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Abstract. Given a set S of n points in general position, we consider all k-th order
Voronoi diagrams on S, for k = 1, . . . , n, simultaneously. We recall symmetry
relations for the number of cells, number of vertices and number of circles of
certain orders. We introduce a poset Π(S) that consists of the k-th order Voronoi
cells for all k = 1, . . . , n, that occur for some set S. We prove that there exists
a rank function on Π(S) and moreover that the number of elements of odd rank
equals the number of elements of even rank of Π(S), provided that n is odd.
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1. Introduction

The dynamics of Voronoi diagrams in the plane is well understood. When n − 1 points are
fixed and one point is moving continuously inside the convex hull, combinatorial changes of
the Voronoi diagram correspond to changes in the configuration of empty circles, see [11],
Chapter 1 and [1]. Changes in the configuration of non-empty circles correspond to com-
binatorial changes of higher order Voronoi diagrams. Here the k-th order Voronoi diagram
associates to each subset of size k of generating sites that region in the plane that consist of
points closest to these k sites.

We consider all k-th order Voronoi diagrams simultaneously for k between 1 and n. We do
so by introducing the Voronoi poset Π(S) of a set S of n distinct sites in the plane. The poset
consists of all sets of labels that correspond to a subset of sites that defines some non-empty
Voronoi cell in some k-th order Voronoi diagram.

Higher order Voronoi diagrams have been investigated by numerous people. Many results
are published in an article by D.T. Lee, [10]. A survey is given in Edelsbrunner’s book,
[8], on algorithms in combinatorial geometry. Let S be a set of n points in general position
in R3. A subset A of k points of S is a k-set if it can be separated from its complementary
set B = S \ A by a plane VA. There is a close connection between higher order Voronoi
diagrams and k-sets established by a lifting transformation ψ that changes the point inside
circle relation in R2 into a point below hyperplane relation in R3. It turns out that these
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circles containing points serve as a ‘building block’ for higher order Voronoi diagrams as we
discuss in full detail in Section 2. As a consequence, formulas counting k-sets in R3 can be
applied in the counting of vertices, edges and cells of higher order Voronoi diagrams. Instead
of considering circles that contain a fixed number of, say, k points, one can also consider
circles that contain at most k points. This is done in [9].

Let T be a set of n points in R3 in general position that are the vertices of a convex
polytope. Sharir, [13], Lemma 4.4 and Clarkson and Shor, [5], Theorem 3.5 prove that
the number of k-sets of T is given by 2(k + 1)(n − k − 2). They prove this formula using
probabilistic methods that we do not discuss here.

Figure 1: An invariant for circle configurations

This formula can also be derived in the context of k-th order Voronoi diagrams from Lee’s
results as has been observed by several people, [5, 2]. We give this derivation explicitly and
state in Theorem 4.3 that

ci + cn−i−3 = 2(i+ 1)(n− i− 2),

where ci denotes the number of circles defined by a set S of n points in general position in the
plane, containing exactly i points of S. For an illustration, see Fig. 1. Moreover we explicitly
derive similar formulas for the number of cells fk in the k-th order Voronoi diagram Vk(S),
see Lemma 4.1, and the number of vertices vk, see Lemma 4.2, in Vk(S).

fk + fn−k+1 = 2k(n− k + 1) + 1− n,

vk + vn−k = 4k(n− k).

These ‘symmetry relations’ are independent of the particular position of the sites in S,
provided S is in general position: while the number of cells in some k-th order Voronoi diagram
may change, depending on the configuration, the sum of the number of cells in the k-th order
diagram and the number of cells in the (n− k + 1)-th diagram remains constant.

In Section 3 we introduce the Voronoi poset mentioned above and prove that Π(S) has
a rank function. As an application of the symmetry relations we prove in Theorem 5.1 that
the number of elements of odd rank in Π(S) equals the number of even rank, provided that
n is odd.

The Voronoi poset of a set S of nmoving points seems a natural object to study as changes
of the poset occur exactly at those moments where S is not in general position. As there are
tight connections between higher order Voronoi diagrams, k-levels in certain arrangements in
R3 and certain k-sets in R3, the study of the Voronoi poset may have applications in these
areas as well.
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2. Higher order Voronoi diagrams

2.1. Definition of k-th order Voronoi diagram

Let S = {p1, . . . , pn} be a set of n distinct points in R2 in general position. Let 0 ≤ k ≤ n.
For every point p in the plane we ask for the k nearest points from S. That is, we look for a
subset A ⊂ S, such that

|A| = k, ∀x ∈ A, ∀y ∈ S − A : d(p, x) ≤ d(p, y).

