
Journal for Geometry and Graphics
Volume 8 (2004), No. 1, 107–115.

Training Visualization Ability
by Technical Drawing

Gerardo Prieto Adanez1, Angela Dias Velasco2

1Psychology Faculty, Salamanca University

Avda. de la Merced, 109–131, 37005 Salamanca, Spain

email: gprieto@usal.es

2Mechanics Dept., Engineering Faculty, Paulista State University

Av. Ariberto Pereira da Cunha, 333, Guaratinquetá – SP – Brasil 12516-410
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Abstract. To analyze if learning Technical Drawing improves the spatial visu-
alization aptitude, a visualization test was applied, at the beginning and at the
end of a Technical Drawing course, on a sample of first year engineering students.
At the end of the Technical Drawing course, it was observed that more than one
third of the students increased their performance on the visualization test. This
improvement was statically significant and equal both for men and women.
These results support the conclusion that spatial visualization is an aptitude that
could be improved with training and, although teachers do not explicit this ob-
jective, Technical Drawing courses are an efficient way of doing this. It can be
suggested that the change in spatial visualization aptitude may be considered as
a efficiency indicator of the teaching-learning process.

Key Words: Spatial aptitude, Technical Drawing, aptitude training

MSC 2000: 51N05

1. Introduction

Spatial ability may be defined as the ability to generate, retain, retrieve, and transform well-
structured visual images [6]. There are several spatial abilities. The core of visualization,
the most complex of them, is the process of transforming visual patterns. The ability to
transform the visual images is an important skill for architects, engineers, and those in the
drawing field. Hsi et al. [4] interviewed a group of engineering instructors and engineers
working in industry. They agree that spatial reasoning skills were important and could help
engineering students. Moreover, it has been empirically demonstrated that visualization is a
moderately good predictor of success in courses such as Engineering Drawing [4, 6, 10, 11, 14].
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Because of this influence on academic and professional success, the training of spatial abilities
has elicited a great interest.

Baeninger and Newcombe [1] published several meta-analysis of spatial ability training
studies. For the studies included in the review, the duration of instruction ranges from
a very brief session to a year-long program. The content of instruction ranges from very
specific training such as repeated exposure to a spatial test to an indirect training such as
an entire college engineering course. They concluded that training of a variety of types and
duration increases the spatial test performance, and that training does not benefit the sexes
differentially. In all cases, the magnitude of the improvement between the first and the last
administration of a spatial test was significantly different from zero, and at least moderate
in size. Thus, levels of spatial ability appear as environmentally malleable. According to
Newcombe et al. [8] this conclusion could be generalized for a variety of spatial measures such
as mental rotation tests, dynamic spatial tests, and horizontality-verticality tasks. However,
because of the scarce number of studies, the effect of the indirect and long training is not
sufficiently known, mainly its influence on the visualization ability.

The purpose of the study presented here is to examine if activities involved in an engi-
neering course of Technical Drawing could improve the performance on a visualization ability
measure.

From our point of view, this objective is valuable for the following arguments:
1. The improvement of visualization ability of engineering students would be an important

benefit because of its influence on job and academic success.

2. The effect on visualization ability of an indirect, sizable, and long training will be more
permanent and general than that of a specific-task training. Technical Drawing could
be one of the more efficient training methods.

3. To contest the traditional thinking that this aptitude is a gift, making the teachers of
Technical Drawing free of responsibilities for its development.

2. Method

Participants

In this study 159 first year Brazilian engineering students participated. 57 were from the
Paulista State University — Guaratingueta Campus (UNESP), 24 from the Polytechnic School
of São Paulo University (EPUSP) and 78 from the Chemistry Engineering Faculty of Lorena
(FAENQUIL). The mean age was 18 years and 9 months and the standard deviation was 2
years and 11 months. 31,45% of the sample were women.

Instrument

We applied the instrument TVZ2002 form B, a paper and pencil test with 20 items, selected
from an Item Visualization Bank constructed and founded on Cognitive Theory [9, 10]. The
time limit was 20 minutes. The task consists of a cube that has all faces identified with
letters. To the right, the cube is shown unfolded with one of its faces identified and another
face marked with an interrogation ‘?’. The student has to identify the letter of the face with
the interrogation and its relative position. The student has to choose the right answer among
9 given options (Fig. 1). Studies with similar versions of this test show that it is an excellent
indicator of the visualization construct [9, 10].
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Figure 1: One task of TVZ2002. The right answer is the one marked with the arrow

Procedure

The test was applied to each participant at the beginning and at the end of the Technical
Drawing course. At the first application of the test in March 2002, there were 159 students.
101 of them had participated in the second application in November 2002.

The Technical Drawing course in the Engineering Faculties in this work has items charac-
teristic for the graphic area. This include making and interpreting orthographic and pictorial
views, imagining sections and details of objects, knowing the norms of technical graphics
expression, dimensioning and being able to efficiently manipulate traditional and comput-
erized instruments of drawing. Although there are some differences among these faculties,
synthetically this was the basic content of the course. The activities in these courses are
predominantly individual and based on practice, as well as the evaluations.

