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1. Introduction

Shape is a concept of fundamental importance in many disciplines. It remains still difficult to
define and even more difficult to measure. H. Blum [3, 4] has introduced a transformation,
variously known as the symmetric axis transform (SAT), the medial axis transform, or the
skeleton, that induces a unique, coordinate system independent decomposition of a figure into
simpler figures. Consequently, the divide-and-conquer strategy can be applied to describe
the figure’s shape: Divide the figure into several smaller figures, describe each of them, then
combine the results to one single description.

In [4] Blum and Nagel propose an elegant method for applying this strategy to describe
figures bounded by piecewise smooth, simply closed curves in the plane. Extending their
method to 3D figures seems to be very important, e.g., in the field of highway lanes generating
and recovery [2]. To do this, it is necessary to generalize the mathematical 2D-tools used
by Blum and Nagel to three dimensions. In this paper, we develop the local differential
geometry of the symmetric axis in E3.

We begin by reviewing briefly some important properties of 2D symmetric axis (=medial
axis) [5, 6]. Let C be a smooth, simply closed curve in E2 bounding a figure F . The symmetric
axis of F is the locus of centers of all maximal discs of F . Equivalently, is C is the outline of
F , the symmetric axis SA(C) is the set of points in F having at least two nearest neighbors
on C.

The points of SA(C) can be classified into three types depending on the position of the
point and the number of nearest neighbors on C, which is called order. End points are of
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order one, normal points of order two, and branch points of order three or more, corresponding
to the maximal discs touching one, two, or more disjoint arcs of C, respectively (see Fig. 1).
Additionally, at C we are speaking of point contact if each touching maximal disk contacts
in a single point only, and otherwise of finite contact. We assume that SA(C) is the union of
simple arcs, each a sequence of normal points bounded at each end by a branch or end point,
such that different arcs intersect each other only at branch points (Fig. 1).

Figure 1: Symmetric axis point types

Let τ be the mapping from C onto SA(C) that maps a point PC ∈ C onto the center
of the maximal disc tangent to C at PC . With each contiguous interval of normal points,
which is called simplified segment, the inverse relation τ−1 associates two disjoint arcs of C.
Consequently, C can be decomposed into a collection of pairs of arcs associated with the
simplified segments of SA(C) together with a collection of (possibly degenerate) circular arcs
associated with branch and end points.

Choose a direction for traversing a simplified segment and call the two associated arcs of
C the left and the right boundary arc. The angle between the tangent line of C at a point PC

and the tangent line of SA(C) at τ(PC) is called the object angle; it is the arcsin of the first
derivative of the disc radius at τ(PC) with respect to axis arc length (see Fig. 2).

Figure 2: Normal point geometry (point contact)

The algebraic signs of the object angle and its derivative, the object curvature, partition
the segment into width shapes juxtaposed one after the other. The curvature of the simplified
segment reflects the degree to which the associated boundary arcs turn into the same direc-
tion. The object curvature reflects the symmetry of the associated boundary arcs about the
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simplified segment. If, for example, the disc radius is held constant while the axis curvature
changes, the associated boundary arcs may change from convex to straight to concave in a
manner depending on the curvature.

This paper generalizes the explicit functional relationship among the axis curvature, the
object curvature, the object angle, and the associated boundary arc curvature to E3.

The next section defines the SAT in E3 and gives an intuitive presentation of the major
results of the paper. These results are then proved in the following section using results from
elementary differential geometry of surfaces. The paper concludes with a brief discussion of
the intuitive meanings of radius and axis curvature in the context of shape description.

2. Boundary and symmetric surface curvature relations

In E3 the outline of any spatial figure becomes a smooth, closed surface without self-inter-
sections, and the maximal discs become maximal spheres. In general, the symmetric axis
(=medial axis) is a surface rather than a curve, though it sometimes degenerates into a
space curve or a point. Connected sets of normal points, again called simplified segments, are
bounded by possibly degenerate space curves of branch or end points. As before, the figure can
be decomposed into a collection of paired parts associated with simplified segments, together
with pieces of canal surfaces associated with branch and end point curves. A canal surface is
the envelope of a family of spheres, possibly of varying radius, with centers lying on a space
curve. Here, we analyse simplified segments and their associated boundary surfaces.

