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Abstract. One problem in subdivision surfaces is that the number of meshes
grows quickly after every subdivision step. The number of meshes of the subdivi-
sion surface is usually huge and the scheme is difficult to manipulate. Subdivision
schemes are cost intensive at higher levels of subdivision. In this paper, we intro-
duce an adaptive subdivision scheme for subdivision surfaces based on triangular
meshes. This scheme works with the new subdivision rules and the biggest angle
between the normal vectors of adjacent faces of a vertex is considered as error
estimation and termed CA. The regular subdivision process is modified to stop
at the flat areas, so we can represent surfaces with lower cost when compared
with those obtained by regular subdivision schemes. In our scheme, we take care
of the T-junction (cracking) problem and propose our solution. We compare our
methods for various triangular meshes and present our results.
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1. Introduction

As polyhedral subdivision process provides a simple and efficient way to generate surfaces
over polyhedral networks, it has become one of the basic tools in Computer Aided Geometric
Design (CAGD) for modelling complex surfaces. Many approaches were made since two basic
subdivision surfaces were proposed by Catmull-Clark [2] and Doo-Sabin [3] in 1978.
Nasri [13] extended Doo-Sabin surfaces to interpolate vertices of an original polyhedron
and B-spline curves on the subdivision surface. N. Dyn et al. [4] proposed a butterfly
subdivision scheme, it is an interpolating scheme and extended by Zorin et al. [19]. Schemes
based on triangles were discussed by Farin [5] and Loop [10]. M. Halstead et al. [6]
proposed an interpolation method with a Catmull-Clark surface. And a Non-Uniform
Recursive Subdivision Surface (NURSS) was proposed by Sederberg et al. [15] recently.
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Generally, in subdivision surfaces, the subdivision process is over a simple polyhedron,
the whole polyhedral meshes are refined globally at a level of mesh density. After several
subdivision steps, the generated subdivision surface will be smooth enough to represent a fine
shape. But even after a few subdivision steps, the number of generated meshes will become
huge. For example, at Loop surfaces, the number of meshes after one refinement step is
about four times that of original meshes. It is difficult to deal with these data. But usually
after several steps of iterations, most areas of subdivision surfaces are smooth enough to give
fine schemes, only some regions where curvatures change significantly are still coarse, and
need to be refined. It therefore is not ideal to have a global subdivision scheme being applied
at every level. Adaptive Subdivision aims at providing a local subdivision rule that governs
whether or not a given face in a mesh needs to be subdivided at the next level of subdivision.

2. Related works

We will overview research works related to adaptive subdivision schemes and refinements.
Mueller [12] proposed an adaptive process for Catmull-Clark and Doo-Sabin sub-

division schemes. In his method, adaptation is controlled by an error measure which indicates
for the vertices of a mesh whether the approximation is sufficient. The error estimation is
measured as the distance between a original vertex of the mesh and its limit point. All the
vertices that lie in the error range are labelled differently and special rules are applied for
subdividing a polygon when it contains one or more of these labelled vertices.

Xu and Kondo [18] devised an adaptive subdivision scheme based on the Doo-Sabin

scheme. In their method the adaptive refinement is controlled by the faces of the original
mesh. Faces are labelled as alive or dead if they have to be subdivided or not. The labelling
is based on the angle between the normal vectors of adjacent faces and a tolerance limit for
this angle is set. If a face satisfies the set tolerance then it is labelled as dead and further
refinements are stopped for that face.

Kobbelt proposed an adaptive refinement method for both his Kobbelt scheme and
newly introduced

√
3 subdivision [9]. His refinement strategy is also centered around the faces.

In both the schemes adaptive refinement presents a face cracking problem. His solution is to
use a combination of mesh balancing and the Y -technique for his Kobbelt scheme. For his√
3 subdivision he uses a combination of dyadic refinement, mesh balancing and gap fixing by

temporary triangle fans. This process is well known in the finite element community under
the name red-green triangulation [17].

Amresh et al. [1] proposed an adaptive subdivision scheme for the Loop scheme. Their
first method uses the angles between normals of a face with adjoining face normals to de-
termine if the face needs to be subdivided or not. Their second method is based on user
interaction, where the user can select areas on the mesh where refinements are desired. They
perform an identification process called watershed segmentation to identify the regions in a
mesh that need to be subdivided. But they also note that when the mesh is highly undulating,
then using a curvature based user selected process like watershed segmentation will not result
in considerable savings in mesh size. In their schemes, they mention the cracking problem
and introduce a method called triangle fans to solve it.

