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1. Introduction

Shape is a concept of fundamental importance in many disciplines. It remains still difficult to
define and even more difficult to measure. H. BLUM [3, 4] has introduced a transformation,
variously known as the symmetric arts transform (SAT), the medial azis transform, or the
skeleton, that induces a @niqué, cogrdinate system independent decomposition of a figure into
simpler figures. Consequeéntly, the divide-and-conquer strategy can be applied to describe
the figure’s shape: Divide theMfigure into several smaller figures, describe each of them, then
combine the result§ to onessimgle description.

In [4] BLUM and®NAGEL propose an elegant method for applying this strategy to describe
figures bounded by piecewise smooth, simply closed curves in the plane. Extending their
method to 3D figures seems to be very important, e.g., in the field of highway lanes generating
and recovery [2]. To do this, it is necessary to generalize the mathematical 2D-tools used
by BLUM and NAGEL to three dimensions. In this paper, we develop the local differential
geometry of the symmetric axis in E3.

We begin by reviewing briefly some important properties of 2D symmetric azis (= medial
axis) [5, 6]. Let C be a smooth, simply closed curve in E? bounding a figure F'. The symmetric
axis of I is the locus of centers of all maximal discs of F. Equivalently, is C' is the outline of
F', the symmetric axis SA(C) is the set of points in F' having at least two nearest neighbors

on C.

The points of SA(C') can be classified into three types depending on the position of the
point and the number of nearest neighbors on C, which is called order. FEnd points are of
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order one, normal points of order two, and branch points of order three or more, corresponding
to the maximal discs touching one, two, or more disjoint arcs of C, respectively (see Fig. 1).
Additionally, at C' we are speaking of point contact if each touching maximal disk contacts
in a single point only, and otherwise of finite contact. We assume that SA(C) is the union of
simple arcs, each a sequence of normal points bounded at each end by a branch or end point,
such that different arcs intersect each other only at branch points (Fig. 1).

Branch point Normal points End point

Fnd points

Point
Contact

Finite Contact

Figure 1: Symmetric axis point types

Let 7 be the mapping from C' onto SA(C) that mapsta point P € C onto the center
of the maximal disc tangent to C' at Po. With eagh contiguous interval of normal points,
which is called simplified segment, the inversegselation 7 & associates two disjoint arcs of C.
Consequently, C' can be decomposed into a cellection®of pairs of arcs associated with the
simplified segments of SA(C) together with a colléction of (possibly degenerate) circular arcs
associated with branch and end points.

Choose a direction for traversing asimplified segment and call the two associated arcs of
C the left and the right boundary ayé. Thetangle between the tangent line of C' at a point Po
and the tangent line of SA(C) at#(Bg) is called the object angle; it is the arcsin of the first
derivative of the disc radius at z(P) with respect to axis arc length (see Fig. 2).

M aXigaa
disc

Right bdy
tangent

Figure 2: Normal point geometry (point contact)

The algebraic signs of the object angle and its derivative, the object curvature, partition
the segment into width shapes juxtaposed one after the other. The curvature of the simplified
segment reflects the degree to which the associated boundary arcs turn into the same direc-
tion. The object curvature reflects the symmetry of the associated boundary arcs about the
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simplified segment. If, for example, the disc radius is held constant while the axis curvature
changes, the associated boundary arcs may change from convex to straight to concave in a
manner depending on the curvature.

This paper generalizes the explicit functional relationship among the axis curvature, the
object curvature, the object angle, and the associated boundary arc curvature to E3.

The next section defines the SAT in E® and gives an intuitive presentation of the major
results of the paper. These results are then proved in the following section using results from
elementary differential geometry of surfaces. The paper concludes with a brief discussion of
the intuitive meanings of radius and axis curvature in the context of shape description.

2. Boundary and symmetric surface curvaturegreélations

In E? the outline of any spatial figure becomes a smooth, cloged surface without self-inter-
sections, and the maximal discs become maximal spheregt” In gener@l, the symmetric axis
(=medial azxis) is a surface rather than a curve, though itg8ometimes degenerates into a
space curve or a point. Connected sets of normal points, again called simplified segments, are
bounded by possibly degenerate space curves of branch or end peints. As before, the figure can
be decomposed into a collection of paired parts ass@ciatéd with simplified segments, together
with pieces of canal surfaces associated with braneh and endrpoint curves. A canal surface is
the envelope of a family of spheres, possibly of varyinggradius, with centers lying on a space
curve. Here, we analyse simplified segments and their associated boundary surfaces.

