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Abstract. With the traditional definition of the Gergonne center of a triangle
in mind, it is natural to consider, for a given tetrahedron, the intersection of
the cevians that join the vertices to the points where the insphere touches the
faces. However, these cevians are concurrent for the limited class of what we call
inspherical tetrahedra. Another approach is to note that the cevians through any
point inside a triangle divide the sides into 6 segments, and that the Gergonne
center is characterized by the requirement that every two segments sharing a
vertex are equal. Similarly, the cevians through any point inside a tetrahedron
divide the faces into 12 subtriangles, and one may define the Gergonne center as
the point for which every two subtriangles that share an edge are equal in area.
This was done by the authors in [8], where the existence and uniquenes of such a
point is established. It turns out that tetrahedra whose Gergonne center has the
stronger property that every two subtriangles that share an edge are congruent
(resp. skew-congruent) are precisely the inspherical (resp. equifacial) ones. This
is proved in Section 4. In Sections 2 and 3, we give a characterization of the
inspherical tetrahedra and we outline a method for constructing them.

Key Words: Barycentric coordinates, Ceva’s theorem, Gergonne point, Fermat-
Torricelli point, isosceles or equifacial tetrahedron, isogonal tetrahedron.
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1. Introduction and terminology

The Gergonne center of a triangle ABC is defined to be the point of intersection of the cevians
AA′, BB′, and CC ′, where A′, B′, and C ′ are the points where the incircle touches the sides
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BC, CA, and AB, respectively, as in Fig. 1. Such cevians are concurrent by Ceva’s Theorem
since A′, B′, C ′ can be equivalently defined by the algebraic relations

AB′ = AC ′, BC ′ = BA′, CA′ = CB′,

where XY denotes the length of the line segment XY . It is then quite natural to consider the
point of intersection (if any) of the cevians AA′, BB′, CC ′, and DD′ of a tetrahedron ABCD,
where A′, B′, C ′, and D′ are the points where the insphere touches the faces. We shall see
that such cevians are concurrent for a limited class of tetrahedra and we shall describe such a
class. We call the resulting center (when it exists) the inspherical Gergonne center, or simply
the inspherical center to distinguish it from the Gergonne center defined in [8], and we shall
call a tetrahedron with an inspherical center an inspherical tetrahedron. The relation between
these two centers is discussed in Section 4.
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Throughout the rest of this article, the term tetrahedron stands for a non-degenerate
tetrahedron. An equifacial or isosceless tetrahedron is a tetrahedron whose faces are congruent,
or equivalently have the same area; see [10, Chapter 9, pages 90–97], [12, Theorem 4.4, page
156], [2, Cor. 307, page 108] or [7]. If A1A2A3A4 is a tetrahedron, then by its j-th face
we shall mean the face opposite to the j-th vertex Aj. Two edges of a tetrahedron will be
called opposite if they have no vertex in common. Two triangles ABC and A′B′C ′ are called
congruent if there is an isometry that carries A,B, and C to A′, B′, and C ′ in the same
order. Finally, we call two n-tuples (x1, . . . , xn) and (y1, . . . , yn) equivalent, and we write
(x1, . . . , xn) ≡ (y1, . . . , yn) if one of them is a positive multiple of the other. Thus two n-
tuples (x1, . . . , xn) and (y1, . . . , yn) are barycentric coordinates of the same point if and only
if they are equivalent.

2. A characterization of inspherical tetrahedra

In Theorem 1 below, we prove that a tetrahedron is inspherical if and only if its insphere
touches the faces at their Fermat-Torricelli points. However, to see how large the class of
such tetrahedra is and to describe how they can be constructed, a stronger and more technical
statement is needed and is provided by Theorem 2.

For ease of reference and to be self-contained, we start with two fairly well-known lem-
mas. The first describes the Fermat-Torricelli point of a triangle and the second is a three-
dimensional version of Ceva’s Theorem. Both will be used freely.
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Lemma 1. Let ABC be a non-degenerate triangle. Then there exists a unique point F whose
distances from the vertices have a minimum sum. If the angles of ABC are less than 120◦

each, then F is interior and is characterized by the equi-angular property

∠AFB = ∠BFC = ∠CFA = 120◦.

Otherwise, F is the vertex that holds the largest angle.
In all cases, F is called the Fermat-Torricelli point of ABC.

Proof. See [6], or [1] and [13] for higher-dimensional versions.

Lemma 2. Let T = A1A2A3A4 be a tetrahedron and let Dj, 1 ≤ j ≤ 4, be a point on
its j-th face. Then the cevians AjDj, 1 ≤ j ≤ 4, are concurrent if and only if there exist
M1, M2, M3 and M4 such that for all arrangements (i, j, k, t) of {1, 2, 3, 4}, (Mi,Mj,Mk)
are barycentric coordinates of Dt relative to AiAjAk. In this case, (M1,M2,M3,M4) are
barycentric coordinates of the point of concurrence relative to A1A2A3A4.

