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Abstract. This paper presents new low degree, complete Bézier circles with
positive weights. Specifically: two symmetric, quintic parametrizations — opti-
mized towards arc-length parametrization in L2 and L∞ norms — are developed
and a new degree six circle with a symmetric, near arc-length parametrization is
presented. Properties of the parametrizations are discussed and compared.
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1. Introduction

Parametrization of the circle remains an active research topic for applications in computer
graphics and computer aided geometric design [5]. Techniques for the construction of B-spline
circles have been reviewed in [7]. Single segment Bézier circles have been considered in [3, 8,
9, 10]; Chou [3] makes the case for single segment solutions and shows that positive weight
circles are minimally of degree five. The material presented in this paper complements the
literature on full Bézier circles by considering the ‘rate-of-tracing’ of rational parametrizations;
i.e., the relative density of evaluated points on the circle for equal increments of the parameter.
Only parametrizations proportional to the arc-length parametrization have exactly constant
rate-of-tracing; however, no such rational parametrizations of the circle exist. This follows
either from general known results on rational parametrization [4] or from the fact, which can
be demonstrated by elementary means, that the only solutions to the system of functional
equations

f2(t) + g2(t) = 1 , f ′2(t) + g′
2
(t) = 1

are the harmonic functions f(t) = cos(t+α), g(t) = sin(t+α), where α is any constant; hence
there is essentially only one arc-length parametrization of the circle and it is not rational.

ISSN 1433-8157/$ 2.50 c© 2004 Heldermann Verlag



2 H.E. Bez, T.J. Wetzel: Optimal Rational Circles

Nevertheless rational parametrizations with near-constant rate-of-tracing can be constructed
and are of interest for a number of reasons, including: the visual quality of an arc drawn at
a given incremental resolution and the efficient conversion of parametrized shapes into CNC
instructions. A documented series of rational exact circles [8] is known to approach arc-length
parametrization as the degree of the representation increases [2]. However high-precision to
arc-length is not achieved until the degree is excessively high — of order at least O(102).

In this paper new exact rational circles of degrees 5 and 6 are constructed with parametriza-
tions optimized towards the arc-length parametrization. The computation combines an induc-
tive process for the construction of rational parametrizations — as described by the authors
in [2] — with a novel process to optimize the parametrizations towards near-constant rate-
of-tracing’. In each case, the rate-of-tracing function is a sum of ‘harmonic’ components —
each corresponding to a term in the inductive construction. Explicit vertex and weight data
for the circles is provided, and may be applied directly by practitioners without reference to
the means of construction.

2. Paths

If I is an interval of R, then a regular planar path is a C1 function p : I → R2 with p′ 6= 0.
The set of paths on I is denoted PI . A curve is an equivalence class of paths, written [p]
where p ∈ PIp , for some Ip, and q ∼ p if and only if q = p ◦ φ for some C1 invertible function
φ : Iq → Ip. Equivalent paths have the same graph. A curve [p] is said to be rational if there
exists a q ∈ [p] where q = (qx, qy) is such that qx and qy are rational. In this case there exists
a function φ such that p ◦ φ is rational; such functions, applied in this paper to complete
circles, are of the form φ : [0, 1]→ [0, 2π]. The set PI is a vector space over R under the usual
scalar multiplication and addition operations. In addition a binary operator ∗ can be defined
on PI by complex multiplication; i.e.,

p ∗ q = (pxqx − pyqy, pxqy + pyqx)

where p = (px, py) and q = (qx, qy).

3. Circle parametrization

3.1. Measures of distance between parametrizations

The L2-norm ‖ · ‖2 is the natural generalization of Euclidean length, it is widely used in
approximation theory and used in this paper to measure the distance between exact rational
parametrizations of the circle and the arc-length parametrization in an optimization process.
The value ‖f − g‖2 is an ‘average’ measure of the difference between f and g; the maximum
difference is measured by the L∞-norm and this is used in the paper as an alternative means
of evaluating the L2-optimized parametrizations of the circles constructed.

If f is as above and fap is an approximation of f , then the relative error in the approxi-
mation with respect to a norm ‖ · ‖ is

‖f − fap‖
‖f‖ .