Zorin et al. have developed adaptive refinement strategies in [20], where they have ad-
ditional constraints that require a certain number of vertices in the neighborhood of those
vertices calculated by adaptive subdivision to be present. Their methods have been imple-
mented on the Loop scheme.
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Generally, the adaptive strategies can be developed in two ways, one by classifying which
vertices need to be subdivided (vertex split operation at the next level) or two by identifying
those faces that should be subdivided (face split at the next level).

3. The Loop subdivision scheme

The Loop scheme is a simple approximating face-split scheme for triangular meshes proposed
by Charles Loop [10]. The scheme is based on the triangular splines [16], which produces C2-
continuous surfaces over regular meshes. A regular mesh is a mesh which has no extraordinary
vertices, i.e., vertices whose number of neighbors do not equal six. It also means that the
vertex has a valance of six. The Loop scheme produces surfaces that are C2-continuous
everywhere except at extraordinary vertices, where they are C1-continuous. A boundary
vertex is regular or even if it has a valance of three and is extraordinary for any other valance.
The masks for the Loop scheme are shown in Fig. 1. For boundaries special rules are used.
These rules produce a cubic spline curve along the boundary. The curve only depends on
control points on the boundary. The scheme works as follows:

• For every original vertex a new vertex (odd vertex) is calculated by calculating β from
eq. (1), where n is the number of adjacent vertices for the vertex, and finding the suitable
coefficients for the adjacent control points as shown in Fig. 1.

• For every edge in the original mesh a new vertex (even vertex) is calculated by using
the mask shown in Fig. 1.

• Every triangle in the original mesh gives rise to six new vertices, three from original
vertices and three from original edges, these six vertices are joined to give four new
triangles.

In Fig. 1 n is the number of adjacent vertices for a given vertex and β can be chosen as

β = 1
n

(

5
8
−
(

3
8
+ 1

4
cos 2π

n

)2
)

(1)

The value for β [8] was found such that the resulting surface is C1-continuous at the extraordi-
nary points. For regular vertices the coefficients for calculating the new vertices are obtained
by substituting n as six in the mask for even vertices shown in Fig. 1.

4. Our proposed method

We now discuss the method we have developed for adaptively subdividing meshes. Our
method is based on identifying which vertex of a face is “dead” (see Section 4.3) and proposing
suitable mesh refinements based on the properties of its three vertices.

We firstly analyze the planar areas created in the subdivision surface, and then we give
some definitions and present our new subdivision rules. We take care of the T-junction
(cracking) problem in our scheme and propose our solution which is called LMR. Finally, we
analyze the results.

4.1. Analysis of the planar areas created in subdivision surfaces

Fig. 2 shows the planar area in subdivision surfaces. For a face f0 = {v0, v1, v2}, the limit
surface is the shaded area in Fig. 2(b). c0, c1, c2 are the limit points of the vertices v0, v1, v2,
respectively. The boundary curves of the limit surface are b0, b1, b2. Now assume the neighbor
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Figure 1: Masks for Loop scheme

faces of vertices v0, v1, v2 are on a plane, so the limit subdivision surface is also on that plane,
just like shown in Fig. 2(b). For each face of initial polyhedral meshes, there is a limit surface
that is decided by the faces meeting at its three vertices. If these faces are on a plane, then
the limit face is also on that plane. Actually, the limit surface is an n-sided patch. What
we should do is to get the boundary curves of the planar limit face. Usually, in subdivision
surfaces, the boundary curves can be gotten by subdividing the faces that adjoin the planar
limit face, the unnecessary subdivision process in the planar limit face area can be avoided
and the continuity property of subdivision surface can also be kept.

Figure 2: The planar area in Loop surfaces

4.2. Definition of the conical angle

The allowable tolerance is used here to decide whether the surfaces meeting at a vertex give
a sufficient approximation plane. In this paper, the biggest angle between the normal vectors
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of each pair of adjacent faces that meet at a common vertex vi is used as allowable tolerance,
and called conical angle (CA ), referring to Fig. 3. The user can select a suitable CA to control
the smoothness of the surfaces of the final shapes.

Figure 3: Definition of the conical angle (CA)

4.3. Definition of dead vertices, edges and faces

Firstly, we introduce some items for describing our process easily.
1. For vertices: A vertex is called flat, if the corresponding CA is within some tolerance
limit. It is called dead, if its neighbor vertices are flat. In all other cases the vertex is
called alive.

