton-curve of the triangle, as it was first presented by the
first named author at a congress on the Lake Balaton in Hungary in 1995 ([3]). We notice
that f represents a line in the angle coordinates only in the case (α, β) 6= ( π

3
, π

3
). Otherwise

— if the triangle is equilateral — the curve degenerates to the centre of the triangle. As this
case is of no interest we exclude it in the following.

There is a vast literature in connection with triangles on similar locus problems. In place
of other papers we only mention [1] and [2]. See also the references there.

t = −1 t = 1
2

t = 2 t = 0

Figure 4: The angle coordinates of H, I, U , and T1

β = π
3
implies β∗ = 2π

3
and hence Prop. 1.1 results in the equation

x2 + y2 − b(x cosα+ y sinα) +
b√
3
(x sinα− y cosα) = 0.

This is a circle with centre
(

b
2
(cosα− sinα/

√
3), b

2
(sinα + cosα/

√
3)
)

and radius b/
√
3.

From now on we exclude this case.
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Henceforth let

β 6= π

3
and θ :=

3α− π

3β − π
.

Note that α− π
3
(resp. β− π

3
) is the deviation (excess or defect) of the angle α (resp. β) from

the most natural angle π
3
.

Theorem 2.1 Let ∆ be the triangle with angles α and β and side-lengths a, b and c = 2.
Then, with α∗(t) := 2π

3
+ θ(t − 2π

3
) or α∗(t) := 2π

3
+ t(α − π

3
) and β∗(t) := 2π

3
+ t(β − π

3
),

respectively, we have the following parameter representations of the Balaton-curve of ∆:











x(t) = 2b
sin(α∗(t)− α)(2 sinα∗(t)− a sin(α∗(t) + t) cos(t− β))

(a sin(α∗(t) + t)− 2 sinα∗(t) cos(t− β))2 + 4 sin2 α∗(t) sin2(t− β)

y(t) = −2ab sin(α∗(t)− α) sin(α∗(t) + t) sin(t− β)

(a sin(α∗(t) + t)− 2 sinα∗(t) cos(t− β))2 + 4 sin2 α∗(t) sin2(t− β)
,











x(t) = 2b
sin(α∗(t)− α)(2 sinα∗(t)− a sin(α∗(t) + β∗(t)) cos(β∗(t)− β))

(a sin(α∗(t) + β∗(t))− 2 sinα∗(t) cos(β∗(t)− β))2 + 4 sin2 α∗(t) sin2(β∗(t)− β)

y(t) = −2ab sin(α∗(t)− α) sin(α∗(t) + β∗(t)) sin(β∗(t)− β)

(a sin(α∗(t) + β∗(t))− 2 sinα∗(t) cos(β∗(t)− β) + 4 sin2 α∗(t) sin2(β∗(t)− β)
.

Proof: This follows immediately from Prop. 1.2.

In the following we always assume that α∗(t) = 2π
3
+ θ(t− 2π

3
).

Theorem 2.1 requires a supplementary explanation in the cases where the denominator of
x(t) or y(t) vanishes. For this and later purposes we introduce the following functions:

Z1(t) := b sin(α∗(t)− α)(2 sinα∗(t)− a sin(α∗(t) + t) cos(t− β)),
Z2(t) := −ab sin(α∗(t)− α) sin(α∗(t) + t) sin(t− β),
N(t) := (a sin(α∗(t) + t)− 2 sinα∗(t) cos(t− β))2 + 4 sin2 α∗(t) sin2(t− β).

Note that x(t) = 2Z1(t)/N(t) and y(t) = 2Z2(t)/N(t). Before we investigate the zeros of the
denominator of the general curve let us consider some special cases which fit into the general
consideration often only afterwards.

(1) α = π
3
. Then α∗(t) = 2π

3
and hence by Prop. 1.1 we have, on the one hand

− 2y

x2 + y2 − 2x
=

tan t−
√
3

1 +
√
3 tan t

,

and on the other hand

tan t = b
x
√
3− y

2(x2 + y2)− b(x+ y
√
3)
.

This implies

−
√
3(x2 − 2x+ y2 − 2√

3
y) + (x2 − 2x+ y2 + 2y

√
3) tan t =

= 2y(1 +
√
3 tan t) + (x2 + y2 − 2x)(tan t−

√
3) = 0

and hence

0 = −
√
3(x2 − 2x+ y2 − 2√

3
y)(x2 + y2 − bx

2
− b

√
3

2
y) + b

2
(x
√
3− y)(x2 − 2x+ y2 + 2y

√
3)

= −
√
3(x2 + y2)(x2 + y2 − x(b+ 2)− y b+2√

3
+ 2b),



H. Dirnböck, J. Schoißengeier: Balaton-Curves 29

i.e.,

0 = x2 + y2 − x(b+ 2)− y√
3
(b+ 2) + 2b =

(

x− b+ 2

2

)2

+

(

y − b+ 2

2
√
3

)2

− b2 − 2b+ 4

3
.