The unit circle centred at (0, 0) is denoted S1 and, in the remainder of the paper, p =
(px, py) denotes the arc-length parametrization of S1; i.e.,

p(θ) = (cos θ, sin θ) for 0 ≤ θ ≤ 2π.
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Let c = (cx, cy) be a parametrization of S1 on the interval [0, 1] and let φc denote the polar
angle at t ∈ [0, 1]. Clearly cx(t) = cosφc(t), cy(t) = sinφc(t), φc = tan−1(cy/cx) and

c = (cosφc, sinφc) = p ◦ φc

where p denotes the arc-length parametrization p(θ) = (cos θ, sin θ).

x

y

φc(t)

c(t) = (cx(t), cy(t))

Figure 1: Parametrization of S1

Let c1 = (c1,x, c1,y) and c2 = (c2,x, c2,y) be any two parametrizations of S1 subtending 2π
on [0, 1]. We have, for i ∈ {1, 2}

φci = tan−1
(

ci,y
ci,x

)

, φ′ci = ci,x c
′
i,y − c′i,x ci,y

where φci : [0, 1]→ [0, 2π], with φci(0) = 0 and φci(2) = 2π, φ′ci : [0, 1]→ R and ci = p ◦ φi .
A number of L2-norms may be used to measure ‘distance’ between parametrizations c1 and
c2; including

‖φc1 − φc2‖2 =
[
∫ 1

0

|φc1(t)− φc2(t)|2 dt
]

1
2

and

‖φ′c1 − φ′c2‖2 =
[
∫ 1

0

|φ′c1(t)− φ′c2(t)|2 dt
]

1
2

.

The first is a measure of the average difference between the arc lengths traced by c1 and c2
and ‖φ′c1 − φ′c2‖2 measures the average difference between the rate of arc length tracing of c1
and c2.

It is traditional in computer aided geometric design to define rational paths on the interval
[0, 1]; however to measure the ‘closeness’ a rational parametrization of S1 to the arc-length
parametrization it is necessary to compare it, using a suitable norm, with p(θ) = (cos θ, sin θ)
— which is defined on [0, 2π]. Hence for the purposes of comparison a common interval of
definition is required and the re-scaled arc-length parametrization p∗(t) = (cos 2πt, sin 2πt);
0 ≤ t ≤ 1 is therefore used. If γ : [0, 1]→ [0, 2π] is defined by γ(t) = 2πt then p∗ = p ◦ γ, and
p∗ is such that φp∗(t) = 2πt.

The construction of the near arc-length parametrized circles described in the paper uses
an optimization procedure that minimizes the L2 difference between the rates of tracing of
the near arc-length candidate path with the exact path p∗. Hence for the purposes of the
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optimization process, the distance between p∗ and a candidate parametrization c is measured
as

‖φ′c − φ′p∗‖2 =
[
∫ 1

0

|φ′c(t)− 2π|2 dt
]

1
2

.

The optimal solutions, obtained in this way, can be evaluated in other norms; for example
‖c−p∗‖2 is a measure of the average chordal separation of p∗ and c . For all parametrizations
c1 and c2 of S

1 on [0, 1] we have:

‖c1 − c2‖2 =
[
∫ 1

0

|c1(t)− c2(t)|2 dt
]

1
2

=
√
2

[
∫ 1

0

(1− c1(t) · c2(t))2 dt
]

1
2

,

and
‖c1 − c2‖2 ≤ ‖c1 − c2‖∞ .

3.2. Symmetric parametrizations of the circle

Definition 1. A parametrization c = p ◦ φc of the circle is said to be symmetric if

φc(t) + φc(1− t) = 2π for all t ∈ [0, 1].

Equivalently we could define c to be symmetric (i) if φ′
c(1 − t) = φ′c(t), i.e., if the graph

of the rate-of-tracing function φ′c : [0, 1]→ R is symmetric about the point t = 1
2
, or (ii) if

(p ◦ φc)(t) = R(p ◦ φc)(1− t)

where R is the reflection matrix

[

1 0
0 −1

]

.