2. For edges: An edge is called dead, if each of its vertices is dead. In all other cases the
edge is called alive.

3. For faces: A face is called dead, if each of its vertices is dead. In all other cases the face
is called alive. Of course, the dead face will not be subdivided in the further subdivision
process.

4.4. Conical angle (CA) method

Our method is called “conical angle method” because it uses the CA of every vertex of a face
to determine if the face needs to be subdivided or not.

From the definition of CA it can be seen that the angle of the normal vectors of adjacent
faces of a vertex is considered as error estimation. If the angles are within some tolerance
limit then we classify the vertex as flat. If all the neighbor vertices of a vertex are classified
as flat, we classify the vertex as dead. The new mesh refinements are based on the degree
of deadness of a face and are shown in Fig. 4. In the case n = 2 in Fig. 4, we select a pair
of vertices with lower error by comparing the angle between (v1, v5, v4) and (v5, v4, v2). We
introduce an adaptive weight θ to control the tolerance limit. Our scheme works as follows:

• The normal for each face is calculated.
• For every vertex, its conical angle is calculated.
• If the conical angle lies below a certain threshold then the vertex is set to be flat.
• For every vertex, if all its neighboring vertices are flat, then it is set to be dead.
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• For every face, a degree of deadness which equals the number of its dead vertices is
defined. The maximum value for this degree can be three and the minimum will be
zero. Based on the degree of deadness, refinement is done as shown in Fig. 4.

Figure 4: New subdivision rules: The mesh refinement is based on the
degree of deadness. n is the number of dead vertices of a face

4.5. T-junction (Cracking) problem and its solution

Subdividing a non-flat face that is adjacent to a flat face produces a T-junction or cracking
problem. These T-junctions can generate cracks when we use a non-zero tolerance. We take
care of this problem and give our solution which is called LMR (local mesh realignment)
refinement method.

LMR is an effective refinement to employ during the adaptive subdivision. A brief expla-
nation of LMR algorithm is as follows:

• For every level subdivision, mark the newly generated dead edges whose two neighbor
faces are alive.

• For every marked dead edge, a local mesh realignment (LMR) for this edge is imple-
mented based on the following Rule 1.

• For every level subdivision, mark the newly generated vertices whose CA (conical angle)
is set to dead.

• For every marked dead vertex, a local refinement process for this vertex is implemented
based on the following Rule 2.
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Figure 5: LMR Rule 1: Local realignment rule for dead edges.
The shaded areas are dead areas
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Figure 6: LMR Rule 2: Local refinement rule for dead vertices

4.6. Adaptive subdivision refinement process

The procedures of our adaptive subdivision process are described as follows:
1. Giving a value of CA between 0◦ and 180◦:
According to requirements, we choose a suitable value of CA (conical angle) which
describes the smoothness of the surfaces of final shape. Basically, the value of CA must
be zero for keeping the continuity property of subdivision surface. But according to
requirements, user can select a suitable CA to control the smoothness of the surfaces of
final shapes.

2. Modification of the subdivision process:
Assuming that the k-th adaptive process has been implemented, for the coming (k+1)-th
step the modified subdivision process can be described as follows:

(a) Step 1: Implementing a process called NLFC (next level flags calculation) process
for the mesh created in the k-th level subdivision. This process is to calculate the
dead information of each alive vertex, edge and face and mark them.
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(b) Step 2: Generating new vertices.
For dead edges, the new vertices will not be generated, for each alive edge, a new
vertex is generated with the original subdivision method. If one vertex of the alive
edge is a dead vertex, the new vertex is also a dead vertex; if two vertices are flat
vertices, the new vertex is also a flat vertex, in other case, it is an alive vertex. We
mark these information for the new created vertices.

(c) Step 3: Generating new faces.
For dead faces, no new faces will be generated, for an alive face fi = {v0, v1, v2},
there are three cases for fi to generate new faces based on the degree of deadness.

i. Case 1: One vertex is a dead vertex while the other two vertices are flat. In
this case, a dead face will be generated according to the regular subdivision
method. Referring to Fig. 4(a), f1 is a dead face.

ii. Case 2: Two vertices are dead vertices while the other one is flat. In this case,
three faces will be generated while two faces of them are dead faces. Referring
to Fig. 4(b), f1 and f2 are dead faces.

iii. Case 3: Three vertices are dead vertices. In this case only one face will be
generated.

