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Edwin Koźniewski

Institute of Civil Engineering, Engineering Graphics and Computer Methods Division,

BiaÃlystok University of Technology

Wiejska st. 45E, PL 15-351 BiaÃlystok, Poland

email: edwikozn@pb.bialystok.pl

Abstract. Roofs discussed in this article are defined as polyhedral surfaces on the
basis of two assumptions: (1) all eaves of a roof form a planar (simply connected
or k-connected) polygon called the base of the roof, (2) every hipped roof end
makes the same angle with the (horizontal) plane which contains the base.

Thus every roof, and equivalently the orthographic projection of this roof onto
a plane, is uniquely defined by its base. Namely, each ridge of a roof can be ob-
tained as a line segment of the bisectrix of the angle formed by two appropriate
edges of the base; if these axes are parallel, then the ridge is the axis of symmetry.
Disregarding the metric properties of a roof, we can treat such roofs as planar
graphs. Usually, i.e., if the vertices of the base of a given roof are in general po-
sition, these are 3-regular graphs. For such graphs (with a simply connected or
k-connected base of the roof) we formulate and prove a new Euler formula (Euler
formula for regular roofs), and the so-called equations of a regular roof.
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1. Introduction

This article is the first part of a paper which is concerned with geometrical properties of roofs
of buildings. Roofs, as a special class of polyhedral surfaces, are examined in many aspects:
• a complete algorithmic definition,

• a graph-theoretical characterization of the skeleton of a roof,

• the existence of all possible shapes of roofs,

• the existence of a supposed shape of a roof.
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The results of the presented articles may be interesting from many points of view:

• physically plausible engineering examples of 3-regular graphs,

• a new example of an Euler formula for special polyhedral surfaces,

• computational geometry for special polyhedral surfaces,

• computer graphics for the design and visualization of roofs of buildings,

• and consequently, computer aided architectural design.

The geometry of roofs is also an interesting example of an application of Descriptive Geometry
methods for the complete geometric design of a roof (shape of a roof, dihedral angle between
two adjacent hipped roof ends, true size of a hipped roof end).

Roofs considered in this article are defined on the basis of two assumptions:

(1) all eaves form a planar (simply connected or k-connected) polygon called the base of

the roof,

(2) every hipped roof end makes the same angle with the (horizontal) plane which contains
the base (cf. [5, 10]).

Therefore a roof and equivalently the orthographic projection of this roof onto a plane is
uniquely defined by its base. Namely, each roof ridge can be obtained as a line segment
of the bisectrix of the angle formed by two appropriate edges (more precisely: by half-lines
containing these edges) of the base. When these edges are parallel, then the roof ridge is
the axis of symmetry (mirror line) of these edges (half-lines). Due to an elementary triangle
property the three bisectrices of any triangle have exactly one common point.

Disregarding the metric properties of a roof, we can treat such roofs as graphs. More
precisely, the orthographic projection of the skeleton of a given roof can be seen as a possible
geometric realization of a graph. Usually, i.e., if the vertices of the base of a given roof
are in general position, then we obtain 3-regular graphs (cf. [1, 2]). For such graphs (for a
simply connected or k-connected base of a roof) we formulate and prove a new Euler formula,
“Euler’s formula for regular roofs”. This formula can be applied for finding and checking a
solution of a roof by a computer program. It is well known that in computer graphics the
classic Euler formula for polyhedra and its generalisation for polyhedra with holes and tunnels
is used (cf. [3, 4, 6, 8]). There are also Euler formulas for other special classes of graphs (cf.
[9]). Such formulas allow to check the number of vertices, edges, and faces of a polyhedron
in a computer program which creates and visualizes geometric objects.

2. Generalized polygons

Let us consider the set {A0, A1, A2, . . . , An} of n+ 1 points, n ≥ 2, in the Euclidean plane π.
By a broken line C(A0, A1, A2, . . . , An)1 we mean the union

n⋃

i=1

〈Ai−1Ai〉 of line segments 〈Ai−1Ai〉.

A broken line C(A0, A1, A2, . . . , An) with n ≥ 3 is said to be closed if A0 = An.

Using the symbol L(AiAjAk) for the collinearity of the points Ai, Aj , Ak ([7]), a broken
line C(A0, A1, A2, . . . , An) with n ≥ 3 is said to be ordinary if the following conditions are

1In Graph Theory such an object is called a polygonal arc.
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Figure 1: Different shapes of roofs together with the roof skeleton. a) the building of the
secondary school in Augustow in Poland (built 1922) with a regular roof, b) a detached
house with a regular roof, c) a detached house with an irregular roof

satisfied:
¬L(Ai−1AiAi+1), i = 1, 2, . . . , n− 1,

A0 = An =⇒ ¬L(A0A1An−1),

|i− j| 6= 0, 1, n− 1 =⇒ 〈Ai−1Ai〉 ∩ 〈Aj−1Aj〉 = ∅
∧ (〈A0A1〉 ∩ 〈An−1An〉 = ∅ ∨ A0 = An) ,

(1)

where i = 1, . . . , n and j = 3, . . . , n.
It is well known that every ordinary closed broken line C(A0, A1, A2, . . . , An) divides the

plane π into two disjoined regions; the first of which is bounded, the second unbounded ([2]).
The bounded region will be denoted by Cint and the unbounded region by Cext. Then
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Figure 2: The partly-regular roof of the building of the BiaÃlystok University, Department of
Economy (built in the 19th century), and the orthographic projection of a part of its skeleton
with a way of an architectural design modification from a regular roof to a partly-regular
roof (a → a′ → a′′ → a′′′). At the top of the figure the fragment of the town with atrial
buildings (i.e., with court-yards) is shown. At the top-right of the photograph the atrial
building of the BiaÃlystok University is displayed, at the bottom the block of atrial buildings
of the Theological Seminary (built 1985) (phot.: W. WoÃlkow)

Cint ∪Cext ∪C = π. Let cl(X) denote a closure of X in the topological sense. It is easy to
see that cl(Cint) = Cint ∪C.