All symmetric parametrizations are such that φc(
1
2
) = π. Only symmetric parametriza-

tions of the circle are considered in this paper. The reasons for this include:
• the parametrization being approximated — i.e., the exact arc-length parametrization

— is symmetric;

• existing rational parametrizations against which those constructed in the paper are
measured, i.e., the standard series [8] and the Chou quintic, are all symmetric;

• the objective functions, for the optimization process, have fewer variables for symmetric
constructions.

3.3. Product parametrizations

If c1 and c2 are the parametrizations of S1 defined above then, assuming c1 subtends an angle
of ∆1 and c2 subtends an angle ∆2, the product c1 ∗ c2 determines a parametrization of S1

that subtends ∆1+∆2. It follows that φc1∗c2 = φc1 +φc2 and that the rate-of-tracing function
for c1 ∗ c2 is φ′c1∗c2 = φ′c1 + φ′c2 . This generalize to a product of n terms for which the angle
subtended is Σn

i=1 ∆i and for which φ′c1∗ ··· ∗cn = Σn
i=1φ

′
ci
.

3.4. Induced parametrizations

If q : I → R2 is a path in the plane we can define π(q) as the formal quotient π(q) = q/|q|.
If q is suitably regular then π(q) determines a parametrization of the circle on I. Similarly
the product parametrization

π(q2) =
q ∗ q
|q ∗ q|
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and, more generally, π(qk), for k ∈ N, determine parametrizations of the circle. We call π(qk)
parametrizations of the circle ‘induced’ by the ‘primitive’ (or ‘source’) path q. If q = (u, v)
then π(q2) has the component form

π(q2) =
1

u2 + v2
(

u2 − v2, 2uv
)

;

more generally we define, for paths q1, . . . , qn, the product parametrizations

πn(q1, . . . , qn) =
q1 ∗ · · · ∗ qn
|q1 ∗ · · · ∗ qn|

and πn(q
k
1 , . . . , q

k
n). With suitable regularity conditions these also determine parametrizations

of the circle — referred to in this paper as parametrizations induced on the circle by the
‘primitive’ paths q1, . . . , qn. Product parametrizations of the form πn(q

2
1, . . . , q

2
n), where the

paths q1, . . . , qn are polynomial of degree 1, are rational and paths of this form are fundamental
to the work of this paper. We note that if q1 = (u1, v1) and q2 = (u2, v2) then the induced
parametrization π2(q21, q22) of the circle is such that π2(q21, q22) = π(q23), where q3 is given by
q3 = (u1, v1) ∗ (u2, v2). The product parametrization c1 ∗ c2 may be written as π2(c1, c2).

4. Induced rational parametrizations of the circle

4.1. Rational parametrization of the circle

If q = (u, v) where u and v are polynomial functions, then the induced parametrization

π(q2) =
1

u2 + v2
(

u2 − v2, 2uv
)

is rational. It follows from Kubota’s theorem [6] that all rational parametrizations of the
circle are of the form π(q2) where q = (u, v) and u and v are polynomial functions. From
the fundamental theorem of algebra we have q = q1 ∗ · · · ∗ qn, for some degree one polynomial
functions q1, . . . , qn; hence

π(q2) = π
(

(q1 ∗ · · · ∗ qn)2
)

= πn(q
2
1, . . . , q

2
n).

It is therefore true that:
• every rational parametrization of the circle may be written as an induced parametriza-

tion πn(q
2
1, . . . , q

2
n), where q1, . . . , qn are degree one primitives.