Measurement Model

The item response matrix was analyzed with the Rasch Model (RM) [12]. As we have recently
summarized in this journal [11], RM provides measurement equivalent to that available in the
physical sciences, because it synthesizes the key features of requirements for fundamental
measurement (invariance, unidimensionality and additivity) [16]. This model is known as a
one parameter logistic model because the probability of a correct answer, P (Xij = 1) depends
on the difference between the ability of the examinee (θj) and the parameter of the difficulty of
the item (βi): the greater the difference θj−βi, the greater the probability that the examinee
answers the item correctly. The equation (1) describes the relation between both values.

P (Xij = 1) = exp(θj − βi)/ (1 + exp(θj − βi)) (1)

The meter to score jointly persons and items (usually the logit scale) has interval properties.
The location of point zero on the scale is arbitrary. In the Rasch tradition, it is situated in
the mean of the difficulty of items. In this case, the interpretation of the persons’ parameters
is simple (values of (θs) greater than 0 mean that these persons have a probability of success
greater than 0,50 on items that have a mean difficulty). Although the logit scale can adopt
values between ±∞, in the majority of the cases it is situated between ±5. The interval
property has a great importance because it guarantees the invariance of differences of scores
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all through the continuous scale (a necessary requirement in the analysis of the changes due
to development or training).

3. Results

Fit of the data to the Rasch Model

First, we show the results of the fit model analysis for items and examinees. The fit is crucial.
If it does not exist, the values does not have a theoretical meaning and the RM advantages,
such as interval property, disappear. The most employed statistic is called infit, which is an
information-weighted sum. The statistical information in a Rasch observation is its variance.
To calculate infit, each squared standardized residual value is weighted by its variance and
then summed. Infit statistic is reported as mean squares divided by their degrees of freedom,
so that they have a ratio scale form with an expected value of 1 and a range from 0 to positive
infinity. In this form, the mean squared fit statistics are used to monitor the compatibility
of the data with the model. Traditionally it is considered that values greater than 1,3 show
maladjustment [2]. The descriptive statistics of infit values are shown in Table 1.

Table 1: Item and person fit. Descriptive statistics of infit values

Object Mean St. D. Maximum infit Percentage with infit > 1.3

Pretest Items 0.98 0.15 1.27 0

Pretest Persons 0.97 0.37 2.10 18.92

Posttest Items 0.97 0.12 1.20 0

Posttest Persons 0.98 0.34 2.22 16.30

The statistics show a good fit. On the one hand, the means and standard deviations of
values are those that are expected when there are not substantial divergences between the
model predictions and the raw data. On the other hand, non of the items present values
greater than 1.3 . Only a moderate subsample of the students shows this result.

Establishing stable item calibrations to measure changes

Second, we analyze whether the items are stable across the two measurement occasions. The
measurement of a meaningful progress and development along a learning process requires
a stable definition of the measurement variable [7]. Comparison requires a stable frame of
reference. If the item calibrations are invariant, then differences between person measures at
the two occasions are valid indicators of changes in persons over time [18, 19, 20].

The stability of item parameters that are obtained on two occasions (β1−β2) is evaluated
by inspecting the graphical relationship of the item parameters for pretest and posttest, and
by examining the standardized difference (2) between the two estimates [21].

z = β1 − β2/[SE
2
(β1)

+ SE 2
(β2)

]1/2. (2)

SE (β1) and SE (β2) are standard errors of the estimates. The standardized differences for an
item pool that conform to stability have an expected value of 0.00 and an expected standard
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Figure 2: Scatter plot of item difficulty in pretest and posttest

deviation of 1. Large deviations from these expectations in the observed data indicate change
over time [18].

A scatter plot of the item parameters for pretest and posttest is shown in Fig. 2.
The analysis shows that there are minor differences between pretest and posttest calibra-

tions. Only three items (3, 16 and 19) exhibit significant standardized differences (z ≥ 1.96;
p ≤ 0.05), but the size of these differences is low and without theoretical and practical conse-
quences. Since such differences between the items may confound the inferences about changes
in the person measures for Time 1 and Time 2, we estimate the abilities of persons in the
posttest using pretest parameters of stable items across time as anchor [7].

Measuring Pretest-Posttest Change

The traditional method of assessing change using a t-test demonstrated statistically significant
gains for males and females from pretest to posttest (Table 2). The effect sizes, explained
as Cohen’s d, range between 0.77 (females) and 0.88 (males), which are large effect sizes
according to Cohen’s taxonomy [13]. The difference between change means of males and of
females was not statistically significant. However, males outperform females both in pretest
(t = 3.74, p = 0.0003, d = 0.60) and posttest measures (t = 3.52, p = 0.0007, d = 0.71).