For two points in R2, we define a half-plane h(x, y) := {p ∈ R2 | d(x, p) ≤ d(y, p)}. The
Voronoi cell of A ⊂ S of order |A| is the intersection of half-planes

V (A) :=
⋂

x∈A, y∈S−A

h(x, y),

whenever this intersection is not empty. As an intersection of half-planes, V (A) is a convex
polygon.

The k-th order Voronoi diagram is the subdivision of R2, induced by the set of Voronoi
cells of order k. For later purposes, we identify the k-th order Voronoi diagram with the set
of non empty k-th order Voronoi cells.

Vk(S) := {V (A) | A ⊂ S, |A| = k, V (A) 6= ∅}.
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Figure 2: A first, second and third order Voronoi diagram.

Example 2.1 Let S = {p1, p2, p3, p4}, with p1 = (45, 86), p2 = (76, 40), p3 = (40, 42) and
p4 = (1, 9)}. Fig. 2 shows the first, second, and third order Voronoi diagram of S. In every
non-empty Voronoi cell the corresponding point labels are displayed.

Remark 2.2 A planar graph that represents a point-face dual of the k-th order Voronoi
diagram can be constructed as follows, cf. [3]. Write down for every A ⊂ S with |A| = k and
Vk(A) 6= ∅ its centroid c(A), defined by c(A) = (1/k)

∑

p∈A p. Two centroids C(A) and c(B)
are connected by an edge exactly iff Vk(A) and Vk(B) share an edge.

2.2. Circles and higher order Voronoi diagrams

In this section, we state some elementary properties of higher order Voronoi diagrams. Every
edge in Vk(S) is part of some bisector B(a, b), with a, b ∈ S. The Voronoi vertices are exactly
those points that are in the centers of the circles determined by three points from S. Therefore,
under our general position assumption, every Voronoi vertex has valency three. The following
theorem describes the local situation around a Voronoi vertex. The symbol

⊙

a,b,c denotes
the circle passing through the points a, b, and c.
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Theorem 2.3 Let x be the center of
⊙

a,b,c, for a, b, c ∈ S, let

H = { z ∈ S | d(x, z) < d(x, a) },

and let k = |H|. Then x is a Voronoi vertex of Vk+1(S) and Vk+2(S). The Voronoi edges and
cells that contain x are given in Fig. 3. Moreover, all Voronoi vertices are of this form.
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VHH ‹ 8a,b<L

VHH ‹ 8a,c<LVHH ‹ 8b,c<L
VHH ‹ 8a<LVHH ‹ 8b<L

VHH ‹ 8c<L

Voronoi edge of Vk+1 HSL

Voronoi edge of Vk+2 HSL

Figure 3: The Voronoi diagram around x

Proof: [7], Theorem 1 and Theorem 2.

Let a, b, c and H be as defined in Theorem 2.3. We define the order of a circle
⊙

a,b,c as
|H|. Notation: |

⊙

a,b,c | := |H|. An order k Voronoi circle
⊙

a,b,c is a circle through three

points a, b and c from S that contains exactly k points from S−{a, b, c}. In fact, from all
(

n

3

)

Voronoi circles
⊙

a,b,c and all sets Ha,b,c, compare Theorem 2.3, almost enough information is
provided to construct all k-th order Voronoi diagrams Vk(S) for k = 1, . . . , n− 1.

Algorithm 2.4 Voronoi diagrams of all orders.

Input: set S of n points in general position.
Output: all k-th order Voronoi diagrams Vk(S) for k = 1, . . . , n− 1.

1. Compute all circles
⊙

a,b,c defined by S.

2. Compute all sets Ha,b,c defined by S.

3. Take all circles of order k − 1 and order k − 2. The centers of these circles are exactly
the vertices of Vk(S).

4. Theorem 2.3 gives for every vertex the three incident edges and the three incident cells.

5. Two vertices are connected by an edge iff the two vertices have two incident cells in
common. Skip the edge if it is used.