4.2. Quadratic parametrizations of circular arcs induced by a single degree-one
primitive

We define, for λ > 0 and 0 < ∆ < π/2, a degree-one primitive Fλ,∆ on [0, 1] by

Fλ,∆(t) = (1− t)(1, 0) + tλ(cos∆, sin∆),

as λ 6= 0 it follows that |Fλ,∆|(t) 6= 0 for all t and π(F 2λ,∆) =
Fλ,∆ ∗ Fλ,∆
|Fλ,∆|2

is a well-defined

induced parametrization of the circle; it subtends 0 < 2∆ < π on [0, 1] and has the explicit
form

π(F 2λ,∆)(t) =
(1, 0)(1− t)2 + 2λ cos∆(1, tan∆)(1− t)t+ λ2(cos 2∆, sin 2∆)t2

(1− t)2 + λ(cos∆)2t(1− t) + λ2t2
.
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Writing Fλ,∆ = (uλ,∆, vλ,∆) we have

tan
φλ,∆
2

(t) =
vλ,∆
uλ,∆

=
t λ sin∆

(1− t) + t λ cos∆

from which we obtain

φ′λ,∆(t) =
2λ sin∆

|Fλ,∆|2(t)
.

The near arc-length Bézier circles described later in the paper are induced from quadratic
primitives of the form Fλ,∆ — with strong reference to the properties of their rate-of-tracing
functions φ′λ,∆ discussed below.

4.3. Properties of the rate-of-tracing function φ′
λ,∆

Proposition 1. The function φ′λ,∆ is strictly positive with a single (maximum) turning point
at t = T (λ,∆) where

T (λ,∆) =
1− λ cos∆

1− 2λ cos∆ + λ2
.

The graph of φ′λ,∆ is symmetric about the point t = T (λ,∆) and φ′
λ,∆ tends to zero as t→ ±∞ .

Proof. This is immediate from the following: as λ > 0 the quadratic |Fλ,∆|2 is (i) strictly
positive, (ii) tends to infinity as t→ ±∞ and (iii) has a single positive minimum value, which
occurs at t = T (λ,∆) where

T (λ,∆) =
1− λ cos∆

1− 2λ cos∆ + λ2
.

Fig. 2(a) illustrates the general shape of the graph of φ′
λ,∆, as quantified in Proposition 1.

(a) (b)

Figure 2: (a) The function φ′λ,∆ (b) Special cases of φ′λ,∆

Corollary 1. For all 0 < ∆ < π
2
:

T

(

1

cos∆
, ∆

)

= 0, T (1, ∆) =
1

2
and T (cos∆, ∆) = 1.



H.E. Bez, T.J. Wetzel: Optimal Rational Circles 7

Corollary 1 identifies the position of the turning point of φ′
λ,∆ for three significant values of

λ; i.e., for λ = 1 the turning point is at the mid-point t = 1
2
of the interval of parametrization

[0, 1], for λ = cos∆, φ′λ,∆ turns at t = 1 and for λ = 1/ cos∆ it turns at t = 0. Fig. 2(b)
shows graphs of φ′λ,∆ for these values of λ.

Corollary 2, below, shows how the turning point position varies continuously along the t-
axis with respect to values of λ ∈ (0,∞) and, in particular, the symmetric relationship between
the graphs of φ′λ,∆ and φ′λ−1,∆. This symmetry property is exploited in the construction of
the near arc-length parametrized circles presented later in the paper.

Corollary 2. It can be shown that:

• if 0 < λ < cos∆ then T (λ,∆) > 1

• if cos∆ ≤ λ ≤ 1/ cos∆ then 0 ≤ T (λ,∆) ≤ 1

• if 1/ cos∆ < λ <∞ then T (λ,∆) < 0,

• and the ‘symmetry’ property T (λ−1,∆) = 1− T (λ,∆).

It follows from the symmetry property that the graphs of φ′
λ,∆ and φ′λ−1,∆ are reflections

each of the other in the line t = 1
2
— as shown in Fig. 3(b). Fig. 3(a) shows graphs of

φ′λ, π/4 for values of λ in each of the sub-intervals I+ = (0, cos∆), I = (cos∆, 1/ cos∆) and

I− = (1/ cos∆), ∞) of (0,∞).

Figure 3: (a) Graphs of φ′λ,∆ for λ in each of the intervals I+, I and I−
(b) The symmetry property of φ′λ,∆

4.4. Product parametrizations of circular arcs induced by multiple primitives

A single primitive may be used to induce a rational parametrization of S1. However, as will be
illustrated later, these parametrizations have strongly ‘bell’ shaped rate-of-tracing functions;
similar to that shown in Fig. 5(b). Such induced parametrizations of S1 are not therefore
near-arc-length.