2.1. Background

First, it is necessary to digress briefly to discu$s the curvature of smooth surfaces S in general.
Denote the tangent plane of S at Pfby TpS. Tn a small neighborhood of P the curvature of
S can be characterized by examining the“curvature of curves on S through P. Consider the
normal sections at P, those curyes defined by the intersection of S with planes containing the
normal at P. Each normal segfion is a planar curve, and hence it has a well defined curvature
at P measuring its deviation“from the tangent line at P. Furthermore, since the tangent line
lies in TpS, the normal séetion curvature also measures the deviation of S from TpS in the
direction of the tangeniflined By gotating the defining plane about the normal, we get all
normal sections and their‘@arvatdres, and hence a complete characterization of the deviation
of the surface from ifs tangent¥plane (Fig. 3).

To express allfnormal®séétion curvatures in a finite way, we arbitrarily call one side of
the tangent plane positive and the other negative, and attach a sign to the normal section
curvatures according to“Whether the normal section lies on the positive or negative side of
the tangent plane. It can then be shown that while the defining plane is rotating about the
normal, either the normal section curvature assumes maximum and minimum values, called
principal curvatures, in two orthogonal directions, called principal directions, or the normal
section curvature is constant. Furthermore, each normal section curvature is completely
determined by the principal curvatures and the angle between the defining plane and the
principal directions.

The product of the principal curvatures is called Gaussian curvature Kg of S at P, while
their average is its mean curvature Hg. The behavior of S at P is characterized by the signs
of the Gaussian and mean curvature. For K¢ > 0, in a local neighborhood of P, all normal
sections lie on one side of the tangent plane, the side determined by the sign of the mean
curvature. The surface is cup-shaped at P. On the other hand, for K¢ < 0 the normal sections
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A

Figure 3: Geometry of surface curvaturé

about one principal direction lie above the tangent plane andfthosé about the other lie below,
giving S a saddle shape at P. The remaining case, Kg =40, is‘@ tramsition between the two
cases: in one principal direction the surface has flattengdywhile in®he other it may remain
curved. When both principal curvatures are zero, S is®planagyat the point and the principal
directions cease to exist.

2.2. Characterization of sphere radius

Let S be a simplified segment surface of any syanmeteygaxis in E2 and let P € S be a normal
point with point contact, i.e., the maximal sphesé centered at P touches the outline in two
disjoint points, sometimes called the assoétated boundary points. Furthermore, we assume that
S and the radius function r (defined préciselysbelow) are twice continuously differentiable at
P.

We now turn to characterize th@behaviortef the sphere radius. In 2D the disc radius was
a function of a single parameter &he atglength of the symmetric axis. Unfortunately, in 3D
one parameter is not sufficientf” Instead, we examine the first and second derivatives of the
radius function along curvesdn infinitely many directions through the point P.

Pick any direction throughW. Thén the first directional derivative of the radius function
at P in the specified dirgetion is the first derivative with respect to the arc length along any
curve of S tangent to that direetion. It is easy to show that this first directional derivative is
independent from the chéi€e of the curve in the specified direction.

Similarly, the second diréetional derivative of the radius function at P in the specified
direction can be defined to be the second derivative of the radius function with respect to arc
length along the curve. Unfortunately, this is not well defined without constraining the choice
of the curve. Since we are interested in the behavior of the radius function, not in the curvature
of the curve in S, we require the curve to be “straight” in a small neighborhood of P. More
precisely, we require that in an infinitesmal neighborhood about P, the orthogonal projection
of the curve onto TpS is a line in the specified direction. There is a unique curve, called a
geodesic, that satisfies this condition. Hence, we define the second directional derivative of
the radius function with respect to the arc length along the geodesic in that direction.

Below, we prove that, like normal section curvatures, the second directional derivative of
the radius function assumes its maximum and minimum values in two orthogonal directions
which by analogy will be called principal curvatures and principal directions of the radius
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function, respectively. Furthermore, the second directional derivative in any direction is
completely determined by the principal curvatures and the angle between this direction and
a principal direction. We also define the Gaussian and the mean curvature of the radius
function analogously and denote them by Kg and Hpg.

We can now state our goal more precisely. We seek a functional relationship among the
Gaussian and the mean curvature of S at P, the Gaussian and the mean curvature of the
outline at the associated boundary points, and the Gaussian and the mean curvature of the
radius function at P.