6. Edges that are not skipped are unbounded edges. Their direction and orientation still
have to be computed. The direction is simply the direction of the bisector containing
the edge. The orientation follows from Fig. 3.
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Theorem 2.3 shows that for dynamic point sets topological changes in the family of k-th order
Voronoi diagrams for k = 1, . . . n − 1 correspond to changes in the configuration of Voronoi
circles. More on this topic can be found in [11].

Remark 2.5 Denote the number of circles of order k by ck and the number of vertices in a
k-th order Voronoi diagram by vk. Define c−1 = 0. As a consequence of Theorem 2.3 we get

vk = ck−1 + ck−2. (1)

2.3. Counting vertices, edges and cells

The following theorem shows that the total number of vertices, edges and Voronoi cells does
not depend on the positions of the points in S, assuming general position.

Theorem 2.6 Let vk, ek, and fk denote the number of vertices, edges and cells in Vk(S) for
some set S of size n in general position. The total number of vertices, edges and cells in the
Voronoi diagram of all orders are as follows.
(i)

∑n

k=1 vk = 1
3
n(n− 1)(n− 2).

(ii)
∑n

k=1 ek = 1
2
n(n− 1)2.

(iii)
∑n

k=1 fk = 1
6
n(n2 + 5).

Proof: We prove the three claims.
(i) Every circle center defined by three distinct sites from S is a Voronoi vertex in some
k-th and (k + 1)-th order Voronoi diagram. As there are

(

n

3

)

distinct circles, the first claim
follows.
(ii) Consider the arrangement of bisectors A(S). Fix one bisector B(a, b). As S is in general
position, we may assume that the bisector B(a, b) is divided into n− 1 line segments by the
Voronoi circle centers abx3, abx4, . . . , abxn, where we write S = {a, b, x3, . . . , xn}. Every line
segment is an edge in some k-th order Voronoi diagram. As there are

(

n

2

)

distinct bisectors,
claim (ii) follows.
(iii) The Euler formula, vk − ek + fk = 1, holds for every order. Therefore

n
∑

k=1

fk = n+
n

∑

k=1

ek −
n

∑

k=1

vk,

which completes the proof.

The number of vertices, edges and cells in Vk(S) depends on the configuration of S as the
ordinary Voronoi diagram shows. The following theorem gives expressions for these numbers.
Let f∞k denote the number of unbounded cells in the k-th order Voronoi diagram. By definition
f∞0 := 0.

Theorem 2.7 Let S be in general position. Then the number of vertices, edges and cells in
the k-th order Voronoi diagram can be expressed as follows.
(i) vk = 2(fk − 1)− f∞k .
(ii) ek = 3(fk − 1)− f∞k .

(iii) fk = (2k − 1)n− (k2 − 1)−
∑k

i=1 f
∞

i−1.
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Proof: [8, 10].

Note that fn = 1. Substituting k = n in the expression for fk in Theorem 2.7 yields the
following equation for the total number of unbounded cells:

n
∑

i=1

f∞i−1 = n(n− 1). (2)

The unbounded cells in the k-th order Voronoi diagram can be characterized as follows:
let pq denote the line segment with endpoints p and q and lpq the line through p and q.

Property 2.8 A cell V (A) of the k-th order Voronoi diagram Vk(S) is unbounded if and only
if one of the following two conditions holds.
(i) There exists a line l that separates A from S − A.
(ii) There exist two consecutive points p and q, with p, q ∈ S − A, on δCH(S − A) such
that the points in A− pq are in the open half plane defined by lpq opposite to CH(S − A).

Proof: [12], Property OK4.

Under the general position assumption, we only need to consider condition (i) in Property
2.8. It is clear that in this case the following symmetry holds:

f∞k = f∞n−k. (3)

3. The Voronoi poset

3.1. Definition and examples

Fix a labeling of the sites in S and identify a set of sites A ⊂ S that defines a non-empty
Voronoi cell V (A) with the set of labels L(A) ⊂ [n] of the sites in A. A subset L of [n] may
or may not correspond to some Voronoi cell V (AL). For k = 1 we retain the ordinary Voronoi
diagram, which implies the correspondence

V1(S) ↔ {{1}, {2}, . . . , {n}}.