To illustrate how the use of distinct primitives can produce symmetric, near-constant
rate-of-tracing functions on [0, 1], consider the degree-one primitives Fλ1,∆ and Fλ2,∆ and the
associated induced parametrization

cλ1,λ2
= π(F 2λ1,∆

, F 2λ2,∆
).
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This parametrization subtends a circular arc of 4∆ on the interval [0, 1] and has the rate-of-
tracing function

φ′λ1,λ2,∆
= φ′λ1,∆

+ φ′λ2,∆
.

It follows from the symmetry property of T (λ,∆) — see Corollary 2 — that graphs of sums of
the form φ′λ,λ−1,∆ = φ′λ,∆+φ′λ−1,∆ are symmetric about the point t = 1

2
. In fact, for a suitably

chosen value of λ∗, of λ, we can achieve

φ′λ∗,λ∗−1,∆ = φ′λ∗,∆ + φ′λ∗−1,∆ ≈ 4∆ on [0, 1];

the rational parametrization corresponding to this ‘optimum’ value of λ therefore has near-
arc-length rate-of-tracing.

By definition λ > 0, however it follows from Corollary 1 that λ∗ 6= 1 — because at this
value both of the components of the rate-of-tracing function have maxima at t = 1

2
and cannot

therefore yield near-constant rate-of-tracing on [0, 1]. In fact for ∆ = π/4 the optimum value
is λ∗ ≈ 1.5586278 and a near-arc-length parametrized semi-circle is obtained. Fig. 4 shows
graphs of an optimized rate-of-tracing function and its two components, for a typical value of
∆ in the range 0 < ∆ ≤ π/4.

Figure 4: A ‘near constant’ function on [0, 1] as a sum φ′
λ,∆ + φ′λ−1,∆ of the

‘harmonic components’ φ′λ,∆ and φ′λ−1,∆

To parametrize a full circle on [0, 1] requires that ∆ = π/2. With such a large values of ∆
it is not possible to achieve a near-constant rate-of-tracing of the quality illustrated in Fig. 4
using just two primitives. Fig. 10 is more typical of the best that can be achieved for a full
circle with two primitives. Hence for ∆ in the range π/4 < ∆ ≤ π/2, induced parametrizations
using three, or more, primitives should be used if near-arc-length rate-of-tracing is required.

The above is a special case of the following more general strategy for the construction of
low degree near arc-length parametrizations of the circle subtending a designated angle θ on
[0, 1]: i.e.,
• induce a parametrization πk(F

2
λ1,∆1

, . . . , F 2λk,∆k
) of the circle using a sequence, Fλi,∆i

,
0 ≤ i ≤ k, of degree-one primitives

where the λi and ∆i are chosen in such a way that:
• 2

∑k
i=1∆i = θ

• the sum φ′λ1,∆1
+ . . . + φ′λk,∆k

of the rate-of-tracing functions of the quadratics F 2λk,∆k

is symmetrical about the point t = 1
2
and

φ′λ1,∆1
+ . . . + φ′λk,∆k

≈ 2(∆1 + . . . +∆k) on [0, 1].
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4.5. Documented rational circles as induced parametrizations

Chou’s quartic circle, [3], may be expressed as the induced parametrization

c4 = π2(F 21, π/2, F 21, π/2);

it has a zero weight coefficient in rational Bézier form. However if the degree elevated by one,
the quintic path c5, so constructed, has all positive weights.

The series of even degree rational parametrizations of S1, described in [8], is such that
the parametrization of degree 2n may be expressed as the induced parametrization

c2n = π(F 2n1, π/n).

4.6. Quartic and quintic Bézier circles

For any λ > 0, an induced, rational, symmetric quartic parametrization of S1 may be defined
by

c4,λ = π2(F 2λ, π/2, F 2λ−1, π/2) =
F 2λ, π/2 ∗ F 2λ−1, π/2

|Fλ, π/2|2 |Fλ−1, π/2|2

from which the weights of c4,λ may be computed as:

w0,4 = 1; w1,4 = 0; w2,4 =
1

6

(

λ2 +
1

λ2

)

; w3,4 = 0; w4,4 = 1.