Let C1,C2, . . . ,Ck with 1 ≤ k ∈ N be a finite sequence of ordinary closed broken lines
such that cl(Ci

int) ⊂ C1
int and cl(Ci

int) ∩ cl(Cj
int) = ∅ for i 6= j, i, j = 2, 3, . . . , k. By a

simple generalized polygon P(C1,C2, . . . ,Ck) we mean the set

k⋃

i=1

(
Ci ∪

(
C1

int ∩
( k⋂

i=2

Cext
i

)))
.
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From the topological point of view the polygon P(C1,C2, . . . ,Ck) is a k-connected set in the
Euclidean plane ([7]). Every line segment which belongs to Ci for any i = 1, 2, . . . , k will be
called an edge of the polygon. Every sum

P =
k⋃

j=1

Pj = {Pj}j=1,2,...,k =
{
Pj(Cj1,Cj2, . . . ,Cj,lj )

}
j=1,2,...,k

of k separable simple generalized polygons Pj

(
Cj

j1,C
j
j2, . . . ,C

j
j,lj

)
with k ≥ 2 will be called

a composed generalized polygon. We call every simple generalized polygon or composed gen-
eralized polygon a generalized polygon. For k = 1, lj > 1, we have a simple generalized
polygon. For k = 1, lj = 1, we have a polygon in an elementary sense. In the case k = 1
we omit the index j and we write P(C1,C2, . . . ,Cl1) instead of P1(C11,C12, . . . ,C1,l1) ={
Pj(Cj1,Cj2, . . . ,Cj,lj )

}
j=1

.

3. Geometric algorithmic determination of the roof

3.1. Roof terminology

First, we describe the terminology of elements of the class of roofs discussed in this paper
(see Fig. 3). The bottom horizontal ridges of a given roof called eaves form a planar simple
generalized polygon called the base of the roof. The polygons which constitute the roof will
be called hipped roof ends. Each eaves belongs to one and only one hipped roof end. The
vertices of the base of a roof will be called corner vertices. The remaining vertices of a roof,
and simultaneously the remaining vertices of all hipped roof ends, will be called top points of a
roof. The ridges of a roof which emerge from corner vertices will be called corner ridges (roof
hips ridges); the remaining ridges do not meet any edge of the base and are called disappearing

ridges. All disappearing ridges form the line of disappearing ridges of the roof. Disappearing
ridges which are parallel to the base of a roof will be called roof ridges.

In the Descriptive Geometry literature the precise geometrical definitions of roofs and the
general construction of a roof (the so-called general algorithmic determination of a roof over
a given base) cannot be found. However, in many monographs on Descriptive Geometry the
geometry of roofs is extensively discussed (cf. [5, 10]).

In our further considerations every roof will be represented by its skeleton, i.e., the set of
all ridges and vertices of the polyhedral surfaces. However, for the sake of simplicity we use
the term “roof” instead of the “skeleton of the roof”. Moreover, the orthographic projection
of geometric objects (points, lines, line segments of straight lines) will be displayed on the
plane of projection (in this paper the plane π) by symbols (Greek or Latin) with primes; when
an element belongs to π we omit the prime (see Figs. 4, 5). In order to obtain an algorithmic
characterization of the roofs, a topographic section method (see Fig. 6) will be used. In the
sequel an algorithmic solution will be presented for the determination of the roof over a given
base.

3.2. Some useful notations

Let us consider a simple generalized polygon P (C1,C2, . . . ,Ck) where

Ci = C (Ai0, Ai1, . . . , Ai li) , Ai0 = Aili , k ≥ 1, i = 1, 2, . . . , k; li ≥ 3.
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Figure 3: The elements of a roof: a) a roof with its elements in orthographic projection,
b) the roof with its elements in a military axonometry, c) the line of disappearing ridges of
the roof in orthographic projection

Such a polygon has
∑k

i=1 li vertices Aij and the same number of sides 〈Ai,j−1Aij〉, j =
1, 2, . . . , li, i = 1, 2, . . . , k. The set of vertices of the above polygon will be denoted by V.
Let us denote by R (P (C1,C2, . . . ,Ck)) — R(P) in brief — the roof which we want to
construct starting from the polygon P (C1,C2, . . . ,Ck).

In order to determine the roof R(P), it suffices to construct two basic sets,

• the set T of top points of the roof R(P),

• the set R of ridges of the roof, and

• two index sets T and R associated suitably with them.

In principle, it is sufficient to construct the set T only, however under the assumption of
creating an appropriate index set T which defines the manner of adjacency of the elements of
T .