Proof. See [14].

Theorem 1. Let A1A2A3A4 be a tetrahedron and let Dj, 1 ≤ j ≤ 4, be the point where the
insphere touches the j-th face. Then the cevians AjDj, 1 ≤ j ≤ 4, are concurrent if and only
if Dj, 1 ≤ j ≤ 4, is the Fermat-Torricelli point of the j-th face.
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Proof. Following the argument in [10, page 93], we first note that the line segments A1D2,
A1D3, and A1D4 have equal lengths since they are tangent lines to the same sphere from the
same point A1. We denote their common length by a, and we define b, c, d similarly. This
is shown in Fig. 3 where our tetrahedron is flattened. It follows that the triangles A1A2D3
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and A1A2D4 are congruent and hence ∠A1D3A2 = ∠A1D4A2. We denote the measure of this
angle by γ, and we define α, β, α′, β′, γ′ similarly, as in Fig. 2. The equations

α+ β + γ = α + β ′ + γ′ = α′ + β + γ′ = α′ + β′ + γ = 360◦ (1)

lead immediately to the conclusion

α = α′, β = β′, γ = γ′. (2)

Now assume that the cevians AjDj, 1 ≤ j ≤ 4, are concurrent. If (M1,M2,M3,M4) are
barycentric coordinates of their point of intersection relative to A1A2A3A4, then by Lemma 2,
(M1,M2,M3) are barycentric coordinates of D4 relative to A1A2A3. Thus

(bc sinα, ca sin β, ab sin γ) ≡ (M1,M2,M3)

(bd sin β, da sinα, ab sin γ) ≡ (M1,M2,M4).

Therefore

bc sinα

ca sin β
=

bd sin β

ad sinα

(

=
M1

M2

)

and hence α = β. Similarly, α = γ and therefore

α = β = γ = 120◦.

Hence D1 is the Fermat-Torricelli point of the face A1A2A3. Similarly for the other faces.
Thus if our cevians are concurrent, then the Dj’s are the Fermat-Torricelli points of the faces.
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Conversely, suppose that the Dj’s are the Fermat-Torricelli points of the faces. It is clear
that the barycentric coordinates of D4 with respect to A1A2A3 are

(bc sin 120◦, ca sin 120◦, ab sin 120◦) ≡
(

1

a
,
1

b
,
1

c

)

.

Similar statements hold for the other Dj’s. Lemma 2 now implies that the cevians AjDj

are concurrent (and that they concur at the point whose barycentric coordinates relative to
A1A2A3A4 are (1/a, 1/b, 1/c, 1/d)).

3. Construction of general inspherical and non-inspherical

tetrahedra

Theorem 1 describes how to construct a non-inspherical tetrahedron. Start with any triangle
ABC and any point P inside ABC that is different from the Fermat-Torricelli point of ABC.
Place a small sphere S so that it touches the plane of ABC at P and draw three planes
through the sides of ABC that are tangent to S. If D is the point where these three planes
intersect, then ABCD would be a non-inspherical tetrahedron. To ensure that these planes
intersect within the halfspace of the plane of ABC which contains S, we take the radius of S
sufficiently small. For example, it is sufficient (but by no means necessary) to take the radius
of S to be less than each of the distances of P from the sides of ABC.

On the other hand, to describe how to construct inspherical tetrahedra, we need the
following theorem, which will also be needed in proving Theorem 4.
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Theorem 2. Let A1A2A3A4 be a tetrahedron whose faces have interior Fermat-Torricelli
points D1, D2, D3 and D4. If AiDj = AiDk = AiDt for all arrangements (i, j, k, t) of
{1, 2, 3, 4}, then our tetrahedron is inspherical.
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Proof. Let a denote the common length of the line segments A1D2, A1D3, and A1D4, and
define b, c, d similarly, as shown in Fig. 4. Let I be the incenter and r the inradius of our
tetrahedron, and let Ij be the orthogonal projection of I on the j-th face. To prove that
Ij = Dj for all j, it is sufficient by symmetry to prove that I4 = D4. Equivalently, it is
sufficient to prove that the distances from I4 to A1, A2, and A3 are a, b, and c, respectively.
Again, it is sufficient by symmetry to prove that I4A1 = a, or equivalently

α2 − r2 = a2, (3)

where α = IA1. Without loss of generality, we may assume that I is the origin.
To accomplish this, we note that all the elements of our tetrahedron can be computed

in terms of a, b, c, and d. We find r (in terms of a, b, c, d) by first finding the lengths of the
edges (using the Law of Cosines), then the areas Fj of the faces and the volume V of the
tetrahedron, and then using the formula V = (r/3)(F1+F2+F3+F4). Then we find α = ‖A1‖
by solving a system of 10 linear equations in the unknowns Ai ·Aj, i ≤ j. We then check that
(3) is indeed satisfied.