2.1. Background

First, it is necessary to digress briefly to discuss the curvature of smooth surfaces S in general.
Denote the tangent plane of S at P by TPS. In a small neighborhood of P the curvature of
S can be characterized by examining the curvature of curves on S through P . Consider the
normal sections at P , those curves defined by the intersection of S with planes containing the
normal at P . Each normal section is a planar curve, and hence it has a well defined curvature
at P measuring its deviation from the tangent line at P . Furthermore, since the tangent line
lies in TPS, the normal section curvature also measures the deviation of S from TPS in the
direction of the tangent line. By rotating the defining plane about the normal, we get all
normal sections and their curvatures, and hence a complete characterization of the deviation
of the surface from its tangent plane (Fig. 3).

To express all normal section curvatures in a finite way, we arbitrarily call one side of
the tangent plane positive and the other negative, and attach a sign to the normal section
curvatures according to whether the normal section lies on the positive or negative side of
the tangent plane. It can then be shown that while the defining plane is rotating about the
normal, either the normal section curvature assumes maximum and minimum values, called
principal curvatures, in two orthogonal directions, called principal directions, or the normal
section curvature is constant. Furthermore, each normal section curvature is completely
determined by the principal curvatures and the angle between the defining plane and the
principal directions.

The product of the principal curvatures is called Gaussian curvature KS of S at P , while
their average is its mean curvature HS. The behavior of S at P is characterized by the signs
of the Gaussian and mean curvature. For KS > 0, in a local neighborhood of P , all normal
sections lie on one side of the tangent plane, the side determined by the sign of the mean
curvature. The surface is cup-shaped at P . On the other hand, for KS < 0 the normal sections
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Figure 3: Geometry of surface curvature

about one principal direction lie above the tangent plane and those about the other lie below,
giving S a saddle shape at P . The remaining case, KS = 0, is a transition between the two
cases: in one principal direction the surface has flattened while in the other it may remain
curved. When both principal curvatures are zero, S is planar at the point and the principal
directions cease to exist.

2.2. Characterization of sphere radius

Let S be a simplified segment surface of any symmetry axis in E3 and let P ∈ S be a normal
point with point contact, i.e., the maximal sphere centered at P touches the outline in two
disjoint points, sometimes called the associated boundary points. Furthermore, we assume that
S and the radius function r (defined precisely below) are twice continuously differentiable at
P .

We now turn to characterize the behavior of the sphere radius. In 2D the disc radius was
a function of a single parameter, the arc length of the symmetric axis. Unfortunately, in 3D
one parameter is not sufficient. Instead, we examine the first and second derivatives of the
radius function along curves in infinitely many directions through the point P .

Pick any direction through P . Then the first directional derivative of the radius function
at P in the specified direction is the first derivative with respect to the arc length along any
curve of S tangent to that direction. It is easy to show that this first directional derivative is
independent from the choice of the curve in the specified direction.

Similarly, the second directional derivative of the radius function at P in the specified
direction can be defined to be the second derivative of the radius function with respect to arc
length along the curve. Unfortunately, this is not well defined without constraining the choice
of the curve. Since we are interested in the behavior of the radius function, not in the curvature
of the curve in S, we require the curve to be “straight” in a small neighborhood of P . More
precisely, we require that in an infinitesmal neighborhood about P , the orthogonal projection
of the curve onto TPS is a line in the specified direction. There is a unique curve, called a
geodesic, that satisfies this condition. Hence, we define the second directional derivative of
the radius function with respect to the arc length along the geodesic in that direction.

Below, we prove that, like normal section curvatures, the second directional derivative of
the radius function assumes its maximum and minimum values in two orthogonal directions
which by analogy will be called principal curvatures and principal directions of the radius
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function, respectively. Furthermore, the second directional derivative in any direction is
completely determined by the principal curvatures and the angle between this direction and
a principal direction. We also define the Gaussian and the mean curvature of the radius
function analogously and denote them by KR and HR.