Moreover, we will construct three useful auxiliary sets,

• the set Q of intersection points of all possible triples of half-planes which contain the
hipped roof ends,

• the set B of common parts (called b-half-lines) of all possible pairs of half-planes as
mentioned above , and

• a running set A ⊂ B of b-half-lines which are active during the process of construction
of the roof R(P) — together with their index sets Q, B, A, respectively.

Let us denote by cij the line segment 〈Ai,j−1Aij〉, by ~cij the normalized vector
−−−−−−→
Ai,j−1Aij,

by ~c⊥ij the unit vector orthogonal to ~cij and pointing to the interior of P (see Fig. 6b). Using
the ‘modulo-li-rule’ with the modification that 0 is replaced by li, we denote with ci1 the
line segment 〈Ai liAi1〉. For the simplicity of notation, we will use the same letter for a line
segment, a b-half-line, a straight line, i.e., by cij (and generally by the symbols a, b, . . . with
indices or without indices) we denote suitable b-half-lines and lines determined by the line
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segment cij for appropriate i, j.

Moreover, we introduce some definitions which associate the sets of elements (points,
b-half-lines (line segments, ridges)) with their index sets, and other convenient notations:

Note that the point Xu1,v1;u2,v2;u3,v3 can be identified with its three-element set of indices
(briefly three-set) {(u1, v1), (u2, v2), (u3, v3)} and the b-half-line (line segment, ridge) xw1,z1;w2,z2

can be identified with its two-element set of indices (briefly two-set) {(w1, z1), (w2, z2)}. We
assume that the point Xu1,v1;u2,v2;u3,v3 is incident with a b-half-line (line segment, ridge)
yw1,z1;w2,z2 if and only if {(w1, z1), (w2, z2)} ⊂ {(u1, v1), (u2, v2), (u3, v3)}. We assume briefly
that the three-set {(u1, v1), (u2, v2), (u3, v3)} is incident with a two-set {(w1, z1), (w2, z2)} if
and only if {(w1, z1), (w2, z2)} ⊂ {(u1, v1), (u2, v2), (u3, v3)}. Similarly, we assume that a half-
line (line segment, ridge) xy1,z1;y2,z2 connects two points Yu1,v1;u2,v2;u3,v3, Zu4,v4;u5,v5;u6,v6 if and
only if {(u1, v1), (u2, v2), (u3, v3)} ∩ {(u4, v4), (u5, v5), (u6, v6)} = {(y1, z1), (y2, z2)}. For such
points we assume that they are connectable.

Figure 4: Base of the roof is the generalized polygon P (C1,C2, . . . ,Ck) with k = 3, l1 = 8,
l2 = 4, l3 = 6: a) contour, b) initial elements of the constructed roof

We can treat the considered polygon P (C1,C2, . . . ,Ck) as a plan of a building (horizontal
projection) and simultaneously as a contour of the roof of this building. As noted above, we
call this polygon the base of the roof. We suppose that all hipped roof ends make the same
angle of slope with the plane of the roof base; the angle measure lies between 0◦ and 90◦.

The roof R(P) can be constructed in two ways:

• in the plane π (planar manner), and

• in the three-dimensional space (spatial manner) where the plane π is embedded.

The spatial method seems to be convenient and also more natural; therefore we remain with it
as the main way for the algorithmic construction of R(P). However in traditional Descriptive
Geometry the planar manner and Monge’s method for the determination of the roof R(P) is
preferred.

First, let us assume the counter clockwise orientation (right-handed) of each component
Ci of the given generalized polygon P. Therefore every side cij of P can be completed by
the perpendicular unit vector ~c⊥ij which points towards the interior of P. Then every pair of
vectors (~c1j, ~c

⊥
1j) has a right-handed orientation, and every pair (~cij, ~c

⊥
ij) for i = 2, 3, . . . , k is

left-handed (see Fig. 4a).
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Let us denote by αij the half-plane of the hipped roof end with the eaves cij as the edge
line, and let α′

ij denote its orthogonal projection. Notice that αi′j is parallel to αi′′l if and
only if α′

i′j ⊂ α′
i′′l or α′

i′′l ⊂ α′
i′j .

Each pair of non-parallel half-planes (αi′j, αi′′l) has a common half-line bi′j;i′′l, a so-called
b-half-line. The b-half-line bi′i;i′′j (b′

i′i;i′′j) for i′ = i′′ and |i − j| ∈ {1, li′ − 1} will be called
a corner b-half-line (for a line segment a corner ridge of a roof). Each corner ridge bi′i;i′′j

(and its orthogonal projection b′
i′i;i′′j) of the the roof can briefly be denoted by bi′i (b′

i′i) if
i + 1 = j or by bi′′j (b′

i′′j) if j + 1 = i. Without loss of generality we can assume that in the
symbol bi′i;i′′j we mean i′ ≤ i′′, i ≤ j.

Among all corner b-half-lines we distinguish
(1) the hips b-half-line (for a line segment: roof hips ridge), if the angle ∠(α′

i′i, α
′
i′j) is

convex, and

(2) the valley b-half-line (for a line segment: valley roof ridge), if the angle ∠(α′
i′i, α

′
i′j) is

concave.
Each roof has roof hips ridges and may or may not have some valley roof ridges. As it was
already said, the set of all such b-half-lines will be denoted by B.