This is the equation of a circle with radius a/
√
3.

(2) γ = π
3
. Then α+ β = 2π

3
and hence α∗(t) + t = 4π

3
. As tan 4π

3
=
√
3 we get in this case

from Prop. 1.1 the curve x2−2x+y2+ 2√
3
y = 0, and hence the circle (x−1)2+(y+ 1√

3
)2 = 4

3
.

(3) α = β. In this case the remarkable points lie on the perpendicular bisector x = 1 of
AB of the side c and one can convince oneself easily with the help of Theorem 2.1 that this
perpendicular bisector is the Balaton-curve of this isosceles triangle.

(4) α = γ. In this case we get the perpendicular bisector of the side b. It has the equation
y = (2− x) cotα.

(5) β = γ. In this case the Balaton-curve is the perpendicular bisector of the side a. It
has the equation y = x cot β.

In the cases (1) to (5) θ has the values 0, −1, 1, − 1
2
, and −2, respectively. We exclude

these cases in case of need in the following considerations.

Lemma 2.1 If N(t0) = 0, then there are integers m and n such that either (α∗(t0), t0) =
(α +mπ, β + nπ) or (α∗(t0), t0) = (mπ, nπ). Furthermore there are integers p and q such
that θ = p/q, gcd(p, q) = 1, q > 0, and p ≡ q (mod 3).

Proof: This is an exercise in elementary analysis and left to the reader.

In the first case of Lemma 2.1 the numerators and the denominator of x(t) and y(t) vanish
of order 2 and hence both functions remain bounded in a neighbourhood of t0. This follows
from the proof of the following Proposition:

Proposition 2.1 Let m and n be integers, t0 := β + nπ and α∗(t0) = α+mπ. Then

N(t0) = 0, x(t0) =
2θb(θb− a cos(α+ β))

a2 − 2abθ cos(α+ β) + θ2b2)
and y(t0) = −

2θab sin(α+ β)

a2 − 2θab cos(α+ β) + θ2b2
.

Proof: We have

lim
t→t0

a sin(α∗(t) + t)− 2 sinα∗(t) cos(t− β)

t− t0
= (−1)m+n(a(θ + 1) cos(α + β)− 2θ cosα) =

=
2(−1)m+n

sin(α+ β)
((θ + 1) sinα cos(α + β)− θ sin(α+ β) cosα) =

=
2(−1)m

sin(α+ β)
(sinα cos(α+ β)− θ sin β)

and

lim
t→t0

2
sinα∗(t) sin(t− β)

t− t0
= 2(−1)m+n sinα.

Hence

lim
t→t0

N(t)

(t− t0)2
=

4

sin2(α+ β)
(sinα cos(α+ β)− θ sin β)2 + 4 sin2 α =

=
4
(

sin2 α− 2θ sinα sinβ cos(α+ β) + θ2 sin2 β
)

sin2(α+ β)
= a2 − 2θab cos(α + β) + θ2b .
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Furthermore

lim
t→t0

b
sin(α∗(t)− α)

t− t0
= (−1)mbθ

and

lim
t→t0

2 sinα∗(t)− a sin(α∗(t) + t) cos(t− β)

t− t0
= (−1)m(a(θ + 1) cos(α+ β)− 2θ cosα) =

=
2(−1)m

sin(α+ β)
(θ (sinα cos(α+ β)− cosα sin(α + β)) + sinα cos(α+ β)) =

= (−1)m (a cos(α+ β)− θb)

and hence

lim
t→t0

Z1(t)

(t− t0)2
= θb(θb− a cos(α+ β)).

Finally we have

lim
t→t0

a
sin(α∗(t) + t) sin(t− β)

t− t0
= a(−1)m sin(α + β)

and hence

lim
t→t0

Z2(t)

(t− t0)2
= −θab sin(α+ β).

The second case, namely (α∗(t0), t0) = (mπ, nπ), gives rise to a point at infinity. We
discuss this case in more detail in the next chapter.

3. The algebraic Balaton-curves

In this chapter we prove that the Balaton-curves are algebraic for rational θ and show that
their equations are irreducible.