2.3. Definitions and notation

al points on a sim-
hear. Except at finite
C? surface. Hence, if
S be a C? surface patch on
oordinate vectors.

We begin by imposing a local curvilinear coordinate systems g
plified segments S in E3, thus bringing the techniques of cale
contact normal points, which we ignor hereafter, we assu
U is an open subset of R? with coordinates u!, u?, we le
S with linearly independent partial derivatives s; = 0
Choose a set of basis vectors in E? and let Y an
that basis. To distinguish between a vector X and le that represents it with respect
to some basis, we denote the n-tuple by X. an in product of Y and Z denoted
by (Y,Z), is given by YTGZ, where G is a 3{by 3 matrix such that (Y,Z) = (Z,Y) and
(Y,Y) > 0 for all nonzero Y. For the remainder of this paper, we will use the particular
inner product defined by G = I (the identity ma en the basis vectors are orthonormal.
This is nothing else than the dot product in, 23, Though the representation of the inner
product (, ) depends on the basis vectors ¢ , the inner product itself is basis independent.
It is always possible to choose s soff
P = s(0,0). Thus, without loss of
where 9;; is the Kronecker delta

tors represented in terms of

oordinate vectors are orthonormal at the point

1
, U

The tangent plane of S afi s(u
syMyConsequently, the unit normal ng(u', u?) at s(u',u?) is

the coordinate vectors s; a
(Sl X SQ)/|SI X SQ|.

Figure 4: 3D SAT Geometry
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Similarly, let B and C' be the boundary surfaces associated with S as shown in Fig. 4. Let
b(u',u?) and c(u', u?) be the points on B and C' associated with s(u!,u?), and let r: S — R
map a point on S to the radius of the maximal sphere centered at that point.

The maximal sphere centered at s(u', u?) is tangent to the boundary surface B at b(u', u?)
with the boundary normal n,(u', u?), lying along a diameter of the sphere. The direction of
n, is supposed to point away from S as shown in Fig. 4. Letting r(u', u?) denote r(s(u', u?)),
then

b(u!,u?) = s(u', u?) + r(ut, u?) ny(u', u?). (1)

Similarly,
c(u',u?) = s(u', v?) + r(u', u*)n.(u', u?). (2)

Let a(t): I CR — S be the geodesic on S passing through Pgwhergy/ is some interval
of R containing 0, ¢ is the arc length along the curve, and «(0) £.P. Let X = da/dt(0) be
the tangent vector of o at P. Since « is parametrized by its ar@length,and lies on S, X is a
unit vector in the tangent plane TpS of S at P.

Definition 1. The first and second directional derivativeghof M@l ,v?) at P in the direction

of X are, respectively,
dr(a) d*r (@)

x = (0) and rxx = o (0).

We let A1, Ag for A7 < Ay denote the principal curvature of S at P and let e, e; be the unit
vectors in the corresponding principal directions. Stige eacli principal direction is determined
by a line in TS, the orientations of e; and eg.are still*to choose. As shown below, we can
without loss of generality require that e; X e; =n, ; th@results of this paper are independent
of the choice made from the remaining two_possibilities. Similarly, let 71, v, and f;, f; denote
the principal curvatures and principal difections ofythe radius function.

2.4. Boundary curvature equations

In two dimensions, the object angle, 1.éy, the angle between the tangent line of SA at a point P
and the tangent line at the assgeiated boumdary point is determined by the arcsin of the first
derivative of the radius function. Avsimilar relation holds in three dimensions. The following
statement will be proved lateny(page 188):

Lemma 1. Let X be afunit)vectow in TpS. Then, the directional derivative of the radius
function r(u',u?) in the X Miréétion is rx = —(n,, X).

That is, in 3D the angle Between a symmetric surface tangent vector at a normal point and
the normal at the associated boundary point is determined by arccos of the first directional
derivative of the radius function in direction of the tangent vector. An analogous result holds
for n, .

The major result of the paper follows:

Theorem 2. Let

n=r8) £ =rd) | Al =rd) + (1 —12)

h =
2 (ng, n,)? 2 (ng, ny)? ’

and \ )
Y172 lregez 2Te1e1
k= M)\ . 4
N L S @
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Then the Gaussian and the mean curvature of the boundary surface B at b(0,0) are

h—rk k

Hp=—2""  pd Kp=— "
B 1—2rh+r2k an B Zorh+ 12k

()

These equations express the Gaussian and mean curvatures of the boundary surface B
in terms of the radius and the symmetric surface S, together with the angle between the
boundary normal n, and the symmetric surface normal n,. Analogous equations for the
boundary surface C' are obtained when the subscripts b and B are replaced by ¢ and C,
respectively.