On the other hand, each pair (α′
i′j, α

′
i′′l) of half-planes α′

i′j, α
′
i′′l with non-parallel lines

which includes suitable edges ci′j, ci′′l determines an angle ∠(α′
i′j, α

′
i′′l). Every half-plane α′

ij

is uniquely determined by two objects: the line spanned by the line segment cij and the unit
vector ~c⊥ij. Then the angle ∠(α′

i′j, α
′
i′′l) may be defined by two pairs (~ci′j, ~c

⊥
i′j), (~ci′′l, ~c

⊥
i′′l).

Figure 5: An illustration of the algorithm for the determination of the roof: a) elements of
the described algorithm; b) an illustration of the topographic method

Summarizing, for a given generalized simple polygon P with selected orientations of their
components we can uniquely define all possible angles which form all possible pairs of half-
lines which contain eaves of the roof R(P). Let us denote by b̃i′j;i′′l the bisectrix of the angle
∠(α′

i′j, α
′
i′′l) if the lines ci′j, ci′′l are not parallel, and the line of symmetry of lines determined

by line segments ci′j, ci′′l in the opposite case.

It is well-known from Descriptive Geometry that the bisectrix b̃i′j;i′′l is the orthogonal

projection b′
i′j;i′′l of the b-half-line bi′j;i′′l ([5]). Hence b̃i′j;i′′l coincides with b′

i′j;i′′l, i.e.,

b̃i′j;i′′l = b′
i′j;i′′l (see Fig. 5a).

For every three αi′i, αi′′j, αi′′′l pairwise not parallel half-planes the point Qi′i;i′′j;i′′′l can
be defined as an element of the set αi′i ∩ αi′′j ∩ αi′′′l (see Fig. 5b). Every point Qi′i;i′′j;i′′′l is
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Figure 6: An illustration of the topographic method for the algorithmic determination of the
roof defined by the polygon displayed in Figs. 4a, 5a

also a common point of the b-half-lines bi′i;i′′j, bi′i;i′′′l, and bi′′j;i′′′l. Every such point may be
called a top point of the roof. Note that the orthogonal projection Q′

i′i;i′′j;i′′′l of Qi′i;i′′j;i′′′l is the
common point of three appropriate bisectrices b′

i′i;i′′j , b′
i′i;i′′′l, b′

i′′j;i′′′l of the angles ∠(α′
i′i, α

′
i′′j),

∠(α′
i′i, α

′
i′′′l), ∠(α′

i′′j, α
′
i′′′l). Let us denote by Q (Q′) the set of all points Qi′i;i′′j;i′′′l (Q′

i′i;i′′j;i′′′l)
for i′, i′′, i′′′ ∈ {1, 2, . . . , k}, i = 1, 2, . . . , li′ , j = 1, 2, . . . , li′′ , l = 1, 2, . . . , li′′′ , (i′, i) 6= (i′′, j),
(i′, i) 6= (i′′′, l), (i′′, j) 6= (i′′′, l). It is easy to see that the cardinality of the set Q (Q′) is at

most equal
(∑k

i=1 li
3

)
.

Let us assign to every point Qi′i;i′′j;i′′′l (Q′
i′i;i′′j;i′′′l) of the set Q (Q′) the height (distance)

hi′i;i′′j;i′′′l (di′i;i′′j;i′′′l) of this point (determined by the line segments ci′i, ci′′j, ci′′′l) with regard to
the plane π. Note that di′i;i′′j;i′′′l = d(Q′

i′i;i′′j;i′′′l, ci′i) = d(Q′
i′i;i′′j;i′′′l, ci′′j) = d(Q′

i′i;i′′j;i′′′l, ci′′′l).
Let H(D) denote the set of all such numbers hi′i;i′′j;i′′′l (di′i;i′′j;i′′′l) for Q ∈ Q (Q′ ∈ Q′). We
have card(H) = card(D) ≤ card(Q) = card(Q′).

3.3. The algorithm

Let h1, h2, . . . , hσ be a monothonic sequence of numbers which belong to H, and d1, d2, . . . , dσ
be a monothonic sequence of numbers which belong to D, i.e., card(H) = card(D) = σ.

Let us define the sequence

{
{Pi

j}j=1,2,...,k

}
i=0,1,2,...

=
{
{Pi

j(Cj1,Cj2, . . . ,Cj,lj )}j=1,2,...,k

}
i=0,1,2,...

(2)

of generalized polygons
{
Pj(Cj1,Cj2, . . . ,Cj,lj )

}
j=1,2,...,k

constructed by induction on i in the

following manner.
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Let g0, g1, g2, . . . , gσ+1 be a monothonic sequence of numbers defined as follows. We set
h0 = 0, g0 = 0, g1 = (h0 + h1)/2. Let us denote by β1 any plane parallel to π such that
d(β1, π) = g1. Let us denote by A1

i′i;i′′j the common point of the plane β1 and the half-line
bi′i;i′′j for i′, i′′ ∈ {1, 2, . . . , k}, i = 1, 2, . . . , li′ , j = 1, 2, . . . , li′′ . For the sake of uniformity
we adopt a convention β0 = π. Then d(β0, π) = g0 and A0

i′i = Ai′i for i′ = 1, 2, . . . , k,
i = 1, 2, . . . , li′ . The set of all points A1

i′i;i′′j stands for the first (exactly, after standardization,

the second) element
{
P1
j

}
j=1,2,...,l1

of the sequence (2).