Let integers p and q be chosen such that θ = p/q, q > 0 and gcd(p, q) = 1. It is clear
that x(t) and y(t) have period qπ. Conversely, assume that

(x(t0), y(t0)) = (x(t1), y(t1)) 6∈ {(0, 0), (2, 0), (b cosα, b sinα)}.
Then, by Prop. 1.1 we get tan t0 = tan t1 and in addition tan(α∗(t0) + t0) = tan(α∗(t1) + t1)
and hence for some integers m and n t0 = t1 + nπ and α∗(t0) = α∗(t1) +mπ. This implies
2π
3
+ θ(t0 − 2π

3
) = 2π

3
+ θ(t1 − 2π

3
) + mπ, and hence p(t0 − t1) = mqπ. Therefore pn = qm

and hence q|n. As a corollary qπ is the primitive period of the parameter representation
t 7→ (x(t), y(t)), t ∈ R.

Lemma 3.1 Let n and m be integers, t0 := nπ and α∗(t0) = mπ. Then:
(1) N(t0) = N ′(t0) = 0, N ′′(t0) = 2a2(θ + 1)2 − 8aθ(θ + 1) cosβ + 8θ2 6= 0.

(2) Z1(t0) = 0 and Z ′′1 (t0) = 2bθ cosα(θb cosα− a cos β) + 2a2(θ + 1) sin2 β.

(3) Z2(t0) = 0, Z ′2(t0) 6= 0 and Z ′′2 (t0) = 2ab(θ + 1)(θ cosα sin β + sinα cosβ).

Proof: (1) As sinα∗(t) vanishes at t0 exactly of order 1 and as 4 sin2 α∗(t) sin2(t−β) ≤ N(t),
we get the first two assertions and the last one.
We have N(t) = a2 sin2(α∗(t)+ t)−4a sinα∗(t) sin(α∗(t)+ t) cos(t−β)+4 sin2 α∗(t) and hence

1

2
N ′′(t0) = lim

t→nπ

N(t)

(t− nπ)2
= a2 lim

t→nπ

sin2(α∗(t) + t)

(t− nπ)2
−

− 4a(−1)n cos β lim
t→nπ

sinα∗(t)
t− nπ

· lim
t→nπ

sin(α∗(t) + t)

t− nπ
+ 4 lim

t→nπ

sin2 α∗(t)
(t− nπ)2

=

= a2(θ + 1)2 − 4a(−1)n cosβ · θ(−1)m · (θ + 1)(−1)n+m + 4θ2.
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(2) The first assertion is trivial. We have

Z ′1(t) = bθ cos (α∗(t)− α) (2 sinα∗(t)− a sin(α∗(t) + t) cos(t− β)) + b sin (α∗(t)− α) ·
· (2θ cosα∗(t)− a(θ + 1) cos(α∗(t) + t) cos(t− β) + a sin(α∗(t) + t) sin(t− β))

and hence

Z ′′1 (nπ) = 2bθ cos(mπ − α) (2θ cosmπ − a(θ + 1) cos((m+ n)π) cos(nπ − β))+
+ 2ab(θ + 1) sin(nπ − α) cos((m+ n)π) sin(nπ − β) =

= 2bθ cosα(2θ − a(θ + 1) cosβ) + 2ab(θ + 1) sinα sin β =
= 2bθ cosα(bθ cosα− a cos β) + 2a2(θ + 1) sin2 β.

(3) The first assertion is trivial. As sin(α∗(t) + t) vanishes at nπ of the first order and the
function (a sin(α∗(t) + β)− 2 sinα∗(t) sin(t−β) does not vanish at nπ, we get the second one.
We have

Z ′2(t) = −abθ cos(α∗(t)− α) sin(α∗(t) + t) sin(t− β)− ab(θ + 1) sin(α∗(t)− α)·
· cos(α∗(t) + t) sin(t− β)−−ab sin(α∗(t)− α) sin(α∗(t) + t) cos(t− β).

This results in

Z ′′2 (nπ) = −2abθ(θ + 1) cos(mπ − α) cos((m+ n)π) sin(nπ − β)− 2ab(θ + 1) sin(mπ − α)·
· cos((m+ n)π) cos(nπ − β) = 2ab(θ + 1)(θ cosα sin β + sinα cosβ).

Theorem 3.1 The Balaton-curve of the triangle ∆ is bounded in R2 if and only if p 6≡
q (mod 3). Otherwise it has exactly one asymptote with the equation

(a(θ + 1) sin β)x+ (a cos β − θb cosα)y +
2a2(θ + 1) sinβ(2θ cosβ − a(θ + 1))

a2(θ + 1)2 − 4aθ(θ + 1) cosβ + 4θ2
= 0.