At a first glance, it appears that the knowledge of the boundary normal is a prerequisite
to evaluate h and k, and hence the boundary curvatures. Thigfis notythe case. Since ng, eq,
and e, are orthonormal, (ng,ny)? + (ny, €1)? + (0, e2)? = 1.4Hence, up to the sign, (n,, ny)
is determined by 7., and re,.

Specifying the sign of (n,, n,) means choosing one6f thé boundary surfaces B or C.
As symmetry suggests and Lemma 1 reveals, n, and n, ate dirrogimages of each other with
respect to the tangent plane of the symmetric surface. /lhus bySgymmetry, (ng, n,) = (n., —ny)
and hence (ng,ny) = —(n., ng). Consequently, if wé réplace (n,, ny) by £(ng,n,) in (3) and
(4), the curvature relations hold for both boundary surfaces

To discuss the geometric significance of h and k, c@nsider the surface B’ defined by
b'(ut,u?) = s(u'yu?) + 7@ u?)n, (vt u?),

where 7/(u!, u?) = r(u',u?) — r(0,0). B’ pagfes through the point P = s(0,0) and at each
(u',u*) B and B’ share the unit ngtfmal vector. B’ and B are called parallel surfaces (see
Fig. 5). Since the derivatives of rfand g~@Fé%iclentical, we can evaluate (5) at (0,0). Substi-
tuting r’ for r gives k = Kp andbh =¥ . Thus, the terms h and k in (5) are the mean and
Gaussian curvature, respectivély, of the surface parallel to B passing through P. Therefore,
(5) expresses the dependencé of thegboundary curvature from the distance to the symmetric
surface. BLUM and NAGHL [3, 4] us¢ a similar relationship in the two-dimensional case to
derive the boundary cumvatupé from the parallel curve curvature. Analogous results hold for
the surface parallel to C"thfoughdP when the sign of (ng, n,) is changed.

Both, the symmétriessurfaéé curvature and the radius function are involved in the curva-
ture of the boundaty swifageswExamining each alone reveals different aspects of the boundary
surface. Intuitively, Syinmetric surface curvature reflects the overall “curvatur trend” of the
pairs of associated partspi.e., the degree to which the boundary surfaces are turning in the
same direction. The radius curvature, on the other hand, reflects the symmetry of the bound-
ary surfaces about the symmetric surface, i.e., the degree to which both boundary surfaces
are curved in opposite directions.

To see this, note that in (3) the symmetric surface curvatures A; and Ay contribute with
equal magnitude but opposite sign to the mean curvature of the two boundary surface, while
the radius curvatures v, and v, contribute equally to each. Since the boundary surface normals
are directed away from the symmetric surface, boundary surface mean curvatures of opposite
sign imply curvature in the same direction. Furthermore, it can be shown that the signs of
the Gaussian and mean curvatures of each boundary surface are equal to the signs of the
curvatures of the corresponding parallel surface. Hence, our intuitive notions of the meanings
of the symmetric surface curvature and the radius curvature are confirmed.
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AN

Figure 5: Surface parallel to the bou rfa

3. Proof of curvature relations

In this section we prove the results presented in Section 2¢4, using results from elementary
differential geometry of surfaces.

3.1. Quadratic curvature forms

 of the radius function is a quadratic form.
Hence, by properties of quadratic form curvatures and principal directions exist

First, we show that the second directionaldleti
[
and behave as claimed in Section 2. g

Lemma 3. rxx is a quadratic f r the unit vectors X in TpS.