We find it more convenient to denote the lengths of the edges by
√
x,
√
X, . . . as shown

in Fig. 4. Thus we have

x = b2 + c2 + bc, y = c2 + a2 + ca, z = a2 + b2 + ab,

X = a2 + d2 + ad, Y = b2 + d2 + bd, Z = c2 + d2 + cd. (4)

The area Fj of the j-th face is given by Fj = (
√
3/4)fj, where

f1 = bc+ cd+ db, f2 = ac+ cd+ da, f3 = ab+ bd+ da, f4 = ab+ bc+ ca. (5)

The volume V of the tetrahedron is given by

144V 2 = (xX + yY + zZ)(x+X + y + Y + z + Z)− (xyz + xY Z +XyZ +XY z)

= −2(x2X +X2x+ y2Y + Y 2y + z2Z + Z2z). (6)

Using (4), this simplifies into

16V 2 = abcdS, (7)

where

S = ab+ bc+ ca+ ad+ bd+ cd =
f1 + f2 + f3 + f4

2
. (8)

Since

V =
r

3
(F1 + F2 + F3 + F4) =

r

3

√
3

4
(f1 + f2 + f3 + f4) =

r

3

√
3

4
(2S) =

r
√
3

6
S,

it follows that

16V 2 =
4r2S2

3
. (9)

From (7) and (9), it follows that

r2 =
3abcd

4S
. (10)
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It remains to compute the distances from the incenter I to the vertices. The barycentric
coordinates of I with respect to A1A2A3A4 are (f1, f2, f3, f4). Therefore

I = 0 = f1A1 + f2A2 + f3A3 + f4A4.

Taking the scalar product with each Aj, and letting Aij = Ai · Aj, we obtain the first four
linear equations represented by (11) below. Next, every edge gives rise to an equation in the
manner that

z = ‖A2A3‖2 = (A2 − A3) · (A2 − A3) = A22 + A33 − 2A23.

The six equations thus obtained are the last 6 equations of the system (11).
The system
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(11)

has a unique solution. Using (4) and (5), we obtain the values of the Aij in terms of a, b, c,
and d. In particular, we obtain

α2 = A11 = a2 +
3abcd

4S
.

This together with (10) implies that α2 − r2 = a2, as desired in (3), and completes the
proof.

Theorem 2 above describes completely how to construct a general inspherical tetrahedron.

We draw three vectors
−−→
OA1,

−−→
OA2, and

−−→
OA3 that make an angle of 120

◦ with each other and
that have arbitrary lengths a, b, and c (see Fig. 5). In other words, we take a triangle A1A2A3

with Fermat-Torricelli point O. By valley-folding along the edges of A1A2A3, we create three
more triangles B1A2A3, A1B2A3, and A1A2B3 that are identical with A1A2A3. Let O1, O2,
and O3 be the Fermat-Torricelli points of these triangles, respectively. For each j, take a
point Cj on the line segments OjBj in such a way that O1C1, O2C2, and O3C3 have the same
length, d say. Now, we cut along the edges A1C2, C2A3, A3C1, C1A2, A2C3, and C3A1 and
we valley-fold along the sides of A1A2A3 until the points C1, C2, and C3 coincide and occupy
the same position, A4 say. The resulting tetrahedron A1A2A3A4 satisfies the conditions of
Theorem 2, and thus is inspherical.

It is quite legitimate to question the claim, implicitly made above, that totally arbitrary
positive numbers a, b, c, d do give rise to a feasible tetrahedron. After all, a very similar
situation was met when constructing an equifacial tetrahedron. Trying to get the vertices of
a given triangle to coincide and occupy the same position by valley-folding along the three
segments that join, two by two, the mid-points of the sides, one soon discovers that this
is possible only if the given triangle is acute-angled. Theorem 3 below assures us that the
construction described in the previous paragraph is valid for all choices of positive a, b, c, d.
Its proof makes use of the following lemma.
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Lemma 3. Let x, y, z,X, Y, Z be given positive numbers. Then there exists a tetrahedron such
that the lengths of the sides of one of its faces are

√
x,
√
y,
√
z and the lengths of the opposite

sides are
√
X,
√
Y ,
√
Z, respectively, if and only if the right hand side of (6) is positive and

all the relevant triangle inequalities pertaining to the six faces are satisfied.

Proof. See [9] or [3].

Theorem 3. Let a1, a2, a3, a4 be arbitrary positive numbers. Then there exists a tetrahedron
A1A2A3A4 whose faces have interior Fermat-Torricelli points D1, D2, D3, D4, such that

AiDj = AiDk = AiDt = ai for all arrangements (i, j, k, t) of {1, 2, 3, 4}.
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Proof. Let a1, a2, a3, a4 be renamed as a, b, c, d and let x,X, . . . be defined as in (4). In view
of the construction exhibited in Fig. 5, and in view of Lemma 3, we need only show that the
right hand side of (6) is positive. This holds since the right hand side of (6) simplifies into
the positive quantity abcdS given in (7).