If the degree of c4,λ is raised by one to a quintic, denoted c5,λ, then the weights of c5,λ are all
positive and are given explicitly (see Appendix 1) by:

w0,5 = 1; w1,5 =
1

5
; w2,5 =

1

10

(

λ2 +
1

λ2

)

; w3,5 =
1

10

(

λ2 +
1

λ2

)

; w4,5 =
1

5
; w5,5 = 1.

We can write, in terms of the quartic Bézier basis {bi,4},

c4,λ =
b0,4(1, 0) + 1

2

(

λ+ λ−1
)

b1,4(0, 1) + 1
6

(

4 + λ2 + 1
λ2

)

b2,4(−1, 0) + 1
2

(

λ+ λ−1
)

b3,4(0,−1) + b4,4(1, 0)

b0,4 + w2,4b2,4 + b4,4

and in terms of the quintic Bézier basis {bi,5} we have

c5,λ =
b0,5(1, 0) + b1,5(

1
5 ,
4A
5 ) + b2,5(−3C5 , 2A5 ) + b3,5(−3C5 ,−2A5 ) + b4,5(

1
5 ,−4A5 ) + b5,5(1, 0)

b0,5 + w1,5b1,5 + w2,5b2,5 + w3,5b3,5 + w4,5b4,4 + b5,5

where

A =
1

2

(

λ+ λ−1
)

; B =
1

10

(

λ2 +
1

λ2

)

; C =
1

6

(

4 + λ2 +
1

λ2

)

.

Incorporating the weights into the numerator gives

c5,λ =
b0,5(1, 0) + 1

5b1,5(1, 4A) +Bb2,5(−3C5B , 2A5B ) +Bb3,5(−3C5B ,− 2A5B ) + 1
5b4,5(1,−4A) + b5,5(1, 0)

b0,5 + 1
5b1,5 +Bb2,5 +Bb3,5 + 1

5b4,4 + b5,5

from which the vertices of c5,λ can be identified as

v0 = (1, 0); v1 = (1, 4A); v2 =

(

−3C

5B
,

2A

5B

)

; v3 =

(

−3C

5B
,−2A

5B

)

; v4 = (1,−4A); v5 = (1, 0).
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The parametrizations c4,λ and c5,λ have the same rate-of-tracing function, namely:

φ′λ = φλ, π/2 + φ′λ−1, π/2.

The surface

ζ4(λ, t) = φ′λ(t)− 2π,

which is shown in Fig. 5(a), represents the deviation of the rate-of-tracing function from 2π
on the interval 0 ≤ t ≤ 1 over a range of λ values; the t-axis runs left-to-right with λ running
front-to-back and ζ on the vertical axis. Chou’s circle corresponds to the section at λ = 1,
i.e., the strongly ‘bell shaped’ curve on the front edge of the surface and shown in Fig. 5(b);
the curve is the sum of two identical harmonic components — also shown in 5(b).

ζ4

λ

t

2 π

(a) (b)

Figure 5: (a) The surface ζ4.
(b) The ‘bell’ shaped rate-of-tracing function φ′

5 of the Chou path c5.

4.7. The L∞-optimized quintic circle

Fig. 6 shows the (λ, ζ)-projection of ζ4, from which it can be seen that the maximum deviation
from arc-length (i.e., the ‘thickness’ of the surface ζ4) is least near the point λ = 2.4. This
‘special’ value of λ therefore minimizes the L∞ distance

µ4,∞(λ) = ‖φ′λ, π/2 + φ′λ−1, π/2 − 2π‖∞ = sup
[0,1]

|φ′λ, π/2 + φ′λ−1, π/2 − 2π|.