Proof: Assume first that the curve is unbounded. Then there is a t0 ∈ R, such that
N(t0) = 0 and by Lemma 2.1 and Prop. 2.1 p ≡ q (mod 3) and (α∗(t0), t0) = (mπ, nπ) for
some m,n ∈ Z.

As x, y have period qπ we may assume that 0 ≤ n < q. As 3m−2
3n−2

= p

q
, we get q|3n − 2.

As there is exactly one n in the half-open interval [0, q) with this property, the curve has at
most one asymptote.

We prove that, with the abbreviation

k :=
a(θ + 1) sinβ

2θ − a(θ + 1) cosβ
,

the limit d := lim
t→nπ

(y(t)− cx(t)) exists and is equal to

2ac(2θ cosβ − a(θ + 1))

a2(θ + 1)2 − 4aθ(θ + 1) cosβ + 4θ2
.

(The proof in the case 2θ = a(θ + 1) cosβ has to be dealt with separately and is left to the
reader.) The equation of the asymptote is then y = kx+ d.

We have

y(t)− kx(t) = −2b sin(α
∗(t0)− α)

N(t)
(a sin(α∗(t) + t)(sin(t− β)− k cos(t− β)) + 2k sinα∗(t)) .
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The limit lim
t→nπ

(y(t)− kx(t)) exists if and only if the factor in the brackets vanishes at nπ at

least of order two, i.e., its derivative vanishes. We have to choose k such that

0 = (θ + 1)a cos((m+ n)π) (sin(nπ − β)− k cos(nπ − β)) + 2kθ cosmπ.

This results in the above formula for k.
By de l’Hôspital’s rule

d = 2
Z ′′2 (nπ)− kZ ′′1 (nπ)

N ′′(nπ)
.

Using Lemma 3.1 we get the formula for the asymptote.
Conversely assume now that p ≡ q (mod 3), where we do not assume that p and q are

coprime (but 3 - q). Then we may assume that p ≡ q ≡ 1 (mod 3), for otherwise we replace p
by 2p and q by 2q. We put n = q+2

3
and m = p+2

3
. Then mπ − 2π

3
= θ(nπ − 2π

3
), and hence

with t0 := nπ, α∗(t0) = mπ. As by Lemma 3.1 Z2 vanishes at t0 exactly of order 1 and N of
order 2, we get lim

t→t0
y(t) =∞.

Let us define recursively a sequence (Rk)k≥1 of rational functions and two sequences
(Pk)k≥1, (Qk)k≥1 of polynomials, both with coefficients in Q by

R1 = X, Rk+1 =
Rk +X

1−XRk

, P1 = X, Q1 = 1, Pk+1 = Pk +XQk, Qk+1 = Qk −XPk.

Obviously Rk = Pk/Qk. Then it is easily seen by induction on k that for every real number t
Rk(tan t) = tan kt.

Proposition 3.1 For k ≥ 1 we have

(1) Pk = − i
2
(1 + iX)k + i

2
(1− iX)k = =

(

(1 + iX)k
)

=
∑

2-t≤k

(

k

t

)

(−1) t−1
2 X t.

(2) Qk =
1
2
(1 + iX)k + 1

2
(1− iX)k = <

(

(1 + iX)k
)

=
∑

2|t≤k

(

k

t

)

(−1) t
2X t.

Proof: Each of the first assertions follows by induction on k, the third follow from the
Binomial Theorem.

Proposition 3.2 For all t ∈ R holds q (α∗(t) + t)− (p+ q)t = 2π
3
(q − p).

Proof: The left hand side is equal to q( 2π
3
+ p

q
(t− 2π

3
) + t)− (p+ q)t = 2π

3
q − 2π

3
p.

In the next theorem we find a polynomial F ∈ R[X,Y ] which is satisfied by the given
Balaton-curve. It can be rewritten in a rather catchy way when we use complex variables.
Let us write the complex variable as z = x+ iy, where x and y are real. The vertices A = 0,
B = 2 and C = w are interpreted as complex numbers. For an integer p and z ∈ C let

sp(z) :=

{

z̄p p ≥ 0
z−p p ≤ 0 .