We define V0(S) = {∅}. The set {{1, . . . , n}} corresponds to Vn(S). We consider the set
of all Voronoi cells that appear for a given set S of points and call the set of corresponding
labels the Voronoi poset Π(S) of S:

Π(S) :=
⋃

k

{ L(A) | V (A) ∈ Vk(S) }.

This definition also makes sense when we drop the general position assumption.
We order the elements in the poset by set inclusion of the sets L(A). This yields a partially

ordered set. For more on partially ordered sets consult [15]. The poset is bounded since we
have the empty set as 0̂, the unique minimal element, and the set [n] as 1̂, the unique maximal
element. In general, a poset is called graded if it is bounded and if every maximal chain has
equal length. We show that Π(S) is graded. Below we give an example showing that Π(S) is
in general not a lattice.

Property 3.1 Π(S) is graded.
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Proof: We show that r(L(A)) = |L(A)| is a rank function for Π(S). A rank function maps
an element x from a poset to a unique level in such a way that the level corresponds to the
length of any maximal chain from x to 0̂. Let L(A) ∈ Π(S), with |L(A)| = k. Every point
x ∈ V (A) has all k points from A as its k nearest neighbors. Order those points with respect
to their distance to x. As we assumed general position it is always possible to change the
choice of x in such a way that this order is strict. By removing at each step the furthest point
still available, we obtain a chain of length k that descends to 0̂.

Example 3.2 For n = 3 there is only one Voronoi poset,

Π3(S) = {∅, 1, 2, 3, 12, 13, 23, 123},

while for n = 4 there are two essentially distinct posets:

Π4(S1) = {∅, 1, 2, 3, 4, 12, 13, 14, 24, 34, 123, 124, 134, 234, 1234},

Π4(S2) = {∅, 1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 124, 134, 234, 1234}.

These two posets correspond to the two configurations shown in Fig. 4. It can be easily
verified that these two are the only two posets up to relabeling. Note that Π4(S1) shows that
the Voronoi poset is in general not a lattice. A lattice requires that every two elements of the
poset have a unique minimal upper bound. In this example, the elements 2 and 3 have two
minimal upper bounds, namely 123 and 234.

1

2

3

4

1
2

3

4

a. b.

Figure 4: The two distinct first order Voronoi diagrams

3.2. The order complex of the Voronoi poset

The standard way to associate a topological space to a finite poset (P,≤) is by means of the
order complex∆(P ) of the poset, see [4, 14]. The order complex is the simplicial complex of all
nonempty chains of P . A chain of P of length k is a totally ordered subset x0 < x1 < x2 <
. . . < xk of elements x ∈ P . The well-known geometric realization associates a topological
space with a simplicial complex.

As a Voronoi poset on a set of n points p1, . . . , pn always has a unique maximal element
{1, . . . , n}, the geometric realization of the order complex is a cone and therefore contractible.
This shows that the topological space that we have associated with S is homotopy equivalent
with a point, and therefore not very interesting.

More promising is to consider the complement, that is the anti Voronoi poset aP (S),
consisting of those subsets of {1, . . . , n} that are not in the Voronoi poset. Another possibility
is to consider the arrangement of bisectors.
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4. Symmetry relations

Given a set S of sites, we count for every order k the number of vertices vk, the number of
edges ek and the number of non empty Voronoi cells fk. The f -vector of Π(S) is the vector
{f1, f2, . . . , fn}. The c- and e-vector are defined analogously. Note that the f -vector of Π(S)
may change if the position of the sites in S changes.

4.1. Symmetry in the number of cells

It turns out that a symmetry exists in the f -vectors.

Lemma 4.1 Consider the f -vector of Π(S), where |S| = n. Then fk + fn−k+1 is a constant
independent of the position of the points in S. More precisely,

fk + fn−k+1 = 2k(n− k + 1) + 1− n. (4)

Proof: We apply Theorem 2.7 to fk and fn−k+1:

fk + fn−k+1 = 2k − 1)n− k2 + 1−
∑k

i=1 f
∞

i−1

+ (2(n− k + 1)− 1)n− (n− k + 1)2 + 1−
∑n−k+1

i=1 f∞i−1,

= 2kn− 2k2 + 2k + 1− n+ n(n− 1)− (
∑k

i=1 f
∞

i−1 +
∑n−k+1

i=1 f∞i−1 ).