According with Smith et al. [15], rather than concentrating on group differences, it would
be of greater value to see which individuals demonstrated statistically significant gains or
losses. Rasch measurement also produces a distinct advantage over classical test theory:
standard errors for each individual measure [11]. Standard errors allow for the statistical
comparisons of pre-post scores at the individual rather than group level. Using this infor-
mation one is able to target individuals that demonstrated statistically significant gains in
visualization.

The change of person parameters that are obtained on the two occasions (θ2 − θ1) is
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evaluated by examining the standardized difference (3) between the two estimates [18].

z = θ2 − θ1/[SE
2
(θ2)

+ SE 2
(θ1)

]1/2 (3)

The standardized differences have an expected value of 0.00 and an expected standard devi-
ation of 1. Large deviations in observed data from these expectations indicate a change over
time [18]. In order to test the nullity hypothesis, we perform a two tail test (α = 0, 05).

The results of this procedure are summarized in Table 3. The data shows that the program
benefited a large number of persons, that have similar size in males and females.

Table 2: Results of post-pre analysis at the group level

TVZ2002 Mean SD Mean SD t df p Effect size(d)
post-pre post-pre

Pretests -.68 2.05
(males= 109)

1.32 1.49 7.07 63 .0001 .88

Posttests -.46 2.33
(males= 64)

Pretests -1.93 1.74

(females= 50)

1.18 1.54 4.65 36 .0001 .77

Posttests -1.17 2.08
(females= 37)

Table 3: Number of persons in categories of standardized change scores

Reduction (z ≤ −1.96) Stability (−1.96 < z < 1.96) gain (z ≥ 1.96) Totals

Female 0 (0%) 23 (62.16%) 14 (37.84%) 37 (100%)

Male 0 (0%) 40 (62.50%) 24 (37.50%) 64 (100%)

The gain was not correlated with the visualization level. On one hand, the correlation
between change scores and pretest in the visualization test was not statistically significant
(r = −0.14, p = 0.1522). On the other hand, the percentage of persons with significant gain
was similar between persons who tested above the pretest-median and those who tested below
the pretest-median.

4. Discussion and conclusion

The aim of this work was to analyze if the learning of Technical Drawing improves the spatial
visualization aptitude. A visualization test was applied at the beginning and at the end of the
Technical Drawing course on a sample of first year students of engineering. As a quantitative
indicator of change we used the difference of the scores obtained at the beginning and at the
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end of the course. To acquire the same meaning of the change scores on the range of the
variable, it is necessary to use a procedure with the following characteristics:

1. Additivity: measure with an interval property.

2. Invariance of the measure frame: scaling based on the invariant items on both applica-
tions (pretest and posttest).

In order to estimate the examinees scores on the spatial visualization aptitude with the
additivity property, the Rasch model [12] was used. On both pretest and posttest, the data
showed a good fit to the model. Therefore, it can be concluded that the scores had the
required property.

To analyze the invariance of the measure frame on both pretest and posttest, the stan-
dardized differences between the items parameters on the first and second application was
estimated. Only 3 items among the 20 of the TVZ2002-b showed significant differences. How-
ever the size of these differences was low and theoretically irrelevant. To situate the examinees’
scores of pre- and posttests on a common scale, the posttest scores were estimated using as
anchor the parameters of the pretest of the invariant items. Finally, the change scores for
each person were calculated.

The mean on the TVZ2002-b was greater for males than for females, on both pretest
(t = 3, 74; df = 157; d = 0, 60) and posttest (t = 3, 52; df = 99; d = 0, 71). This difference,
favouring males, has a medium effect size, according to Cohen’s classification criteria [3].
This effect size is greater than those obtained in other studies with visualization tests [17].
Probably the magnitude of the difference favouring males is due to the presence of strong
demands of mental rotation in items of TVZ2002-b. Generally, males outperform females in
mental rotation tasks. This is one of the most consistent data of psychometrical research
about sex differences in spatial cognition [17].

At the end of the Technical Drawing course, more than a third part of the students
has a statistically significant improvement on their performance in the visualization test.
The improvement was high, both on the male group (d = 0, 88), and on the female group
(d = 0, 77). Due to the long time lapse between the pretest and posttest, the improvement
can not be interpreted as a practice effect. According to Kaufman [5], long intervals allow
forgetting of the test’s content, and therefore reduce the magnitude of the practice effects.

Converging with others studies, the improvement was similar on both males and females
[8].

The results support the conclusions that spatial visualization is an aptitude that could be
improved with training and that Technical Drawing courses are an efficient way of achieving
this. Although the duration and generality of this kind of training are topics to future
investigations, it could be suggested that they will be greater than those obtained by specific
procedures related with spatial tests.

It is important for teachers of the graphic area to be conscious of the role of spatial
visualization aptitude on their didactical attitudes. As we have recently shown in this journal
[11], the spatial visualization aptitude is not only determinant to the students professional
success but is directly related to the performance on Technical Drawing courses. To care
about the spatial visualization is to care about the improvement of the teaching-learning
process. From another point of view, because of the importance of visualization aptitude
on the performance in Technical Drawing, changing this aptitude could be considered as an
indicator of the efficiency of the teaching-learning process.
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