Then we have

Theorem 3.2 Tripole-equation: Let ζ = − 1
2
+ i

√
3

2
. Then the Balaton-curve of the triangle

∆ with the vertex w (= C) in the upper half plane satisfies the equation

= (ζp−qsp(z) · sq(z − 2) · sp+q(z̄ − w̄)) = 0.
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Proof: Let s := sgn(p + q) and ε ∈ {−1, 0, 1} be chosen such that p − q ≡ ε (mod 3). We
have tan 2π

3
(q − p) = ε

√
3 and hence by Prop. 3.2

ε
√
3 = tan (q(α∗(t) + t)− s|p+ q|t)

which implies

Rq(tan(α
∗(t) + t))− sR|p+q|(tan t) = tan(q(α∗(t) + t))− s tan(|p+ q|t) =

ε
√
3(1 + s tan(q(α∗(t) + t)) tan(|p+ q|t)) = ε

√
3(1 + sRq(tan(α

∗(t) + t))R|p+q|(tan t)),

hence

0 = Pq(tan(α
∗(t) + t))Q|p+q|(tan t)− sP|p+q|(tan t)Qq(tan(α

∗(t) + t))−
ε
√
3Qq(tan(α

∗(t) + t))Q|p+q|(tan t)− sε
√
3Pq (tan(α

∗(t) + t))P|p+q|(tan t) =

= = (1 + i tan(α∗(t) + t))q <(1 + i tan t)|p+q|−
− s=(1 + i tan t)|p+q|< (1 + i tan(α∗(t) + t))q−
− ε
√
3 < (1 + i tan(α∗(t) + t))q <(1 + i tan t)|p+q|−

− sε
√
3= (1 + i tan(α∗(t) + t))q =(1 + i tan t)|p+q| =

= =
(

(1 + i tan(α∗(t) + t))q (1− is tan t)|p+q|
)

−
− ε
√
3 <

(

(1 + i tan(α∗(t) + t))q (1− is tan t)|p+q|
)

.

The formula =(ζp−qz) = 1
2

(√
3 ε<(z)− =(z)

)

for ε 6= 0 and = =z for ε = 0 results in

0 = = (ζp−q(1 + i tan(α∗(t) + t))
q
(1− is tan t)|p+q|) =

= =
(

ζp−q
(

1− 2iy

x2 + y2 − 2x

)q (

1− isb
x sinα− y cosα

x2 + y2 − b(x cosα+ y sinα)

)|p+q|
)

.

Multiplication with (x2 + y2 − 2x)q(x2 + y2 − b(x cosα+ y sinα))|p+q| gives

=
(

ζp−q(x2 + y2 − 2x− 2iy)q(x2 + y2 − (x− isy)beisα)|p+q|
)

= 0.

If p+ q > 0, that is if s = 1, the polynomial can be written in the form =f(z), where

f(z) = ζp−q(zz̄ − 2z)q(zz̄ − z̄w)p+q = ζp−qzqz̄p+q(z̄ − 2)q(z − w)p+q.

If p > 0 it has the real factor (zz̄)q, if p < 0 it has the real factor (zz̄)p+q.

If finally p + q < 0, that is in the case s = −1, the polynomial in Theorem 3.2 has the form
=f(z), where this time

f(z) = ζp−q(zz̄ − 2z)q(zz̄ − zw̄)−p−q = ζp−qz−p(z̄ − 2)q(z̄ − w̄)−p−q.

• Assume for a moment that p ≡ q (mod 3). If we write the polynomial

sp(x+ iy) · sq(x+ iy − 2) · sp+q(x− iy − w̄)

as a sum of homogenous polynomials, then the one with the highest degree is

(x− iy)p(x− iy)q(x+ iy)p+q, (x+ iy)−p(x− iy)q(x+ iy)p+q,
or (x+ iy)−p(x− iy)q(x− iy)−p−q

respectively, according to whether p > 0, 0 < −p < q or p+q < 0. In any case this polynomial
is real. Hence the Tripole-equation has a degree < |p|+ q + |p+ q|.

• If p 6≡ q (mod 3), its degree is ≤ |p|+ q + |p+ q|.
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Proposition 3.3 Let sA be the multiplicity of the Balaton-curve f at point A = (0, 0), sB
the multiplicity at point B = (2, 0) and sC that at C = b(cosα, sinα). Then

sA =

{

|p|
|p| − 1

for
p 6≡ q (mod 3)
p ≡ q (mod 3),

sB =

{

q
q − 1

for
p 6≡ q (mod 3)
p ≡ q (mod 3),

sC =

{

|p+ q|
|p+ q| − 1

for
p 6≡ q (mod 3)
p ≡ q (mod 3).

Proof: We prove the first two assertions and leave the rest of the proof to the reader.

