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Abstract. We give a fairly elementary proof of the fact that if ABB ′ and
AC ′C are triples of collinear points with the lines BC and B ′C ′ intersecting at
D, then d(AB) + d(BD) = d(AC ′) + d(C ′D) if and only if d(AB′) + d(B′D) =
d(AC) + d(CD), where d(XY ) denotes the length of the line segment joining X
and Y . The “only if” part of this theorem is attributed to Urquhart, and referred
to by Dan Pedoe as the most elementary theorem of Euclidean Geometry. We
also give a simple proof of a variant of Urquhart’s theorem that was discovered by
Pedoe.
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1. Introduction

“The most elementary theorem” referred to in the title states that if ABB ′ and AC ′C are
triples of collinear points with the line segments BC and B ′C ′ intersecting at D and if the
distances obey d(AB)+d(BD) = d(AC ′)+d(C ′D), then d(AB′)+d(B′D) = d(AC)+d(CD)
(see Fig. 1). The origin and some history of this theorem are discussed in [1], where the author
attributes the theorem to the late L.M. Urquhart (1902–1966) who “discovered it when
considering some of the fundamental concepts of the theory of special relativity”, and where
he asserts that “the proof by purely geometric methods is not elementary”, giving variants
and equivalent forms of the theorem and citing references where proofs can be found. In this
note, we give an elementary proof that is also conceptual and fairly free of computations. The
proof, however, does involve circles together with rather unconventional arguments, and as
such it may not satisfy D. Pedoe’s curiosity regarding the existence of a circle-free proof of
Urquhart’s Theorem.
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Figure 1: Illustration of “the most elementary theorem”

2. Some preparatory remarks

We fix in the Euclidean plane two reference rays Ax and Ay. If t is a positive number, and
if X and Y are the points on Ax and Ay with d(AX) = d(AY ) = t, then there is a unique
circle Ωt that touches Ax at X and Ay and Y . The shorter arc joining X and Y along Ωt is
denoted by Γt or by X̂Y , and it is called the arc XY (see Fig. 2). The term arc will always
stand for an arc of this type. Similarly, the term segment will always stand for a line segment
that joins a point on Ax with a point on Ay, this time not requiring that these points are
equidistant from A.
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Figure 2: The arc Γt and circle Ωt
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Figure 3: Ex-arc of BC

If BC is a segment, and if the A-excircle of ABC touches Ax at B∗ and Ay at C∗, then

the arc B̂∗C∗ is called the ex-arc of BC (see Fig. 3). It is useful to observe that d(AB∗) =
d(AC∗) = p(ABC)/2, where p(ABC) denotes the perimeter of ABC.

It is intuitively obvious that different arcs do not interset each other. To see this, let
α be the angle between Ax and the angle bisector Az of xAy, let Aw be a ray making an
angle β ≤ α with Az and meeting the arc Γt = X̂Y at W , as shown in Fig. 4, and let
ρ = cosβ/ cosα. Let O be the center of Ωt, r be its radius, and s be the length of the
perpendicular OP to Aw. Then

d(AW ) = d(AP )− d(PW ) = d(AO) cos β −
√
r2 − s2

= d(AO) cos β −
√
(d(AY ) tanα)2 − (d(AO) sin β)2

= t secα cosβ −
√
t2 tan2 α− t2 sec2 α sin2 β

= t

(
ρ−

√
sec2 α− 1− sec2 α sin2 β

)

= t
(
ρ−

√
ρ2 − 1

)
,



M. Hajja: The “Most Elementary Theorem” of Euclidean Geometry 19

showing that d(AW ) increases with t and that different arcs do not intersect.
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Figure 4: Different arcs do not intersect
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Figure 5: Proving eq. (1)

The triangle determined by an arc is the curvilinear triangular region enclosed between
the reference rays Ax,Ay and that arc. Similarly, the triangle determined by a segment is
the ordinary triangular region enclosed in the reference rays and that segment. A segment
(or arc) is said to lie above another segment (or arc) if the triangle determined by the first
is contained in the one determined by the second. We reiterate that due to the fact that
different arcs do not intersect, this lying-above partial order on the set of segments and arcs
restricts to a total order on the set of arcs.

We shall also make use of the again intuitively obvious fact that if a line XY does not
intersect a circle Ω and if x and y are the lengths of the tangent lines from X and Y to Ω,
then

d(Y X) + x > y. (1)

To see this, note that Y cannot lie in the region enclosed by the tangent lines from X to Ω.
Therefore, the point Y and Ω lie on the same side of one of the tangents XX ′ to Ω (see Fig. 5).
Similarly, the point X and Ω lie on the same side of one of the tangents Y Y ′ to Ω. Since
Y,X,X ′ are not collinear, Y X ′ is not tangent to Ω and therefore crosses it at a point Z that
lies between Y and X ′. From d(Y Y ′)2 = d(Y Z) d(Y X ′), it follows that d(Y X ′) > d(Y Y ′)
and hence d(Y X) + d(XX ′) > d(Y X ′) > d(Y Y ′), as desired. It is worth mentioning that (1)
still holds under the weaker assumption that Y does not lie in the one quarter Q determined
by the two tangent lines from X to Ω and not bordering on Ω.