We can now state our goal more precisely. We seek a functional relationship among the
Gaussian and the mean curvature of S at P , the Gaussian and the mean curvature of the
outline at the associated boundary points, and the Gaussian and the mean curvature of the
radius function at P .

2.3. Definitions and notation

We begin by imposing a local curvilinear coordinate systems about normal points on a sim-
plified segments S in E3, thus bringing the techniques of calculus to bear. Except at finite
contact normal points, which we ignor hereafter, we assume S to be a C2 surface. Hence, if
U is an open subset of R2 with coordinates u1, u2, we let s : U → S be a C2 surface patch on
S with linearly independent partial derivatives si = ∂s/∂ui called coordinate vectors.

Choose a set of basis vectors in E3 and let Y and Z be two vectors represented in terms of
that basis. To distinguish between a vector X and the n-tuple that represents it with respect
to some basis, we denote the n-tuple by X. Then an inner product of Y and Z denoted
by 〈Y,Z〉, is given by Y TGZ, where G is a 3 by 3 matrix such that 〈Y,Z〉 = 〈Z,Y〉 and
〈Y,Y〉 > 0 for all nonzero Y. For the remainder of this paper, we will use the particular
inner product defined by G = I (the identity matrix) when the basis vectors are orthonormal.
This is nothing else than the dot product Y TZ in E3. Though the representation of the inner
product 〈 , 〉 depends on the basis vectors chosen, the inner product itself is basis independent.

It is always possible to choose s so that the coordinate vectors are orthonormal at the point
P = s(0, 0). Thus, without loss of generality, we choose s so that 〈si(0, 0), sj(0, 0)〉 = δij ,
where δij is the Kronecker delta.

The tangent plane of S at s(u1, u2) is a two-dimensional subspace of R3 spanned by
the coordinate vectors s1 and s2. Consequently, the unit normal nS(u

1, u2) at s(u1, u2) is
(s1 × s2)/|s1 × s2|.

Figure 4: 3D SAT Geometry
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Similarly, let B and C be the boundary surfaces associated with S as shown in Fig. 4. Let
b(u1, u2) and c(u1, u2) be the points on B and C associated with s(u1, u2), and let r : S → R
map a point on S to the radius of the maximal sphere centered at that point.

The maximal sphere centered at s(u1, u2) is tangent to the boundary surface B at b(u1, u2)
with the boundary normal nb(u

1, u2), lying along a diameter of the sphere. The direction of
nb is supposed to point away from S as shown in Fig. 4. Letting r(u1, u2) denote r(s(u1, u2)),
then

b(u1, u2) = s(u1, u2) + r(u1, u2)nb(u
1, u2). (1)

Similarly,
c(u1, u2) = s(u1, u2) + r(u1, u2)nc(u

1, u2). (2)

Let α(t) : I ⊂ R → S be the geodesic on S passing through P , where I is some interval
of R containing 0, t is the arc length along the curve, and α(0) = P . Let X = dα/dt(0) be
the tangent vector of α at P . Since α is parametrized by its arc length and lies on S, X is a
unit vector in the tangent plane TPS of S at P .

Definition 1. The first and second directional derivatives of r(u1, u2) at P in the direction
of X are, respectively,

rX =
dr(α)

dt
(0) and rXX =

d2r(α)

dt2
(0).

We let λ1, λ2 for λ1 ≤ λ2 denote the principal curvature of S at P and let e1, e2 be the unit
vectors in the corresponding principal directions. Since each principal direction is determined
by a line in TPS, the orientations of e1 and e2 are still to choose. As shown below, we can
without loss of generality require that e1× e2 = ns ; the results of this paper are independent
of the choice made from the remaining two possibilities. Similarly, let γ1, γ2 and f1, f2 denote
the principal curvatures and principal directions of the radius function.