(1) Let t0 be chosen such that x(t0) = y(t0) = 0. By Lemma 2.1 and Prop. 2.1 we haveN(t0) 6=
0. If we had sin(α∗(t0)− α) = 0, we would get sin(α∗(t0) + t0) = 0 (and hence sinα∗(t0) = 0,
contrary to N(t0) 6= 0) or sin(t0−β) = 0; but then a sin(α∗(t0)+β)−2 sinα∗(t0) = 0, contrary
to our assumption.
Therefore sin(α∗(t0) − α) = 0 and hence for some integer m α∗(t0) = α + mπ. Let us
denote these parameter values by tm. We have 2π

3
+ θ(tm − 2π

3
) = α + mπ, and hence

tm = β + π
3
+ π

θ
(m − 1

3
). We have to find the number of integers m, such that tm lies in a

given interval of length qπ and such that tm 6∈ β + πZ (for otherwise N(t0) = 0). In the case
that p is positive we choose the interval [0, qπ)+β+ π

3
(1− 1

θ
), and if p is negative, we choose

the interval (−qπ, 0]+β+ π
3
(1− 1

θ
). Then the condition is equivalent with qmπ/|p| ∈ [0, qπ)

and 1
3
+ q

p
(m− 1

3
) 6∈ Z.

If p 6≡ q (mod 3), the second condition is automatically satisfied and the first one is equivalent
with m ∈ [0, |p|). Hence the result.
If p ≡ q (mod 3), then from |p| we have to subtract the number of m ∈ Z∩ [0, |p|), for which
1
3
+ q

p
(m− 1

3
) ∈ Z, that is, p+ q(3m− 1) ∈ 3pZ. As the congruence p−q

3
+ qm ≡ 0 (mod |p|)

has exactly one solution mod |p|, the proof is complete.

(2) Let t0 be chosen such that x(t0) = 2 and y(t0) = 0. Note that by Lemma 2.1 and Prop. 2.1
N(t0) 6= 0. If we had sin(t0 − β) 6= 0, we would either get sin(α∗(t0) − α) = 0 (and hence
x(t0) = 0), or sin(α∗(t0) + t0) = 0, and hence

2 = 4b
sin(α∗(t0)− α) sinα∗(t0)

4 sin2 α∗(t0)
,

that is

2 sinα∗(t0) = b sin(α∗(t0)− α) = 2 sinα∗(t0)− a sin(α∗(t0) + β),

which implies sin(α∗(t0) + β) = 0. But then t0 − β ∈ πZ and so sin(t0 − β) = 0, contrary to
our assumption.
Therefore sin(t0 − β) = 0. There is an n ∈ Z such that t0 = β + πn. Let us denote these
parameter values by tn. We have to find the number of n such that tn ∈ β + [0, qπ) and to
subtract those n for which α∗(tn) ∈ α+πZ. We have tn ∈ β+[0, qπ) if and only if 0 ≤ n < q,
and α∗(tn) ∈ α+ πZ if and only if

2π

3
+

p

q

(

β + nπ − 2π

3

)

∈ α + πZ,

that is p ≡ q (mod 3) and (as p

q
(β − π

3
) = α − π

3
), pn+ q−p

3
∈ qZ. In the case p ≡ q (mod 3)

there is exactly one such n.

Lemma 3.2 Let vx for every x ∈ R be the multiplicity with which the Balaton-curve inter-
sects the x−axis at x. Then

∑

x∈R
vx ≥ sA + sB + sC .
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Proof: Let y(t0) = 0. Assume first that x = x(t0) 6∈ {0, 2}. By Lemma 2.1 and Prop. 2.1
N(t0) 6= 0. Then we have sin (α∗(t0) + t0) = 0, and, as

b sin(α∗(t0)− α) = 2 sinα∗(t0)− a sin(α∗(t0) + β),

we get

x = 2
(a sin(α∗(t0) + β)− 2 sinα∗(t0)) (−2 sinα∗(t0))

4 sin2 α∗(t0)
= 2− a

sin(α∗(t0) + β)

sinα∗(t0)

and α∗(t0) + t0 = kπ for some k ∈ Z. Let us denote these parameter values by tk. Then we
have

(

p

q
+ 1

)

tk +
2π

3

(

1− p

q

)

= kπ ,

that is

tk =
kqπ

p+ q
+

2π

3

p− q

p+ q
.