The polygon
{
P1
j

}
j=1,2,...,l1

induces an unbounded prism
{
P1
j

}∞
j=1,2,...,l1

which has this

polygon as its base. The edges are b-half-lines perpendicular to π with A1
i′i;i′′j as initial

points. Let

Q1 =
{
Q ∈ Q : d(Q, π) = h1 ∧ Q ∈

{
P1
j

}∞
j=1,2,...,l1

}
.

For every Q ∈ Q1 there exists at least one triad of pairs (i1, j1; i2, j2; i3, j3) such that
d(Qi1,j1;i2,j2;i3,j3 , π) = h1. We denote each such point by Ti1,j1;i2,j2;i3,j3 and include it in the
new set T . We include every corner roof ridge (bisectrix) which contains an element of the
set V as the first endpoint and an element of T as its second endpoint to the new set R.
We will also add to R every such ridge which has the connectable elements of the set T as
endpoints. The latter ridges, if they exist, are parallel to the plane π, because it belongs to
the plane β1. All hips of b-half-lines (bisetrices) which have vertices of the base of the roof
(elements of the set V) as starting-points are included in the running set A.

Now we may create the sets R, T. Each three-set {(i1, j1), (i2, j2), (i3, j3)} of every point
Ti1,j1;i2,j2;i3,j3 is included in T. If the two-set {(is, js), (iu, ju)} defines the corner ridge of the
roof, then we include this two-set in R. We have two cases:

(1) for every three-set from T all their subsets (two-sets) belong to R;

(2) there exists a three-set {(u1, v1), (u2, v2), (u3, v3)} in T such that one or two subsets of
it do not belong to R.

Without loss of generality we can assume that the condition (2) is satisfied by the two-set
{(u1, v1), (u2, v2)} (there are the two-sets {(u1, v1), (u3, v3)}, {(u2, v2), (u3, v3)}). This two-
set (these two-sets) identifies such a b-half-line (identify b-half-lines) on which the ridge of
the roof is not constructed yet. This two-set (these two-sets) is included in the set A and
obviously added to A of the suitably indexed b-half-line (b-half-lines) which has the top point
Tu1,v1;u2,v2;u3,v3 as the origin.

Now we go to the second step of the induction:
Suppose now that the set Qm and the remaining sets T , R, A, T, R, A on this level have
already been defined. We put gm+1 = (hm + hm+1)/2, we consider the plane βm+1 parallel
to π and satisfying the condition d(βm+1, π) = gm+1, and we determine the points Am+1

i′i;i′′j

as intersections of the plane βm+1 with half-lines (bisectrices) bi′i;i′′j for i′, i′′ = 1, 2, . . . , k,
i = 1, 2, . . . , li′ , j = 1, 2, . . . , li′′ . Similarly to the first step of induction, we define the polygon
{Pm+1

j }j=1,2,...,lm+1
and the unbounded prism {Pm+1

j }∞j=1,2,...,lm+1
. Let

Qm+1 =
{
Q ∈ Q : d(Q, π) = hm+1 ∧ Q ∈ {Pm+1

j }∞j=1,2,...,l1
∧ Q ∈ b ∈ A

}
.

For every Q ∈ Q1 there exists at least one triad of index pairs (i1, j1; i2, j2; i3, j3) such that
d(Qi1,j1;i2,j2;i3,j3 , π) = hm+1. If the three-set {(i1, j1), (i2, j2), (i3, j3)} is incident with any
element of the set A, then add it to the set T, and we denote the point Qi1,j1;i2,j2;i3,j3 by
Ti1,j1;i2,j2;i3,j3 and add it to the set T . The two-sets which connect Ti1,j1;i2,j2;i3,j3 with the
remaining points of the set T are added to R and indexed by the ridges we add to R.
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Similarly to the first step of induction, with regard to the set T there are two cases:
(1) for every three-set of T all subsets (two-sets) belong to R,

(2) there exists a three-set {(u1, v1), (u2, v2), (u3, v3)} in T such that one or two subsets of
it do not belong to R.

Without loss of generality we can assume that the condition (2) is satisfied by the two-set
{(u1, v1), (u2, v2)} (there are the two-sets {(u1, v1), (u3, v3)}, {(u2, v2), (u3, v3)}). This two-set
(these two-sets) identifies such a b-half-line (identify b-half-lines) on which the ridge of the
roof is not constructed yet. We include this two-set (these two-sets) in the set A and obviously
we add to A the suitably indexed b-half-line (b-half-lines) starting at Tu1,v1;u2,v2;u3,v3 .

We stop the process when the set of numbers {h1, h2, . . . , hσ} is running out. The sets T
and V define the skeleton of the roof uniquely determined by the simple generalized polygon
P(C1,C2, . . . ,Ck).

4. The Graph Theory approach

We can treat every generalized polygon P(C1,C2, . . . ,Ck) as the plan projection of a certain
base of a roof (see Fig. 4a with k = 3 and Fig. 7a with k = 1). A building with such a
roof is (k − 1)-atrial, i.e., it has k − 1 court-yards. In the previous section we presented an
algorithmic geometric construction of the skeleton of such roof. Now we are going to discuss
properties of roof from the view point of Graph Theory.