Proof: Let a(t) = s(al(t),
s; and sy, there are scalar

S22 (dat/dt)s;, so (dai/

e given. Then, since TpS is a vector space spanned by
at X = 37| X's;. Using the chain rule, da/dt =
4 Applying the chain rule again,

dr(e) 2. Or(s) do
KT T (t>_; oui dt

Differentiating and substituting X for do'/dt,

i

d*r(a) 2. 0r(s) d?a
XX g (t>_; oui P2

The geodesic « is characterized by the differential equations
2 2

d?aF dat da?
- _ k. - k=12
dt? ZZ Uodt dt T

=1 j5=1
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where the Ff’j measure the tangential components of the second partial derivatives s;;. Com-
bining the last two equations, denoting 9r(s)/du’ by r; and 9%r(s)/0u’du’ by r;;, and rear-

ranging terms, we see that since r;; = r;; and F"f = F]Z, rxx is a quadratic form in X,

rxx = Q(X) = XTQX (6)
with

Q= lay] = [ﬁ'j - ZWFZ] . D (7)

Since @) represents the quadratic form @(X) with respect to an orthonormal basis of
TpS, over all unit vectors X in TpS, Q(X) assumes its minimum value at the eigenvector
of @ corresponding to the smallest eigenvalue v; and its maxigtim %alue at the eigenvector
corresponding to the largest eigenvalue 7. Furthermore, thefyalues assumed are v; and s,
respectively, and the eigenvectors are orthogonal if the eigenvalies ape distinct. By solving
the characteristic equation of @), it is easy to see that y;96 = det Q) and v, + v = tr Q.

Similarly, the second fundamental form 11(X) of S iSya guadrdtic form over unit vectors
in TpS that gives the curvature of the normal sectionfin the'dirgetion X. Letting L, = [Lg;;]
be the matrix defining the second fundamental forméwigh respect to the basis {s1,s52} of TpS,
we have [1(X) = XTL,X.

Thus, two quadratic forms are defined at eagh point P of S. One, the second fundamental
form, gives the curvature of normal sections through Pin any direction, while the other gives
the second derivative of the radius along the geodesic i the same direction. Since the normal
to a geodesic is everywhere normal to the guiface on which it lies, the geodesic and the normal
section share a common normal vector. Byjycomstruction, they have the same tangent vector
and hence, the same curvature. Therefore, afie quadratic form measures the curvature of .S
along the geodesic and the other mgasures thesgecond derivative of the radius function along
the same geodesic.

3.2. Matrix formation

In this section, we derive adfelation bebween the matrices () and L, that determine the radius
curvature and the symmefric sfirface curvature, respectively, to the matrix defining the second
fundamental form and hencé the gurvature of each boundary surface.

The partial deriyatiyes ofagl) are

b, =s; +rin, +1rny, . (8)

We can solve them for mby taking the inner product with n,. Since n, is a vector of constant
norm, it is perpendicular to its derivative n,;. Thus, since b; is perpendicular to n, by
definition,

r, = —(si,m,}. (9)
We take partial derivatives again and get
Tij = _<Sij7nb> - <Si7nbj>-

Using the Gauss’s equation s;j = Lg;jng + Zizl Ff}sk and the definition of the coefficients of
the second fundamental form, Ly;; = (s;;, n,), we obtain

2
Tij = —Lg;j(ns, ) ZF Sk, M) — (Si, Ny;). (10)
k=1
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Analogus results for boundary surface C' follow from (2), though for brevity we defer further
consideration of C' until the end of this section.

The matrices G, = [Gpij] = [(bs,b;)] and L, = [Ly;;| represent the first and second
fundamental form of B at b(u',u?) with respect to {b;(u',u?),by(ul,u?)}. Since n, is a
vector of constant norm, the n,; can be expressed as a linear combination of the b; by
Weingarten’s equations

2
n; =— Y Wibi, where W, = [W] =G, 'Ly. (11)

=1

Letting A = [(s;, b;)] and combining Weingarten’s equations with (7), (9), and (10), we obtain

AWy = [rij] + (ns,mp) Ls — Zﬁc [Fm =Q+( % (12)

Equation (12) relates the boundary curvature expressed bydlV, # theyradius curvature ex-
pressed by @), and to the symmetric surface curvature expregse L e seek the boundary
curvatures in terms of the radius and the symmetric sufface. O pproach is to solve the
matrix equation (12) for the two invariants, the determinantyand trace. We then solve the
resulting two equations simultaneously.

3.3. Determinant equations

Substitute Weingarten’s egs. (11) into (8) a

=

or the s; gives

S1 = (1 +T’Wb11)b b2 —ring, (13)
sy = rWby rW.5)ba — rony . (14)
Recalling that A = [(s;, b;)] and de

2
y + 7 Vi rWi ,
Y
e LW

we use (13) and (14) to ob TG, and consequently, since Wy, = G} ' Ly, that AW, =
T Ly. Substituting into (12) g1

Lb = Q + <1’15, nb>Ls~ (15>

To evaluate the determin
and the following Lemma 4.