We join the two sums by applying Symmetry Equation 3 and evaluate the result by using
Equation 2.

k
∑

i=1

f∞i−1 +
n−k+1
∑

i=1

f∞i−1 =
n

∑

i=1

f∞i−1 = n(n− 1).

The lemma follows from combining the two equations above.

4.2. Symmetry in the number of vertices

A similar equation holds for the number of vertices of a collection of Voronoi diagrams Vk(S),
for k = 1, . . . , n− 1.

Lemma 4.2 Let S be a set of n points in general position. Let vk denote the number of
vertices in the k-th order Voronoi diagram. Then:

vk + vn−k = 4k(n− k)− 2n. (5)

Proof: Using Theorem 2.7 we write vk + vn−k in terms of numbers of cells. Next we regroup
and apply Symmetry Equation 3. After applying Theorem 2.7 we combine using symmetry
again. Finally, using

∑n

i=1 f
∞

i−1 = n(n− 1) completes the proof.

vk + vn−k = 2(fk − 1)− f∞k + 2(fn−k − 1)− f∞n−k,

= 2(fk + fn−k − 2− f∞k ),

= 2(n2 − 2n+ 2kn− 2k2 − (
∑k

i=1 f
∞

i−1 +
∑n−k

i=1 f
∞

i−1 + f∞k )),

= 2(n2 − 2n+ 2kn− 2k2 −
∑n

i=1 f
∞

i−1),

= −2n+ 4kn− 4k2 = 4k(n− k)− 2n.



R.C. Lindenbergh: A Voronoi Poset 49

4.3. Symmetry in the number of Voronoi circles

Recall that the order of a Voronoi circle equals the number of points of S contained in its
interior. The following theorem states that for n arbitrary points in general position, the
number of circles ci containing exactly i points on their inside plus the number of circles
cn−i−3 containing exactly i points on their outside is constant. We prove this by applying
above results and the lifting transformation ψ defined by

ψ : R2 → R3,
(x, y) 7→ (x, y, x2 + y2).

This transformation changes the point-inside-circle relation in 2-dimensional space in a point-
below-plane relation in 3-dimensional space, [6, 11].

Theorem 4.3 Let S be a set of n points in general position. Let ci denote the number of
Voronoi circles containing exactly i points. Then

ci + cn−i−3 = 2(i+ 1)(n− 2− i) = 2i(n− i− 3) + 2(n− 2). (6)

Proof: We prove the theorem by induction.
[i=0]. We use the lifting transformation. As every circle defined by S in the plane contains
only three points from S, every hyperplane defined by ψ(S) contains only three points from
ψ(S) as well. The number c0 of empty circles of S in the plane equals the number of facets
of the lower hull of ψ(S) in three dimensions. At the same time, the number cn−3 of circles
that contain all other points of S equals the number of facets of the upper hull of ψ(S). All
images of points in S under ψ are part of the convex hull of ψ(S). Since the convex hull of
a point set of n points consists of 2n − 4 facets, if every facet is a triangle, see [6], Theorem
11.1, the claim follows.
[induction step]. We deduce the expression for ck + cn−k−3 by applying Equation 1, followed
by combining Lemma 4.2 and the induction hypothesis:

ck + cn−k−3 = ck−1 + ck + cn−k−3 + cn−k−2 − (ck−1 + cn−k−2),

= vk+1 + vn−(k+1) − (ck−1 + cn−k−2),

= 2(2(k + 1)− 1)(n− (k + 1))− 2(k + 1)

−(2(k − 1 + 1)(n− 2− (k − 1))),

= 2(k + 1)(n− 2− k).

Remark 4.4 Computer calculations did not suggest any symmetry relation for the number
of edges similar to Equalities 4 or 6.

4.4. Relations between cells and circles

Write f̃k := fk + fn−k+1 and c̃i := ci + cn−i−3.

Corollary 4.5 Let 1 ≤ i ≤ dn
2
e. Then f̃i= f̃1 + c̃i−2 = c̃i−2 + n+ 1.

Proof: This follows directly from Lemma 4.1 and Theorem 4.3.