4. Relation to other Gergonne centers

We end this note by discussing possible alternative definitions of the Gergonne center. Observe
that any cevians A1D1, A2D2, and A3D3 of a triangle A1A2A3 divide the sides into six
segments AiDj, i 6= j, and that these cevians meet at the Gergonne center if and only if any
two of these segments that share a vertex are equal, or equivalently

AiDj = AiDk for every arrangement (i, j, k) of {1, 2, 3}.

Similarly, any cevians A1D1, A2D2, A3D3, and A4D4 of a tetrahedron A1A2A3A4 divide the
faces into 12 triangles AiAjDk, i, j, k are pairwise distinct. In [8], it was proved that there
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exist unique concurrent cevians such that the twelve triangles into which they divide the faces
have the property that any two which share an edge have equal area, or equivalently

AiAjDs and AiAjDt have the same area for every arrangement (i, j, s, t) of {1, 2, 3, 4}.
(12)

The above discussion shows that the inspherical center is obtained by replacing (12) with the
stronger requirement that

AiAjDs and AiAjDt are congruent for every arrangement (i, j, s, t) of {1, 2, 3, 4}. (13)

This shows in particular that if the inspherical center exists, then it is the Gergonne center
itself. Thus in a sense, the two approaches to defining the Gergonne center of a tetrahedron
led to the same center. Also, any reference to the insphere is made obsolete in view of (13).

It is natural to also investigate the result of replacing (13) by the similar condition

AiAjDs and AjAiDt are congruent for every arrangement (i, j, s, t) of {1, 2, 3, 4} (14)

and to see whether this skew-congruence condition, too, is equivalent to some natural geo-
metric requirement. The next theorem provides the answer.

Theorem 4. Let T = A1A2A3A4 be a tetrahedron and let AjDj, 1 ≤ j ≤ 4, be the unique
concurrent cevians (guaranteed in [8]) that satisfy (12). Then (13) holds if and only if T is
inspherical (in which case the Dj’s are the Fermat-Torricelli points of the faces), and (14)
holds if and only if T is equifacial (in which case the Dj’s are the centroids of the faces.)

Proof. If (13) holds, then the first paragraph in the proof of Theorem 1 shows that the Dj’s
are the Fermat-Torricelli points of the faces. By Theorem 2, T is inspherical. Conversely,
if T is inspherical, then the Fermat-Torricelli points satisfy (13) and hence (12). By their
uniqueness, the Dj’s are the Fermat-Torricelli points and hence they satisfy (13).

If (14) holds, then letting a, b, c and α, α′, . . . be as shown in Fig. 2, we see that (1)
holds and leads to the conclusion (2). Thus the faces of T are congruent and T is equifacial.
Conversely, if T is equifacial, then the centroids of the faces satisfy (12). By their uniqueness,
the Dj’s are the centroids and hence they satisfy (14).

Epilogue and acknowledgments

After writing this article, it came to our attention that the problem of characterizing inspher-
ical tetrahedra was considered by Edwin Koźniewski and Renata A. Górska in [11], where
an alternative characterization is achieved. We are grateful to E. Koźniewski for sending
us a copy of [11] and for drawing our attention to the fact that our Theorem 1 is already
known to Aleksey Zaslavsky as announced in [15]. We are also grateful to Zaslavsky for
writing and telling us that the material in [15] will appear (in Russian) in the March 2004
issue of Mathematicheskoe Prosveshenije and that the contents are contributions by scholars
D. Kosov (Moscow), M. Isaev (Barnaul) and V. Filimonov (Ekaterinburg). Later, we
found out that Theorem 1 is more than one century old, as implied by Footnote 1 of [4,
page 373], where the term isogonal is used to mean inspherical. The same footnote states
that the three angles subtended by the sides of a face of a tetrahedron at the point where the
insphere touches that face are the same for all faces. Thus if the insphere of a tetrahedron
touches a face ABC at X, then the measures of the three angles ∠AXB, ∠BXC, and ∠CXA
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are independent of that particular face. This beautiful, yet obscure, theorem is also stated in
[5, 2nd paragraph, page 174], and it clearly implies that the condition, in Theorem 1, that all
points of contact of the insphere of ABCD with the faces are the Fermat-Torricelli points of
the respective faces is equivalent to the seemingly weaker condition that one of these points
is.
The first-named author is supported by a research grant from Yarmouk University and would
like to express his thanks for that grant. The authors are also grateful to Ayman Hajja for
drawing the figures and to the editors for converting them into PostScript.
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