2.4. Boundary curvature equations

In two dimensions, the object angle, i.e., the angle between the tangent line of SA at a point P
and the tangent line at the associated boundary point is determined by the arcsin of the first
derivative of the radius function. A similar relation holds in three dimensions. The following
statement will be proved later (page 138):

Lemma 1. Let X be a unit vector in TPS. Then, the directional derivative of the radius
function r(u1, u2) in the X-direction is rX = −〈nb,X〉.

That is, in 3D the angle between a symmetric surface tangent vector at a normal point and
the normal at the associated boundary point is determined by arccos of the first directional
derivative of the radius function in direction of the tangent vector. An analogous result holds
for nc .

The major result of the paper follows:

Theorem 2. Let

h :=
γ1(1− r2

f2
) + γ2(1− r2

f1
)

2 〈ns,nb〉2
+

λ1(1− r2
e2
) + λ2(1− r2

e1
)

2 〈ns,nb〉2
, (3)

and

k := λ1λ2 +
γ1γ2

〈ns,nb〉2
+

λ1re2e2
+ λ2re1e1

〈ns,nb〉
. (4)
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Then the Gaussian and the mean curvature of the boundary surface B at b(0, 0) are

HB =
h− rk

1− 2rh+ r2k
and KB =

k

1− 2rh+ r2k
. (5)

These equations express the Gaussian and mean curvatures of the boundary surface B
in terms of the radius and the symmetric surface S, together with the angle between the
boundary normal nb and the symmetric surface normal ns. Analogous equations for the
boundary surface C are obtained when the subscripts b and B are replaced by c and C,
respectively.

At a first glance, it appears that the knowledge of the boundary normal is a prerequisite
to evaluate h and k, and hence the boundary curvatures. This is not the case. Since ns, e1,
and e2 are orthonormal, 〈ns,nb〉

2 + 〈nb, e1〉
2 + 〈nb, e2〉

2 = 1. Hence, up to the sign, 〈ns,nb〉
is determined by re1

and re2
.

Specifying the sign of 〈ns,nb〉 means choosing one of the boundary surfaces B or C.
As symmetry suggests and Lemma 1 reveals, nb and nc are mirror images of each other with
respect to the tangent plane of the symmetric surface. Thus by symmetry, 〈ns,nb〉 = 〈nc,−ns〉
and hence 〈ns,nb〉 = −〈nc,ns〉. Consequently, if we replace 〈ns,nb〉 by ±〈ns,nb〉 in (3) and
(4), the curvature relations hold for both boundary surfaces.

To discuss the geometric significance of h and k, consider the surface B ′ defined by

b′(u1, u2) = s(u1, u2) + r′(u1, u2)nb(u
1, u2),

where r′(u1, u2) = r(u1, u2) − r(0, 0). B′ passes through the point P = s(0, 0) and at each
(u1, u2) B and B′ share the unit normal vector. B ′ and B are called parallel surfaces (see
Fig. 5). Since the derivatives of r′ and r are identical, we can evaluate (5) at (0, 0). Substi-
tuting r′ for r gives k = KB and h = HB . Thus, the terms h and k in (5) are the mean and
Gaussian curvature, respectively, of the surface parallel to B passing through P . Therefore,
(5) expresses the dependence of the boundary curvature from the distance to the symmetric
surface. Blum and Nagel [3, 4] use a similar relationship in the two-dimensional case to
derive the boundary curvature from the parallel curve curvature. Analogous results hold for
the surface parallel to C through P when the sign of 〈ns,nb〉 is changed.

Both, the symmetric surface curvature and the radius function are involved in the curva-
ture of the boundary surfaces. Examining each alone reveals different aspects of the boundary
surface. Intuitively, symmetric surface curvature reflects the overall “curvatur trend” of the
pairs of associated parts, i.e., the degree to which the boundary surfaces are turning in the
same direction. The radius curvature, on the other hand, reflects the symmetry of the bound-
ary surfaces about the symmetric surface, i.e., the degree to which both boundary surfaces
are curved in opposite directions.