Proof of Lemma 1: Let X' and X? be the components of X in the basis {s{,ss}, i.e., X =
S22 X's;. So, (ny, X) = 322 X¥(ny,s;) which by (9) is — 3.7, Xr;. Thus by the proof of
Lemma 3, rx = —(n,, X). 0

of the left side of (15), we use Lemma 1 (which we now prove)

Lemma 4. g, = det Gy, implies g, det>T = (ng,, 1np)>.

Proof. Recall that [(s;,s;)] = I, where I is the two-by-two unit matrix. Then, using (13) and
(14), by straightforward algebra, it is not difficult to show that TG,TT = I — [ r:i 7“71622 }
implies

1

TGT") ' = ————
(TGT") gy det®T

(I — R) where R:[ R } (16)

—riry T3
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We take the determinant of both sides in (16) and apply Lemma 1,
Gpdet’T =1 -1 =12 =1 — (ny,51)? — (my, 85)% = (n,, ny)?,
where the last step follows because ng, s1, and s, are orthonormal. O]
Thus the determinant of the left side of (15) is

(ng,np)% det(G,'Ly) (0, my)?Kp
detT  detT

det(T'Ly) = det(TGy) det(Gy ' Ly) = (17)

where K, = det W, is the Gaussian curvature of B.

We now evaluate the determinant of the right side of (15). g that the determinant
is invariant under change of basis, we change from the basis TpS to that defined
by the eigenvectors e; and ey of L corresponding to the ei 1 and o, respectively.
Since eigenvectors are determined only up to a nonzero iplicative constant and since e;
and e, lie in the tangent plane TpS and are orthogona

of generality, choose e; to be unit vectors so that eyX e, Similarly, let f; and f; be

unit vectors of () corresponding to the eigenvalue so that f; x f; = n,. In terms of
their respective eigenvectors bases, the transformations esented by L, and () in terms
. )\1 71 0 . ~ )\1 0
of the basis {s;,s2} are represented by { 0 A, | A0 0 ], ie., L, ~ [ 0 Ay and
Q =~ [ '61 3 ], where ~ denotes matrix simila
2

Representing both transformations in he basis {e1, e;} requires examinating the

relationship between e; and f; . Let 6 be th nterclockwise angle from e; to f;. Then, with

respect to the basis {f},fx}, e, = ©

cosf sind . . .
_Gnfd cosd } As shown in Fig. 6, 0 is

determined only up to a multiple

f2

Figure 6: Relation between principal directions
Changing from the basis {f},f2} to {e1,es},

7o 0| 1|l m 0 AT
[0 72]~:|:@ [0 72}@:@)_@

v O )
0 Vz] '

Therefore, @ + (ng, n,) L is similar to

o3 2 Jormm[y £
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which is easily seen to have a determinant of

(g, mp)* M A2 + 172 + (0, 1) (A1 + Aaya — (71 — 72) (A1 — M) cos® ). (18)

Note that (18) is independent of 6 if either ; = 5 or A = Ag. Consequently, when one pair
of eigenvalues fails to be distinct, the principal directions can be chosen arbitrarily.
Combining (17) and (18) and rearranging terms,

Kp Y12 A1 (71 8in? 0 + 75 cos? 0) + Ag(71 cos? § + 4 sin? 0)
= My + +

det T (ng, ny)? (ng, ny)
Recall that e; = f; cosf — f5sin 0 and ey = f; sin 6 + f5 cos . Equation (19) can be simplified

by observing that Q(e;) = [cosf — sin{] { n 32 } [cosf —sinf]" = 44.cos? 6 + v, sin 6 and

. (19)

0
Q(ez) = 71 sin? 0 + 5 cos? . Hence, by (6) and (19) we obtain
KB Y172 /\ITeQeQ + A27/‘E!1e1
=MA . 20
detT e (ng, ny)? * (ng, ng) (20)

3.3.1. Trace equations

The second equation relating the boundary curvature t@radius and symmetric surface curva-
ture results from taking the trace of (12). It follows from (12)and (16) that

(9o det®T) (TT) "Wy, = (Q + (ny,n§) L) — R(Q + (n,,my)L,).