There are |p+ q| such k for which tk lies in [0, qπ) + 2π
3
p−q
p+q

. From |p+ q| we have to subtract

the number of those k for which sin(α∗(tk) + β) = 0, or sinα∗(tk) = sinα or sinα∗(tk) = 0
(two of these cases cannot occur simultaneously).
Assume that α∗(tk) + β = mπ for some m ∈ Z. There is at most one such tk in a half-
open interval of length qπ, for if mπ − β + tk = kπ and m′π − β + tk′ = k′π, we would get
tk− tk′ ≡ 0 (modπ) and hence q(k−k′)

p+q
π ≡ 0 (modπ), which implies q(k−k′) ≡ 0 (mod |p+ q|)

and hence k ≡ k′ (mod |p+ q|). Therefore k 6= k′ implies |tk − tk′ | ≥ qπ.
Furthermore we have α∗(tk)+ tk = kπ, that is tk−β = (k−m)π. Hence sin(tk−β) = 0. The
function y(t), t ∈ R, then has a double zero at tk and hence vB ≥ sB + 1.
Similarily there is at most one k such that α∗(tk)− α ∈ πZ and tk lies in a given interval of
length qπ. Furthermore a sin(α∗(tk) + β)− 2 sinα∗(tk) = 0. y(t), t ∈ R, has then an at least
double zero at tk. We get vA ≥ sA + 1.
Finally we have to investigate under which conditions the case sinα∗(tk) = 0 can occur. Then
kq+ 2

3
(p− q) = n(p+ q) for some n ∈ Z and therefore p ≡ q (mod 3) and in that case there is

indeed exactly one such k in the interval [0, |p + q|). Therefore Prop. 3.3 implies the result.

Note that for rational θ all Balaton-curves satisfy an irreducible polynomial F ∈ R[X,Y ].
For if F is a polynomial such that for all t in an open interval I of lenght qπ F (x(t), y(t)) = 0
and if F = F1 . . . Fk is a decomposition into irreducible factors, then

F1 (x(t), y(t)) . . . Fk (x(t), y(t)) = 0

and, as every function Fi (x(t), y(t)), t ∈ I, is real-analytic (if I is suitable chosen), there is
some factor Fi such that Fi(x(t), y(t)) = 0.

Fig. 5 shows the algebraic Balaton-curve f of the triangle with the angles α = π
2
and

β = 4π
9
, that is with θ = 3

2
. Note that 3 6≡ 2 (mod 3). The degree of this curve is 10.

Theorem 3.3 Assume that p 6≡ q (mod 3). Then the Tripole-equation

= (ζp−qsp(x+ iy)sq(x+ iy − 2)sp+q(x− iy − w̄)) = 0

of the Balaton-curve of the triangle with third vertex w is irreducible and of degree |p|+ q +
|p+ q|.
Proof: Let F (x, y) = 0 be the Tripole-equation and let G ∈ R[X,Y ] be an irreducible
polynomial such that G(x(t), y(t)) = 0. Then G|F and by Lemma 3.2 we have degG ≥
|p|+ q + |p+ q| ≥ degF . This implies both assertions.
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Figure 5: An algebraic curve f with θ = 3
2
, degree 10 and no real point at infinity

The Tripole-equation is reducible in the case p ≡ q (mod 3). In order to prove this we
introduce the polynomial

kU (X,Y ) := X2 + Y 2 − 2X − b− 2 cosα

sinα
Y ∈ R[X,Y ].

kU (x, y) = 0 is the equation of the circumcircle of the given triangle.
Fig. 6 shows the algebraic Balaton-curve of the triangle with angles α = 3π

5
and β = π

4
,

that is with θ = −16
5
, and its circumcircle kU , which is drawn in a broken line. The degree of

the curve is 29.

Figure 6: An algebraic curve f with θ = − 16
5
of degree 29

and exactly one real point at infinity

Theorem 3.4 Assume that p ≡ q (mod 3) and let

F (X,Y ) = = (sp(X + iY )sq(X + iY − 2)sp+q(X − iY − w̄))
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be the Tripole-polynomial of the Balaton-curve of the triangle with third vertex w. Then
kU |F and F (x, y)/kU (x, y) = 0 is the irreducible equation of the Balaton-curve; its degree is
|p|+ q + |p+ q| − 3.

Proof: We have (p + q)(α − β) − (p − q)(α + β) = 2(αq − βp). As
α− π/3

β − π/3
=

p

q
, we get

αq − βp ∈ Z and hence ei(p+q)(α−β) = ei(α+β)(p−q).
Now let z be a point of the circumcircle. Then zz̄ − z − z̄ − 1

2i
(z − z̄)d = 0, where d :=

b

sinα
− 2 cotα. Hence

z̄ = z
2− id

2z − 2− id
, z̄ − 2 = −(z − 2)

2 + id

2z − 2− id
and z̄ − w̄ =

2z − zid− 2zw̄ + 2w̄ + idw̄

2z − 2− id
.

As w is a point of the circumcircle we get in particular

2w + 2w̄ − 2b2 − idw + idw̄ = 0 and hence 2w̄ + idw̄ = 2b2 + idw − 2w.