To see this, note that in (3) the symmetric surface curvatures λ1 and λ2 contribute with
equal magnitude but opposite sign to the mean curvature of the two boundary surface, while
the radius curvatures γ1 and γ2 contribute equally to each. Since the boundary surface normals
are directed away from the symmetric surface, boundary surface mean curvatures of opposite
sign imply curvature in the same direction. Furthermore, it can be shown that the signs of
the Gaussian and mean curvatures of each boundary surface are equal to the signs of the
curvatures of the corresponding parallel surface. Hence, our intuitive notions of the meanings
of the symmetric surface curvature and the radius curvature are confirmed.
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Figure 5: Surface parallel to the boundary surface

3. Proof of curvature relations

In this section we prove the results presented in Section 2.4, using results from elementary
differential geometry of surfaces.

3.1. Quadratic curvature forms

First, we show that the second directional derivative of the radius function is a quadratic form.
Hence, by properties of quadratic forms the principal curvatures and principal directions exist
and behave as claimed in Section 2.2.

Lemma 3. rXX is a quadratic form over the unit vectors X in TPS.

Proof: Let α(t) = s(α1(t), α2(t)) be given. Then, since TPS is a vector space spanned by
s1 and s2, there are scalars X i such that X =

∑2

i=1
X isi. Using the chain rule, dα/dt =

∑2

i=1
(dαi/dt)si, so (dα

i/dt)(0) = X i. Applying the chain rule again,

rX =
dr(α)

dt
(t) =

2
∑

i=1

∂r(s)

∂ui

dαi

dt
.

Differentiating and substituting X i for dαi/dt,

rXX =
d2r(α)

dt2
(t) =

2
∑

i=1

∂r(s)

∂ui

d2αi

dt2
+

2
∑

i=1

2
∑

j=1

X iXj ∂2r(s)

∂ui∂uj
.

The geodesic α is characterized by the differential equations

d2αk

dt2
= −

2
∑

i=1

2
∑

j=1

Γk
ij

dαi

dt

dαj

dt
, k = 1, 2,
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where the Γk
ij measure the tangential components of the second partial derivatives sij . Com-

bining the last two equations, denoting ∂r(s)/∂ui by ri and ∂2r(s)/∂ui∂uj by rij, and rear-
ranging terms, we see that since rij = rji and Γ

k
ij = Γ

k
ji, rXX is a quadratic form in X,

rXX = Q(X) = XTQX (6)

with

Q = [qij] =

[

rij −
2

∑

k=1

rkΓ
k
ij

]

. (7)

Since Q represents the quadratic form Q(X) with respect to an orthonormal basis of
TPS, over all unit vectors X in TPS, Q(X) assumes its minimum value at the eigenvector
of Q corresponding to the smallest eigenvalue γ1 and its maximum value at the eigenvector
corresponding to the largest eigenvalue γ2. Furthermore, the values assumed are γ1 and γ2,
respectively, and the eigenvectors are orthogonal if the eigenvalues are distinct. By solving
the characteristic equation of Q, it is easy to see that γ1γ2 = detQ and γ1 + γ2 = trQ.

Similarly, the second fundamental form II(X) of S is a quadratic form over unit vectors
in TPS that gives the curvature of the normal section in the direction X. Letting Ls = [Lsij ]
be the matrix defining the second fundamental form with respect to the basis {s1, s2} of TPS,
we have II(X) = XTLsX.

Thus, two quadratic forms are defined at each point P of S. One, the second fundamental
form, gives the curvature of normal sections through P in any direction, while the other gives
the second derivative of the radius along the geodesic in the same direction. Since the normal
to a geodesic is everywhere normal to the surface on which it lies, the geodesic and the normal
section share a common normal vector. By construction, they have the same tangent vector
and hence, the same curvature. Therefore, one quadratic form measures the curvature of S
along the geodesic and the other measures the second derivative of the radius function along
the same geodesic.

3.2. Matrix formation

In this section, we derive a relation between the matrices Q and Ls that determine the radius
curvature and the symmetric surface curvature, respectively, to the matrix defining the second
fundamental form and hence the curvature of each boundary surface.