Hence, since tr W, = 2Hpg, det W, = Kp, trQ = 2Hg, and tr L, = 2Hg, taking the trace of
both sides gives

(2gy detT) (rKp + Hg) = 2(Hr + (ngs, 99 Hgs) — tr(RQ) — (ng, n,)tr(RL;). (21)

Two observations enable us to evalftatejtr(REy) and, by analogous reasoning, tr(RQ).
First, simple algebra reveals that tr(Rdsy) isfnothing more than the second fundamental form
of S, evaluated at [r, —ry], i.e., [ry —#%] Ly Jea.—71]". Second, with respect to the basis {ey, e}
A1 O
0 Ao
[a' a?] represent, with respectfto {e;, e,y the vector represented by [ry —r;] in the basis

(s1,80), tr(RLy) = [a' a?] | & © }[al 2.

the second fundamental form is represented by the diagonal matrix [ ] . Hence, letting

0 Ao

Let V' be the matrix_ ef trangitign from the basis {s;,s2} to the basis {e;, ey}, i.e. the
matrix such that [ry -4]" J&= V[a' a?]". Since the columns of V as the coordinates of
the e; are orthonormaly V#V = 1. Thus, detV = £1 which is nonzero. Therefore, we
can solve for [a' a?| obtaifimg =4 [r\Vis + roVas —riVis — Vo). Since by the definition of
V, e = 232.:1 Viisj, by using (9) we see that [a' a?] = £[—(ny,es) (ny,e1)] and hence,
that tr(RL,) = (A1 (np, €2)% + Xo(mp, €1)?). Analogously, tr(RQ) = (v1(mp, £2)% + 72 (ny, 1)?).
Finally, combining these results with (21), Lemma 4, and the definition of mean curvature as
the average of principal curvatures, we obtain

rKp+ H
20,1 22 5 (1= (i £)) + 201 — (1))

+(ng, 1) (A (1 — (1my,€2)%) + A1 — (my, €1)%)), (22)
which, using Lemma 1, can be written as
rKg+Hg  n(1=ri)+7(l-13) M0 —=73)+ X (l-r2)
detT 2(n,, ny)? 2(n,, ny) '
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3.4. Solution

The right sides of Egs. (23) and (20) are the right sides of (3) and (4), respectively. Recall that
K =detW, and Hg = % tr Wy,. Then, by straightforward algebra, det T = 1+72Kpz+2rHp.
Substituting this into (20) and (23), we obtain a linear system of two equations in the two
unknowns Hp and Kp, with solutions (5). This proves Theorem 2.

4. Summary and conclusions

BLUM’s symmetric axis transform defines a unique decomposition of a figure into disjoint pairs

of pieces, each with its own surface (axis) of symmetry and associated boundary surfaces. In

previous sections of this paper, we have defined measures of ghe radius function and have

shown how these measures and the symmetric surface curvatize are related to the boundary

surface curvatures. In particular, we have shown that Gau$sian and mean curvatures of the

boundary surfaces are determined by nine measures, eacliwitli’a geometric interpretation:
(1) the symmetric surface curvature as determined by twedpringipal curvatures and a prin-

cipal direction;

(2) the radius curvature as determined by two prificipaligurvatures and a principal direction;

(3) directional derivatives of the radius functi@fi¥as determined by the angles between ei-
ther boundary normal and the two symmnietric sutface principal directions, called width
angles; and

(4) the radius function itself.
Other, equivalent sets of measures are easily found= It can also be shown that these measures,
and the curvature relationship derived, fromthem, subsume the two-dimensional measures
and curvature relationship given by/BLUM and)NAGEL [3, 4].

It appears possible to use th@ymeasures defined here to further partition a simplified
segment into a set of canonical pairs ofipieces, yielding a symbolic description, much as BLuM
and NAGEL have done in two dimaensions. ‘Before such a symbolic description can be obtained,
however, further work needs to be dene in two directions. First, though the assumptions we
have made about the topglogy,of the symmetric surface seem to be true for smooth outlines
in general, a definitivegtudy of the symmetric surface topology is lacking. We have also
completely ignored the analysis of finite contact normal points, branch points, and end points.
Second, a suitable @lgorithm for computing symmetric surfaces of three-dimensional figures
is required in ordef.to evaluate which of several possible schemes is suitable for specific three-
dimensional shape desgription problems. This is already implemented in Pascal programming
as in [1]. Indeed, the purpose of this paper is not to propose specific features for three-
dimensional shape description, but rather to provide mathematical tools for further studies.
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