An L∞-optimized circle, C5,∞, may therefore be determined as follows;
• find the λ value, λ∗, that minimizes µ4,∞,

• determine the quartic c4,∞ corresponding to λ∗,

• elevate the degree of c4,∞ by one to determine the quintic c5,∞ .
The value of λ∗ may be computed to be λ = 1 +

√
2 ; this is also the value that corresponds

to the ‘symmetry’ condition

φ′λ(0) = φ′λ(1/2) = φ′λ(1)
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position of the L∞ solutionζ4

λ

Figure 6: The (λ, ζ)-projection of ζ4 — showing the position of the L∞ solution

for φ′λ. We denote the rate-of-tracing function of the optimized quintic circle by φ′
5,∞. For

C5,∞, we have

µ4,∞(1 +
√
2) = 0.6263306 and ‖C5,∞ − p∗‖2 = 0.043869

which should be compared with

µ4,∞(1) = 2.2831854 and ‖c5 − p∗‖2 = 0.203269

for c5. The graph of φ′5,∞ is shown in Fig. 7.

2 π

Figure 7: The graphs of rate-of-tracing function φ′
5,∞

and its two components for the circle C5,∞

Fig. 8 compares the rate-of-tracing of both Chou’s path, 8(a), and the L∞-optimized
circle, 8(b), with the arc-length parametrized path; in this figure hollow circles represent the
arc-length parametrization and filled black circles show the rational parametrizations. Fig. 9
compares the control polygon of the Chou circle with that of C5,∞ .
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(a) (b)

Figure 8: Comparison of (a) the Chou circle c5 and (b) the optimized circle C5,∞

with the arc-length parametrized circle p∗

(a) (b)

Figure 9: Bézier polygons for (a) the Chou circle c5 and (b) L∞-optimized circle C5,∞

4.8. The L2-optimized quintic circle

An ‘L2-optimized’, symmetric, quintic parametrization, having all positive weights and de-
noted C5,2, may now be constructed as follows:
• find the value, λ∗, of λ that minimizes the integral

µ4,2(λ) =

∫ 1

0

|φ′λ, π/2(t) + φ′λ−1, π/2(t)− 2π|2 dt ,

• determine the quartic, c4,2, corresponding to λ∗,

• elevate the degree of c4,2 to obtain the L2-optimized quintic parametrization C5,2 .
The minimum of µ4,2 occurs at λ

∗ ≈ 2.23065, we have

µ4,2(2.23065) = 0.33117 and ‖C5,2 − p∗‖2 = 0.0245263

which should be compared with the values

µ4,2(1) = 1.2862 and ‖c5 − p∗‖2 = 0.203269
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2 π

position of the 
L2 solution

position of the
 L∞ solution

ζ4

λ

(a) (b)

Figure 10: (a) The graphs of φ′5,2 and its two components for the L2-optimized circle C5,2

(b) The (λ, ζ)-projection of ζ4 — showing the positions of the L2 and L∞ solutions

for the Chou parametrization. The rate-of-tracing function φ′
5,2, and its harmonic compo-

nents, for the L2-optimized circle C5,2 is shown in Fig. 10(a) — the greatest deviation from
2π occurs at the boundary points t = 0 and t = 1 of the parametric domain [0, 1] of the circle.
Fig. 10(b) shows the relative positions of the L2 and L∞ solutions.

Although the paths C5,2 and C5,∞ are significantly closer to arc-length parametrization than
the Chou path c5, it is shown below that much better results can be obtained by inducing
parametrizations of S1 from 3 primitives.

4.9. An L2-optimized, induced degree six rational circle

In this section a degree 6, positive weight, near arc-length, symmetric, rational parametriza-
tion of the complete circle is induced from three primitives.

The general properties of the rate-of-tracing functions discussed earlier suggest that to
ensure:
• the symmetry of the rate-of-tracing function of the induced parametrization about t =
1
2
,

• and that 2π is subtended on the interval [0, 1]
requires the selection of primitives of the form Fλ,∆, Fλ−1,∆ and F1, π−2∆, and application of
the construction

π3
(

F 2λ,∆, F
2
1, π−2∆, F

2
λ−1,∆

)

for some values of λ and ∆.
An optimization computation to minimize the distance

µ(λ,∆) = ‖φ′λ,∆ + φ′1, π−2∆ + φ′λ−1,∆ − 2π‖2

between π3(F 2λ,∆, F 21, π−2∆, F 2λ−1,∆) and the arc length path, yields a minimum of