The partial derivatives of (1) are

bi = si + ri nb + r nbi . (8)

We can solve them for ri by taking the inner product with nb. Since nb is a vector of constant
norm, it is perpendicular to its derivative nbi . Thus, since bi is perpendicular to nb by
definition,

ri = −〈si,nb〉. (9)

We take partial derivatives again and get

rij = −〈sij ,nb〉 − 〈si,nbj〉.

Using the Gauss’s equation sij = Ls ijns +
∑2

k=1
Γk

ijsk and the definition of the coefficients of
the second fundamental form, Ls ij = 〈sij ,ns〉, we obtain

rij = −Ls ij〈ns,nb〉 −
2

∑

k=1

Γk
ij〈sk,nb〉 − 〈si,nbj〉. (10)
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Analogus results for boundary surface C follow from (2), though for brevity we defer further
consideration of C until the end of this section.

The matrices Gb = [Gb ij] = [〈bi,bj〉] and Lb = [Lb ij] represent the first and second
fundamental form of B at b(u1, u2) with respect to {b1(u

1, u2),b2(u
1, u2)}. Since nb is a

vector of constant norm, the nbj can be expressed as a linear combination of the bi by
Weingarten’s equations

nbj = −
2

∑

i=1

W i
bjbi , where Wb =

[

W i
bj

]

= G−1

b Lb . (11)

Letting A = [〈si,bj〉] and combining Weingarten’s equations with (7), (9), and (10), we obtain

AWb = [rij] + 〈ns,nb〉Ls −
2

∑

k=1

rk

[

Γk
ij

]

= Q+ 〈ns,nb〉Ls . (12)

Equation (12) relates the boundary curvature expressed by Wb to the radius curvature ex-
pressed by Q, and to the symmetric surface curvature expressed by Ls. We seek the boundary
curvatures in terms of the radius and the symmetric surface. Our approach is to solve the
matrix equation (12) for the two invariants, the determinant and trace. We then solve the
resulting two equations simultaneously.

3.3. Determinant equations

Substitute Weingarten’s eqs. (11) into (8) and solving for the sj gives

s1 = (1 + rW 1
b1)b1 + rW 2

b1b2 − r1nb , (13)

s2 = rW 1
b2b1 + (1 + rW 2

b2)b2 − r2nb . (14)

Recalling that A = [〈si,bj〉] and defining

T =

[

1 + rW 1
b1 rW 2

b1

rW 1
b2 1 + rW 2

b2

]

,

we use (13) and (14) to obtain A = TGb and consequently, since Wb = G−1

b Lb, that AWb =
TLb. Substituting into (12) gives

TLb = Q+ 〈ns,nb〉Ls. (15)

To evaluate the determinant of the left side of (15), we use Lemma 1 (which we now prove)
and the following Lemma 4.

Proof of Lemma 1: Let X1 and X2 be the components of X in the basis {s1, s2}, i.e., X =
∑2

i=1
X isi . So, 〈nb,X〉 =

∑2

i=1
X i〈nb, si〉 which by (9) is −

∑2

i=1
X iri. Thus by the proof of

Lemma 3, rX = −〈nb,X〉.

Lemma 4. gb = detGb implies gb det
2T = 〈ns,nb〉

2.

Proof. Recall that [〈si, sj〉] = I, where I is the two-by-two unit matrix. Then, using (13) and

(14), by straightforward algebra, it is not difficult to show that TGbT
T = I −

[

r21 r1r2
r1r2 r22

]

implies

(TGbT
T )−1 =

1

gb det
2T
(I − R) where R =

[

r2
2 −r1r2

−r1r2 r2
1

]

. (16)
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We take the determinant of both sides in (16) and apply Lemma 1,

gb det
2T = 1− r2

1 − r2
2 = 1− 〈nb, s1〉

2 − 〈nb, s2〉
2 = 〈ns,nb〉

2,

where the last step follows because ns, s1, and s2 are orthonormal.

Thus the determinant of the left side of (15) is

det(TLb) = det(TGb) det(G
−1

b Lb) =
〈ns,nb〉

2 det(G−1

b Lb)

detT
=
〈ns,nb〉

2KB

detT
, (17)

where Kb = detWb is the Gaussian curvature of B.