(d) Step 4: Implementing the LMR process.
The LMR process is implemented to deal with the T-junction (cracking) problem
(referring to Section 4.5).

In the above modified subdivision process, both the number of vertices and the area of
the dead faces become larger after every subdivision process. The densities of meshes at dead
areas are kept when the dead regions are found.

4.7. Analysis of results

We now take a complicated mesh of a face and compare our adaptive scheme with the normal
approximating scheme at three levels of subdivision. Fig. 7 shows the comparison of the
normal Loop scheme at three levels (left) and using our adaptive scheme at three levels of
subdivision (right). It can be seen that for data that has significant curvature changes and
irregularity our method is a better way of adaptive subdivision as the whole mesh is filled
with irregularities.

With our method, we can efficiently decrease the number of meshes generated in every
subdivision step while keeping the continuity property of subdivision surface. We can also
create surfaces that are more densely subdivided in the areas of higher curvature or in the
special areas decided by user. The surfaces with different level of density of mesh can be
got by mixing our adaptive subdivision scheme and the regular subdivision scheme. Suitable
applications could be meshes used in character animation and industrial design prototypes.

We observe that adaptive refinement produce degenerate triangulations compared with
the regular subdivision method. A suitable refinement of mesh realignment is suggested in
this paper. Of course, realignment introduces some more computation.

5. Computational analysis of results

We compare the costs of our scheme in this section. Some schemes of a Stanford Bunny shape
generated from the regular method and our method are illustrated in Fig. 8. The numbers
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Figure 7: Using conical angle adaptive subdivision on a face model, the image on the left is
obtained by using normal subdivision and the one on the right is obtained by our method

of triangles of the closed original polyhedron is 204. The number of triangles of every shape
is shown with the scheme. Fig. 8(a),(b) are generated by the regular method. Fig. 8(c),(d)
are generated by our method with CA value 22◦ after the third or fourth level subdivision,
respectively. Fig. 8(e),(f) are generated by our method with CA value 11◦ after the third
or fourth level subdivision, respectively. Fig. 8(g),(h) are generated by our method with CA
value 7◦ after the third or fourth level subdivision, respectively.

It can be seen that in the areas with higher curvatures like paw, ears and head of the
bunny, the densities of meshes in Fig. 8(b) and Fig. 8(h) are the same. In other areas, as the
curvatures do not change quickly, though the densities of meshes generated by our method
are lower than original subdivision method, the smoothness of the surface is kept well with
fewer meshes.

Table 1 shows the subdivision steps and the number of meshes generated by the Loop

subdivision method and by our method with CA = 7◦, 11◦ and 22◦, respectively. The numbers
of are meshes listed in Table 1.

The reduction ratios of the number of meshes in the different cases are also shown. The
more the subdivision process is done, the more dead faces are generated, the reduction ratio
will increase. The subdivision process is on the coarse areas mainly, the different levels of
mesh densities can be viewed clearly.

6. Conclusions

In this paper, we proposed an adaptive scheme for subdivision surfaces based on triangular
meshes. Our method can be very well applied to the Loop and Modified Butterfly schemes.
The scheme could also be extended to subdivision schemes that work on polygonal meshes
like Catmull-Clark or Doo-Sabin. Our method is based on the analysis of the planar
area created in subdivision surfaces. We can generate shapes with a smaller number of faces
while keeping the same smoothness as the regular subdivision scheme (case CA = 0◦ in
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Figure 8: Stanford Bunny generated by the regular method and our method
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after 3 iterations after 4 iterations

Loop 13056 52224

CA = 7◦ 12606 32512

Reduction ratio (3.45%) (37.74%)

CA = 11◦ 11040 21420

Reduction ratio (15.44%) (58.98%)

CA = 22◦ 6912 8962

Reduction ratio (47.06%) (82.83%)

Table 1: The mesh reduction rates of a Stanford Bunny model
at different subdivision steps

our scheme). Under a reasonable CA, the obtained results are in accordance to the results
obtained by normal subdivision. Local refinements are also possible by selecting areas on
the mesh where refinements are desired. In our method, we take good care of the T-junction
(cracking) problem and propose our solutions. According to the results of our experiment, the
proposed method is certified efficient. The adaptive algorithm proposed here will strengthen
the functions of Computer Graphics system which use subdivision surfaces to model surfaces.
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