3. The proof

We are now ready to prove a stronger version of Urquhart’s Theorem, together with its
converse. Note that Urquhart’s Theorem states that in Theorem 1 the second equality of
(i) implies the third equality. It is curious why its converse is not mentioned at all in [1].

Theorem 1. Let BC and B ′C ′ be two segments that intersect at D.
(i) If the ex-arcs of BC and B ′C ′ coincide, then

p(ABC) = p(AB ′C ′), p(ABD) = p(AC ′D), p(AB′D) = p(ACD). (2)

(ii) If the ex-arc of BC lies strictly above the ex-arc of B ′C ′, then

p(ABC) < p(AB ′C ′), p(ABD) < p(AC ′D), p(AB′D) < p(ACD). (3)
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(iii) If any one of the three equalities in (2) holds, then the remaining two hold also, and the
ex-arcs of BC and B ′C ′ coincide.

Proof. Suppose that the ex-arc of BC lies above (or on) the ex-arc of B ′C ′. Then the segment

BC lies above the ex-arc of B ′C ′. We draw the ex-arc ÛV of B′C ′, and we let BC∗ be the
segment tangent to ÛV (see Fig. 6). We let D∗ be the point where BC∗ intersects B′C ′, and

we let X and X ′ be the points where BC∗ and B′C ′ touch ÛV .
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Figure 6: Illustrating the proof of Theorem 1

Noting that
p(ABD) + p(ACD) = p(ABC) + 2 d(AD), (4)

we see that any two of the equalities in (2) imply the third. It is trivial that p(ABC∗) =
p(AB′C ′), each being equal to 2 d(AU). Also,

p(ABD∗)− p(AC ′D∗) = (d(AB) + d(BD∗))− (d(AC ′) + d(C ′D∗))

= (d(AB) + d(BX) + d(XD∗))− (d(AC ′) + d(C ′X ′) + d(X ′D∗))

= (d(AB) + d(BU) + d(XD∗))− (d(AC ′) + d(C ′V ) + d(X ′D∗))

= (d(AU)− d(AV )) + (d(XD∗)− d(X ′D∗)) = 0,

and therefore p(ABD∗) = p(AC ′D∗). Hence

p(ABC∗) = p(AC ′B′), p(ABD∗) = p(AC ′D∗), p(AB′D∗) = p(AC∗D∗).

Thus if BC coincides with BC∗, then (2) holds. This proves (i). Otherwise, we have

p(AB′C ′) = p(ABC∗) > p(ABC),

p(AC ′D) > p(AC ′D∗) = p(ABD∗) > p(ABD),

p(ACD)− p(AB′D) = (d(AC) + d(CD))− (d(AB ′) + d(B′D))

= (d(AC) + d(CD) + d(DD∗) + d(D∗X ′))

− (d(AB′) + d(B′D) + d(DD∗) + d(D∗X ′))

= d(AC) + (d(CD) + d(DX ′))− (d(AB′) + d(B′X ′))
(1)
> d(AC) + d(CV )− (d(AB ′) + d(B′U))

= 0.
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This proves (ii).

In order to prove (iii), note that if any of the equalities of (2) holds, then (ii) would imply
that the ex-arcs of BC and B ′C ′ coincide. The rest follows from (i).

We end this note by rephrasing and giving a simple proof of an equivalent of Urquhart’s
Theorem that was obtained byD. Pedoe by applying the method of reciprocal polars, invoking
the contentious shades of Poncelet, Gergonne, Plücker and even Möbius. Without venturing
to call this “the most elementary theorem of circle geometry”, D. Pedoe asserts that it is
clear that this is not a trivial theorem. The theorem states that

if BACD is a parallelogram and if a circle touches the sides AB and AC and intersects BC
in the points E and F , then there exists a circle which touches (the extensions of) DB and
DC and passes through E and F .

We make the observation that since ABC and DCB are glide reflections of each other, state-
ments about DCB can be glide-reflected into appropriate statements about ABC, rendering
DCB redundant. Thus the theorem can be restated as follows.

Theorem 2. A variant of Pedoe’s equivalent of Urquhart’s Theorem: If ABC is a triangle
and if a circle touches the sides AB and AC and intersects BC in the points E and F , then
there exists a circle which touches the extensions of AB and AC and passes through the
reflections E∗ and F ∗ of E and F about the midpoint of BC.

Proof. We place ABC in our reference frame xAy so that BC is a segment, and our circle is
Ωt for some t. Letting x = x(t) = d(BE) and y = y(t) = d(CF ), we see that (x, y) is the
necessarily unique solution of the system

x(a− y) = (c− t)2, y(a− x) = (b− t)2.

This system is clearly invariant under the simultaneous substitutions (x ↔ y) and (t →
b+ c− t). Therefore, letting s = b+ c− t, we see that the circle Ωs has the desired property.

It is worth mentioning that the domain of definition of x(t) and y(t) is the closed interval
J = [(−a+ b+ c)/2, (a+ b+ c)/2], where the endpoints are the values of t which correspond
to the incircle and excircle.

Finally, I find it rather curious that not much, if any, research was generated by the
appearance of [1], in spite of its intriguing title, its interesting content and the provocatively
simple questions it raises, and in spite of being written by the author of such an attractive
book as [2].
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