We now evaluate the determinant of the right side of (15). Recalling that the determinant
is invariant under change of basis, we change from the basis {s1, s2} of TPS to that defined
by the eigenvectors e1 and e2 of Ls corresponding to the eigenvalues λ1 and λ2, respectively.
Since eigenvectors are determined only up to a nonzero multiplicative constant and since e1

and e2 lie in the tangent plane TPS and are orthogonal to each other, we can, without loss
of generality, choose ei to be unit vectors so that e1 × e2 = ns. Similarly, let f1 and f2 be
unit vectors of Q corresponding to the eigenvalues γ1, γ2 so that f1 × f2 = ns. In terms of
their respective eigenvectors bases, the transformations represented by Ls and Q in terms

of the basis {s1, s2} are represented by
[

λ1 0
0 λ2

]

and
[

γ1 0
0 γ2

]

, i.e., Ls ≈
[

λ1 0
0 λ2

]

and

Q ≈
[

γ1 0
0 γ2

]

, where ≈ denotes matrix similarity.

Representing both transformations in terms of the basis {e1, e2} requires examinating the
relationship between ei and fi . Let θ be the counterclockwise angle from e1 to f1. Then, with

respect to the basis {f1, f2}, ei = Θfi, where Θ =
[

cos θ sin θ
− sin θ cos θ

]

. As shown in Fig. 6, θ is

determined only up to a multiple of π; thus, Θ is determined only up to sign.

Figure 6: Relation between principal directions

Changing from the basis {f1, f2} to {e1, e2},

[

γ1 0
0 γ2

]

≈ ±Θ−1

[

γ1 0
0 γ2

]

(±Θ) = ΘT
[

γ1 0
0 γ2

]

Θ.

Therefore, Q+ 〈ns,nb〉Ls is similar to

ΘT
[

γ1 0
0 γ2

]

Θ+ 〈ns,nb〉
[

λ1 0
0 λ2

]

,
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which is easily seen to have a determinant of

〈ns,nb〉
2λ1λ2 + γ1γ2 + 〈ns,nb〉(λ1γ1 + λ2γ2 − (γ1 − γ2)(λ1 − λ2) cos

2 θ). (18)

Note that (18) is independent of θ if either γ1 = γ2 or λ1 = λ2. Consequently, when one pair
of eigenvalues fails to be distinct, the principal directions can be chosen arbitrarily.

Combining (17) and (18) and rearranging terms,

KB

detT
= λ1λ2 +

γ1γ2

〈ns,nb〉2
+

λ1(γ1 sin
2 θ + γ2 cos

2 θ) + λ2(γ1 cos
2 θ + γ2 sin

2 θ)

〈ns,nb〉
. (19)

Recall that e1 = f1 cos θ − f2 sin θ and e2 = f1 sin θ + f2 cos θ. Equation (19) can be simplified

by observing that Q(e1) = [cos θ − sin θ]
[

γ1 0
0 γ2

]

[cos θ − sin θ]T = γ1 cos
2 θ + γ2 sin

2 θ and

Q(e2) = γ1 sin
2 θ + γ2 cos

2 θ. Hence, by (6) and (19) we obtain

KB

detT
= λ1λ2 +

γ1γ2

〈ns,nb〉2
+

λ1re2e2
+ λ2re1e1

〈ns,nb〉
. (20)

3.3.1. Trace equations

The second equation relating the boundary curvature to radius and symmetric surface curva-
ture results from taking the trace of (12). It follows from (12) and (16) that

(

gb det
2T

)

(T T )−1Wb = (Q+ 〈ns,nb〉Ls)−R(Q+ 〈ns,nb〉Ls).