4.1. Notations

First we introduce the following notations: Let v be a number of vertices Vi and obviously
edges ei, i = 1, 2, . . . , v, of the generalized polygon P(C1,C2, . . . ,Ck) (see Fig. 7b). Let us
suppose:

1o at every top point of the skeleton there meet exactly three ridges of the roof (one or
two corner ridges and one or two ridges of the roof),

2o v edges of the base of the roof induce exactly v polygons (hipped roof ends), and

3o each hipped roof end contains exactly one eaves.
The above supposition is equivalent to the general position of the vertices of the roof. Then
the roof R(P) induced by P(C1,C2, . . . ,Ck) we will called regular. More precisely, the roof
is said to be regular, if

(i) every top point is located exactly on three ridges, and

(ii) every hipped roof end contains exactly one eaves.
Otherwise a roof is irregular (see Figs. 8a’, 8a”, 8b’, 8c’). The roofs in Figures 8a’ and 8c’
don’t fulfil condition (i), the roofs in Figures 8a” and 8b” fail condition (ii). Notice that a
roof is irregular if and only if there exists at least one top point at which at least two corner
ridges are meeting which do not belong to a same triangular hipped roof end.

Furthermore we denote by V1, V2, . . . , Vv the corner vertices of the roof, by e1, e2, . . . , ev the
edges (eaves) of the roof (ei = Vi−1Vi for i = 2, 3, . . . , v and e1 = VvV1), by r1, r2, . . . , rv, rv+1,
rv+2, . . . , rv+d the ridges of the roof (rv+i = TjTl), for i = 1, 2, . . . , d and for appropriate
j, l, by r1, r2, . . . , rv the corner roof ridges, by rv+1, rv+2, . . . , rv+d the disapeared ridges), by
T1, T2, . . . , Tt the top points. Let r denote the number of all ridges of the roof R(P). Then
r = v + d.

We will distinguish four sets:
• V = {V1, V2, . . . , Vv} is the set of vertices of the base of the roof,
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Figure 7: An illustration of the scheme of description of a roof from the view point of Graph
Theory: a) the generalized polygon P(C1) — the base of the roof R(P), b) the basic graph
of the contour of this roof, c) the graph of the skeleton of the roof R(P): ri = ViTj are corner
roof ridges, T1T2 . . . T6 is the line of disappearing ridges, r9 = T1T2, r11 = T3T4, r13 = T5T6 are
roof ridges, r10 = T2T3, r12 = T4T5 are disappearing ridges, d) the projection of the skeleton
of the roof R(P)

• E = {e1, e2, . . . , ev} is the set of edges of the base of the roof,

• R = {r1, r2, . . . , rv, rv+1, rv+2, . . . , rv+d} is the set of ridges of the roof,

• R′ = {rv+1, rv+2, . . . , rv+d} is the set of disappearing ridges,

• T = {T1, T2, . . . , Tt} the set of top points.
The generalized polygon P(C1,C2, . . . ,Ck) determines the basic graph BG = (V,E) of

the contour of the roof. It follows from the geometric properties of a roof (previous section)
that the graph BG = (V,E) induces the graph RG = (V ∪ T,E ∪ R) of the projection of

the skeleton of the roof uniquely . We will also distinguish the graph of disappearing ridges

DRG = (T,R′).
From the view point of Graph Theory the elements of the set V (V ∪ T, T) are called

vertices; the elements of E (E ∪ R, R′) are called edges. Consequently the set V (V ∪ T, T)
will be called the vertex set, and E (E ∪ R, R′) the edge set.

4.2. Euler formula

The vertex set of the graph RG has v+ t elements, and the edge set has v+r elements. Every
edge joins two vertices of the graph, so there are 2(v + r) elements. But any vertex of the
graph BG is an endpoint of three edges of the graph (two edges of the base of the roof or
three ridges of the roof). To obtain the number of all vertices of the graph we must divide
the number 2(v+ r) by 3. Hence there are 2(v+ r)/3 vertices of the graph BG. On the other
hand the number of vertices of the graph is v + t. Comparing the last two expressions we
obtain the equation 2(v + r)/3 = v + t, and next the formula

v = 2r − 3t. (3)
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Note that eq. (3) does not depend on the connectivity of the generalized polygon P(C1,C2,
. . . ,Ck).

In classical Graph Theory Euler’s formula for the planar graph embedded in a plane is
well known:

reg + ver − edg = 2, (4)

where reg denotes the number of regions determined by the graph (cf. [1, 2]), ver means the
number of vertices, and edg the number of edges. Applying Euler’s formula to our considera-
tions we can set reg = v+ k− 1 + 1 (v hipped roof ends plus k− 1 regions of the k-connected
generalized polygon plus one region, the exterior of the polygon C1), edg = v + r, and
ver = v + t. After substituting this in (4) we obtain

v = r − t + 2− k. (5)

By (3) we get

t =
r − 2 + k

2
. (6)

From (6) and (5) we finally obtain

r = 2v + 3(k − 2), (7)

t = v + 2(k − 2), (8)

d = v + 3(k − 2). (9)

So we can formulate

Theorem 1 (Euler formula for regular roofs). If the base of a regular roof is a k-
connected generalized v-polygon, then the number r of ridges of this roof is 2v + 3(k− 2), the
number t of top points is v+2(k−2), and the number d of disappearing ridges is v+3(k−2).