µ6 ≈ 0.82369× 10−2

at
∆ ≈ ∆∗ = 0.291π, and λ ≈ λ∗ = 2.2915.
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The L2-optimized degree 6 parametrization C6 = π3(F 2λ∗,∆∗ , F 21, π−2∆∗, F 2λ∗−1,∆∗) has a relative

L2 approximation error to arc-length of less than 0.14% and is closer to arc-length than the
degree 60 parametrization π(F 60π/30) of the series π(F 2n1, π/n) described in [8]. The L2 positional
separation can be calculated as

‖C6 − p∗‖2 = 0.436762× 10−3.

Clearly π(F 61, π/6) corresponds to the choices ∆ = π
3
and λ = 1 in π3(F 2λ,∆, F 21, π−2∆, F 2λ−1,∆).

Fig. 11 shows the L2-optimized parametrization. The parametrization C6 can be expressed

C6 = p ◦ ϕ6

where p is the arc-length parametrization and

ϕ6 = φλ∗,∆∗ + φ1, π−2∆∗ + φλ∗−1,∆∗ .

The weights and vertices of C6 are given in the Appendix to the paper.

(a) (b)

Figure 11: (a) The graph of C6 (b) φ′6 and its three components

Near arc-length rational parametrizations of S1 of degrees 8, 10, 12, . . . may be constructed
using similar methods. Unlike the quintic case, for degrees ≥ 6 there is little point in con-
sidering optimal solutions in norms other than L2 — this is due to the extreme flatness of
the ζ surfaces near the L2 solution, from which it follows that the optimal L∞ solution is
necessarily very close to the optimal L2 solution. The situation is depicted in Fig. 12 for C6,
where the function ζ6 and its (λ, ζ)-projection are shown. For ζ6 it can be seen that there
is a section near λ = 2.2915 where the surface exhibits almost no deviation from 2π on the
interval 0 ≤ t ≤ 1; hence the L2- and L∞-optimized solutions for circles of degree ≥ 6 are
virtually indistinguishable.
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ζ6

λ

t

position of the optimal 
degree six solutions

ζ6

λ

(a) (b)

Figure 12: (a) The surface ζ6 for degree 6 induced parametrizations
(b) Projection of ζ6 onto the (λ, ζ) plane

Appendix — weights and vertices of the optimal circles

The weight and vertex data, wi, vi, for the L2-optimized quintic circle C5,2 — corresponding
to λ = 2.23065 — are:

i wi vi

0 1 ( 1.000000000, 0.000000000)

1 1/5 ( 1.000000000, 5.357899644)

2 0.5176772153 (−1.772682258, 1.034988500)

3 0.5176772153 (−1.772682258,−1.034988500)
4 1/5 ( 1.000000000,−5.357899644)
5 1 ( 1.000000000, 0.000000000)

The data for the quintic L∞-optimized circle C5,∞, corresponding to λ = 1+
√
2, given exactly

and to eight decimal places for comparison with the data for C5,2, are:

i wi vi

0 1 (1, 0) = ( 1.000000000, 0.000000000)

1 1/5 (1, 4
√
2) = ( 1.000000000, 5.656854249)

2 3/5 (−5/3, 2
√
2/3) = (−1.666666667, 0.942809042)

3 3/5 (−5/3,−2
√
2/3) = (−1.666666667,−0.942809042)

4 1/5 (1,−4
√
2) = ( 1.000000000,−5.656854249)

5 1 (1, 0) = ( 1.000000000, 0.000000000)
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The data for the near-arc-length degree six circle C6 are:

i wi vi

0 1.00000000 ( 1.00000000, 0.00000000)

1 0.63997907 ( 1.00000000, 1.62906557)

2 0.64192096 (−1.03192823, 1.89695176)

3 0.50963710 (−2.83901798, 0.00000000)

4 0.64192096 (−1.03192823,−1.89695176)
5 0.63997907 ( 1.00000000,−1.62906557)
6 1.00000000 ( 1.00000000, 0.00000000)
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