Property 4.6 Let f∞i denote the number of unbounded cells in the i-th order diagram and
let ci denote the number of circles of order i:

f∞i + (ci−1 − ci−2) = 2(n− i). (7)
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Proof: We prove the property by induction.
[i=1]. c−1 is zero by definition. The number of vertices v1 in the first order Voronoi diagram
equals the number of circles of order zero, c0. The claim follows from applying Theorem 2.7:

f∞1 + (c0 − c−1) = f∞1 + v1 = f∞1 + 2(f1 − 1)− f∞1 = 2(n− 1).

[induction step]. Assume we have proved that f∞i +(ci−1− ci−2) = 2(n− i). We rewrite this,
using induction, as

ci−1 = 2ni− i(i+ 1)−
i+1
∑

k=1

fk−1. (8)

Evaluate ci − ci−1:

ci − ci−1 = (ci + ci−1)− 2ci−1 = vi+1 − 2ci−1 = 2(fi+1 − 1)− f∞i+1 − 2ci−1.

Substituting this expression for ci − ci−1 and applying Theorem 2.7 and Equation 8 proves
the claim:

f∞i+1 + (ci − ci−1) = 2(fi+1 − 1− ci−1) = 2(n− i− 1).

Corollary 4.7 The c-vector totally determines the f -vector. The correspondence is given by
fk = n− k + 1 + ck−2.

Proof: Applying Equation 7 we get
∑k

i=1 f
∞

i−1 = (k − 1)(2n − k) − ck−2. The claim follows
from evaluating Theorem 2.7 using the expression above.

5. Even versus odd order cells

Given a grading on a set of objects, it is common to consider the Poincaré polynomial P (t)
of the grading. The i-th coefficient of this polynomial equals the number of objects of grade
i. In our case, the objects are the elements of the Voronoi poset Π(S), while the grading is
given by the rank function on the poset. Recall that the rank of an element x in Π(S) is
just the order k of the Voronoi diagram in which x occurs as a cell. The i-th coefficient of
the Poincaré polynomial P (t) is given by fi, as fi gives the number of cells in the i-th order
diagram Vi(S). So, the Poincaré polynomial P (t) of Π(S) with respect to our rank function
is given by

P (t) = f0 + f1t+ f2t
2 + . . .+ fnt

n.

As an application of the symmetry relations we compare the number of cells in the even
order Voronoi diagrams with the number of cells in the odd order diagrams. In terms of the
Poincaré polynomial P (t) of above, the following result can also be formulated as

P (−1) = 0.

Theorem 5.1 Let S be a set of n points in general position with n ≥ 3. Assume n is odd.
In this case, the number of cells in the even order Voronoi diagrams equals the number of
cells in the odd order Voronoi diagrams.
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Proof: Write f̃i = fi+fn−i+1. We show that A = 0, where A = −f0+f1−f2+. . .−fn−1+fn.
So A is the number of cells in the odd order diagrams minus the number of cells in the even
order diagrams:

A = −f0 + f̃1 +
1

2
f̃n+1

2
+ tn,

where

tn :=

n−1

2
∑

i=2

(−1)i+1f̃i.

Clearly, f0 = 1, as f0 counts the empty set. f̃1 is the number of points in S plus the number
of cells in Vn(S), so f̃1 = n+ 1. Applying Equation 4 gives:

f̃n+1

2
= −(−1)

n+1

2
n2 + 3

4
.

Straightforward calculations show that:

tn = (−1)
n+1

2
n2 + 3

4
− n,

from which it follows that:

A = − 1 + n+ 1− (−1)
n+1

2
n2 + 3

4
+ (−1)

n+1

2
n2 + 3

4
− n = 0.

The claim of Theorem 5.1 does not hold when n is even. However, the following result
does hold.

Lemma 5.2 Let S be a set of n points in general position, with n ≥ 3. Assume n is even.
Let A(S) denote the number of cells in the odd order Voronoi diagrams minus the number of
cells in the even order diagram. Then:

n ≡ 0(4) ⇒ A(S) odd.

n ≡ 2(4) ⇒ A(S) even.

Proof: Similar computations as in the proof of Theorem 5.1.

Note that as vk = ck−1 + ck−2 it follows immediately that:

n−1
∑

k=1

(−1)k+1vk = 0,

for all n, where vk denotes the number of vertices in the k-th order Voronoi diagram.
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