Note that every hipped roof end roof is an m-polygon for 3 ≤ m ≤ v. Indeed, every
hipped roof end must be at least a triangle and at most it may neighbour v− 1 other hipped
roof ends. Hence, taking into account one edge of the base and adding 1, we can write
3 ≤ m ≤ v−1 +1. Let mi denote the number of i-gonal hipped roof ends with i = 3, 4, . . . , v.
Since the number of hipped roof ends equals v we obtain

m3 + m4 + . . . + mv = v. (10)

Let us consider now all hipped roof ends (polygons). The number of all line segments which
are the edges or ridges of the roof skeleton is v + 2r, because every ridge is common for two
hipped roof ends and every hipped roof end contains one edge of the v-gon. Therefore we
have

3m3 + 4m4 + . . . + vmv = v + 2r. (11)

We substitute (7) in (11) and obtain

3m3 + 4m4 + . . . + vmv = 5v + 6(k − 2). (12)

We call (12) and (10) the equations of a regular roof generated by any k-connected v-gon.
Note that the k-connected regular roofs are geometric configurations of the form

(
(2v+ 2(k−

2))3, (3v + 3(k − 2))2

)
.
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5. Some remarks on irregular roofs

As already said, a roof is irregular if and only if there exists at least one top point in which
there meet at least two corner ridges which do not belong to the same triangular hipped roof
end. We call such top points singular. There are two possible cases:

a) These two corner ridges belong to the same hipped roof end. Then we have a singular
top point of the first kind or a break top point (see Figs. 8a”, 8b”, 8c”).

b) These two corner ridges do not belong to the same hipped roof end (see Figs. 8a’, 8b’,
8c”). Then they belong to four different hipped roof ends which have a common top
point called singular of the second kind.

Usually, such top points are vertices of degree greater than 3 (see Figs. 8a’, 8b’). We obtain
the singular top points as a limiting position of two (or more) adjacent (i.e., belonging to the
same ridge) top points which are coinciding (see Figs. 8a’, 8b’). Or one top point would split
(Fig. 8a”), if we change the position of the sides of the base. In the first case we obtain a
singular top point of the second kind, in the second case the singular top point is of the first
kind. In both cases a ridge joining initially two (or more) degenerating top points shrinks
into one point. We distinguish even a third mixed kind of irregularity of a roof (see Fig. 8c”).

According to the above considerations and earlier notations, we have two useful inequal-
ities for irregular graphs,

|T| < v + 2(k − 2), |R′| < v + 3(k − 2). (13)

Suppose now case a) for a certain roof R(P) and suppose the break top point belongs to the
hipped roof end ∆ (see Fig. 9a). Then ∆ contains more than two corner ridges rs, ri, ri+1,
rl, more than one eaves and at least two top points, the break top point Tn and, e.g., Tj (see
Fig. 9a). Tn as the common point of two corner ridges ri, ri+1 does not belong to other sides
of the polygon ∆. Moreover, the point Tn is separate from the broken line TjTj+1 . . . TmTm+1.
These remarks will be used in the study of the connectivity of the line of disappearing ridges
for arbitrary regular roof.

5.1. On the connectivity

In order to examine the connectivity of graphs associated with roofs we prove the following
auxiliary lemmas:

Let ∆i with i ∈ {1, 2, . . . , v} be a sequence of all hipped roof ends of the given roof R(P)
generated by the v-gon P(C1,C2, . . . ,Ck). Let T be the set of top points, and R′ the set of
disappearing ridges of this roof. Consider a sequence of pairs (T|∆i, R′|∆i) where T|∆i and
R′|∆i are the sets T, R′, restricted to ∆i for i ∈ {1, 2, . . . , v}.

Lemma 1. Let R(P(C1,C2, . . . ,Ck)) be a given regular roof with T as the set of top points

and R′ as the set of disappearing ridges. Then for any hipped end ∆i, i ∈ {1, 2, . . . , v}, of
this roof the graph (T|∆i, R′|∆i) is connected.

Proof. Suppose the assertion of this lemma is false. Then there exists a hipped roof end
∆i0 for which the graph (T|∆i0, R′|∆i0) is not connected. This means that the hipped roof
end ∆i0 must contain a break top point (see Fig. 9a), say Tn. Then the hipped roof end ∆
contains more than two corner ridges rs, ri, ri+1, rl, and consequently more than one eaves.
This is impossible because in a regular roof every the hipped roof end contains exactly one
eaves.
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Figure 8: Regular roofs and their irregular mutations:

a) a regular roof with distinguished regular points (•) which are transformed;
a’) its derivative roof with the singular top point of the first kind (×), subjected to a

further transformation,
a”) its derivative roof with the singular point of the second kind (¯);
b’) an irregular roof with one singular top point of the first kind (×),
b”) its derivative roof with the singular point of the second kind (¯);
c) a regular roof with distinguished regular points (•) which are transformed,
c”) its derivative roof with singular point of the first and the second (mixed) kind (⊗)

simultaneously

Lemma 2. For any two hipped roof ends ∆,Γ of the roof R
(
P(C1,C2, . . . ,Ck)

)
there exists

a sequence of hipped roof ends Λi, i = 1, 2, . . . , n, such that Λi ∩ Λi+1 6= ∅, Λ1 = ∆, and

Λn = Γ.