Substituting this into the numerator of z̄ − w̄ we get

z̄ − w̄ = (z − w)
2− id− 2w̄

2z − 2− 2id
.

Note that all the numbers

2− id

2z − 2− id
, − 2 + id

2z − 2− id
and

2− id− w̄

2z − 2− id

have absolute value 1 and that for such numbers v and for all integers k sk(v) = v−k.
Therefore for z on the circumcircle, we get

2i= (sp(z)sq(z − 2)sp+q(z̄ − w̄)) = sp(z)sq(z − 2)sp+q(z̄ − w̄)− sp(z̄)sq(z̄ − 2)sp+q(z − w) =

= sp(z)sq(z − 2)sp+q(z − w)

(

sp+q

(

2− id− 2w̄

2z − 2− id

)

− sp

(

2− id

2z − 2− id

)

sq

(

− 2 + id

2z − 2− id

))

=

= sp(z)sq(z − 2)sp+q(z − w)(2z − 2− id)p+q [(2− id− 2w̄)−p−q − (2− id)−p(−2− id)−q]

hence, in order to prove the first assertion, it is enough to prove that the term in the bracket
is 0.
Now

2− id =
2ie−i(α+β)

sin(α+ β)
and therefore 2− id− 2w̄ =

2ie−i(α−β)

sin(α+ β)
.

Hence it is enough to prove that

(ie−i(α−β))−p−q = (ie−i(α+β))−p(iei(α+β))−q.

This follows from the discussion at the beginning of the proof. The rest of the proof follows
the same lines as that of Theorem 3.3.

Note that by Theorem 3.3 and Theorem 3.4 the degree remains unaltered if we interchange
two of the angles α, β or γ of the given triangle.

Theorems 3.3 and 3.4 enable to investigate the Balaton-curves as subsets of the projective
complex plane and to determine their geometric properties, e.g., the singular points of the
curve, etc.
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Figure 7: A transcendental curve f with θ = 1+
√

5
2

; the white squares
represent the vertices A,B,C

4. The transcendental Balaton-curves

Fig. 7 shows a part of the Balaton-curve of the triangle with angles α = π
4
and β = π 9−

√
5

24

that is θ = 1+
√

5
2

. The curve is dense in R2 by Theorem 4.1 below.
For real x let {x} = x − [x] be the fractional part of x. In the proof of the following

Theorem we use Kronecker’s Approximation Theorem in the following form: if µ, ν are
real numbers such that 1, µ, ν are linearly independent over the rationals and if δ and ε are
arbitrary real numbers, then the sequence ({nµ+ δ}, {nν + ε})n≥1 is dense in the unit square
[0, 1]× [0, 1].

Let F ⊆ R2 be finite, Γ := πZ2 and let f : R2 \ (F +Γ) → R2 be a continuous function
with period lattice Γ and whose range is dense in R2. Assume further that g : R → R2,
g(t) = (u1t+v1, u2t+v2) is the parameter representation of a straight line with the irrational
slope u2/u1. Then the range of f ◦ g is dense in R2.

This follows from Kronecker’s Theorem. Assume that ε > 0 and that (x, y) ∈ R2

is given. Then, as u1/u2 is irrational, there is a real number γ such that 1, γu1/π, γu2/π
are linearly independent over Q and g(nγ) ∈ F + Γ for only finitely many n (choose γ 6∈
Q(u1, u2, π)). Hence there are integers n, p, q such that

g(nγ) 6∈ F + Γ,
∣

∣

∣

nγu1

π
+

v1

π
− x

π
− p
∣

∣

∣
<

ε

π
,
∣

∣

∣

nγu2

π
+

v2

π
− y

π
− q
∣

∣

∣
<

ε

π

or what is the same, |g(nγ) − (x, y) − π(p, q)| < ε
√
2. As f is continuous, f(g(nγ)) can be

made by an appropriate integer n arbitrarily close to f(x, y). As f has a dense range, the
result follows.

We apply this consideration to F = {(0, 0), (α, β)}, the map f : (α∗, β∗) 7→ (x, y) in
Prop. 1.2 and to g(t) =

(

(α− π
3
)t+ 2π

3
, (β − π

3
)t+ 2π

3

)

. Function f has a dense range due to
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Prop. 1.3 and is continuous on R2 \ (F + Γ). Hence we have

Theorem 4.1 Let θ =
3α− π

3β − π
be irrational. Then the Balaton-curve of the triangle ∆ with

angles α and β is dense in R2. In particular the curve is transcendental.

Acknowledgements

The authors feel very grateful to the referees and to the Editor in Chief for their valuable
comments, suggestions, and help.

References
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