Proof. We proceed by induction on k:
k = 1 : We take one of two orientations of the simply connected polygon C1. Starting at
the hipped roof end ∆ we construct in the specified orientation the sequence of successive
hipped roof ends Λs which satisfy the condition Λs ∩ Λs+1 = rj, where rj are corner ridges.
The construction ends when we meet Γ, i.e., Λn = Γ.

k = 2: There are two cases:

C21) ∆ and Γ contain eaves which belong simultaneously to C1 and C2. Here the proof is
similar to the case k = 1.

C22) ∆ contains an eaves belonging to Ci and Γ contains an eaves belonging to Cj for i 6= j,
i, j ∈ {1, 2}. Then there exist two hipped roof ends Ωi, i ∈ {1, 2}, such that Ωi contains
an eaves from Ci and Ω1 ∩ Ω2 6= ∅.

The existence of such hipped roof ends can be concluded as follows: If they do not exist,
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Figure 9: A fragment of an irregular roof with break top points: a) a hipped roof end
with a break top point Tn, b) a fragment of a line of disappearing ridges

then all hipped roof ends of C1 would form a roof R(P) generated by the simply connected
polygon P(C1), and the bounded region of C2 would be covered by the roof R(P(C1)) which
is impossible.

Further we assume without loss of generality that ∆ contains an eaves which belongs to
C1 and Γ contains an eaves belonging to C2. The required sequence is constructed in the
following way: Starting at ∆ we create similarly to the case k = 1 in a specified orientation
of C1 the subsequence Λ1 := ∆, . . . , Λm := Ω1. Continuing, we set Λm+1 := Ω2 and similarly
to the case k = 1 we create a further part . . . , Λm+2, . . . , Λn−1 of the constructed sequence
in a certain orientation of C2, up to Λn := Γ.

In the second step of induction we assume that Lemma 2 is true for k = l. Without loss
of generality for hipped roof ends ∆, Γ we consider two cases:

CL1) ∆ contains an eaves which belongs to any Ci with 1 ≤ i ≤ l, and Γ contains an eaves
which belongs to any Cj with 1 ≤ j ≤ l. This case is easily satisfied because Lemma 2
is true for k = l.

CL2) ∆ contains an eaves which belongs to any Ci with 1 ≤ i ≤ l and Γ contains an eaves
which belongs to Cl+1. There exist two hipped ends Ω1, Ω2 such that Ω1 contains an
eaves which belongs to Ci0, 1 ≤ i0 ≤ l; Ω2 contains an eaves which belongs to Cl+1 and
Ω1 ∩ Ω2 6= ∅.
By inductive assumption for k = l we can construct the subsequence Λ1 = ∆, Λ2, . . . ,
Λm = Ω1, Λm+1 = Ω2.

We create the remaining part of the constructed sequence taking successive hipped roof ends
in a selected orientation, starting at Ω2 and finishing at Λn := Γ.

Now we examine the connectivity of the graph (T, R′), geometrically the line of disap-
pearing ridges. We formulate and prove the following
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Proposition 1. If the roof generated by the k-connected generalized v-polygon is regular, then

the graph (T, R′) of the line of disappearing ridges is connected.

Proof. We consider the roof R(P) generated by the generalized polygon P(C1,C2, . . . ,Ck)
and with the determined graph (T, R′). In order to prove the connectivity of (T, R′) it suffices
to construct a path which connects two arbitrary vertices of this graph. Geometrically we
must construct a (continuous) broken line included in the line of disappearing ridges which
connects any two top points of the roof R(P).

Consider two vertices Td, Tg of (T, R′). We assume that they belong to the hipped roof
ends ∆,Γ of the roof R(P), respectively. In the case ∆ = Γ due to Lemma 1 we can “run”
from Td to Tg along the sides of the polygon of the hipped roof end ∆ (= Γ).

Otherwise according to Lemma 2 there exists a sequence Λi such that Λ1 = ∆, Λn = Γ,
Λi ∩Λi+1 6= ∅, and any two consecutive hipped roof ends Λi,Λi+1, 0 ≤ i ≤ n, meet at a ridge.
Let ri denote the common ridge of the hipped roof ends Λi,Λi+1 for i = 1, 2, . . . , v. It is easy
to see that due to Lemma 1 we can pass from the top point Td to the top point T1 which
belongs to r1 on the hipped roof end Λ1, and which also belongs to Λ2 (cf. Lemma 2) — we
run along the sides of Λ1 which are disappearing ridges. Next from the top point T1 we can
pass on the hipped roof end Λ2 to the top point T2 which belongs to r2, and so on. We arrive
at Tn, and from Tn to Tg, because Tn, Tg ∈ Γ.

We can say that a chimney-sweep who goes along the ridges of a regular roof may pass
from an arbitrary top point of this roof to any other top point.

The fundamental graph-theoretical properties of roofs as presented above are important
for architectural design in order to classify all topological types of roofs (spread over an
arbitrary polygon). More useful theorems concerning all possible shapes of roofs will be
formulated and proved in a second article.
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