Hence, since trWb = 2HB, detWb = KB, trQ = 2HR, and trLs = 2HS, taking the trace of
both sides gives

(2gb detT ) (rKB +HB) = 2(HR + 〈ns,nb〉HS)− tr(RQ)− 〈ns,nb〉tr(RLs). (21)

Two observations enable us to evaluate tr(RLs) and, by analogous reasoning, tr(RQ).
First, simple algebra reveals that tr(RLs) is nothing more than the second fundamental form
of S, evaluated at [r2 −r1], i.e., [r2 −r1]Ls [r2 −r1]

T . Second, with respect to the basis {e1, e2}

the second fundamental form is represented by the diagonal matrix
[

λ1 0
0 λ2

]

. Hence, letting

[a1 a2] represent, with respect to {e1, e2} the vector represented by [r2 −r1] in the basis

{s1, s2}, tr(RLs) = [a
1 a2]

[

λ1 0
0 λ2

]

[a1 a2]
T
.

Let V be the matrix of transition from the basis {s1, s2} to the basis {e1, e2}, i.e. the

matrix such that [r2 −r1]
T = V [a1 a2]

T
. Since the columns of V as the coordinates of

the ei are orthonormal, V TV = I. Thus, detV = ±1 which is nonzero. Therefore, we
can solve for [a1 a2] obtaining ± [r1V12 + r2V22 −r1V11 − r2V21]. Since by the definition of
V , ei =

∑2

j=1
Vjisj , by using (9) we see that [a

1 a2] = ± [−〈nb, e2〉 〈nb, e1〉] and hence,

that tr(RLs) = (λ1〈nb, e2〉
2 + λ2〈nb, e1〉

2). Analogously, tr(RQ) = (γ1〈nb, f2〉
2 + γ2〈nb, f1〉

2).
Finally, combining these results with (21), Lemma 4, and the definition of mean curvature as
the average of principal curvatures, we obtain

2〈ns,nb〉
2 rKB +HB

detT
= γ1(1− 〈nb, f2〉

2) + γ2(1− 〈nb, f1〉
2)

+〈ns,nb〉(λ1(1− 〈nb, e2〉
2) + λ2(1− 〈nb, e1〉

2)), (22)

which, using Lemma 1, can be written as

rKB +HB

detT
=

γ1(1− r2
f2
) + γ2(1− r2

f1
)

2〈ns,nb〉2
+

λ1(1− r2
e2
) + λ2(1− r2

e1
)

2〈ns,nb〉
. (23)
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3.4. Solution

The right sides of Eqs. (23) and (20) are the right sides of (3) and (4), respectively. Recall that
KB = detWb and HB =

1

2
trWb. Then, by straightforward algebra, detT = 1+r2KB+2rHB.

Substituting this into (20) and (23), we obtain a linear system of two equations in the two
unknowns HB and KB, with solutions (5). This proves Theorem 2.

4. Summary and conclusions

Blum’s symmetric axis transform defines a unique decomposition of a figure into disjoint pairs
of pieces, each with its own surface (axis) of symmetry and associated boundary surfaces. In
previous sections of this paper, we have defined measures of the radius function and have
shown how these measures and the symmetric surface curvature are related to the boundary
surface curvatures. In particular, we have shown that Gaussian and mean curvatures of the
boundary surfaces are determined by nine measures, each with a geometric interpretation:
(1) the symmetric surface curvature as determined by two principal curvatures and a prin-

cipal direction;

(2) the radius curvature as determined by two principal curvatures and a principal direction;

(3) directional derivatives of the radius function as determined by the angles between ei-
ther boundary normal and the two symmetric surface principal directions, called width
angles; and

(4) the radius function itself.
Other, equivalent sets of measures are easily found. It can also be shown that these measures,
and the curvature relationship derived from them, subsume the two-dimensional measures
and curvature relationship given by Blum and Nagel [3, 4].

It appears possible to use the measures defined here to further partition a simplified
segment into a set of canonical pairs of pieces, yielding a symbolic description, much as Blum

and Nagel have done in two dimensions. Before such a symbolic description can be obtained,
however, further work needs to be done in two directions. First, though the assumptions we
have made about the topology of the symmetric surface seem to be true for smooth outlines
in general, a definitive study of the symmetric surface topology is lacking. We have also
completely ignored the analysis of finite contact normal points, branch points, and end points.
Second, a suitable algorithm for computing symmetric surfaces of three-dimensional figures
is required in order to evaluate which of several possible schemes is suitable for specific three-
dimensional shape description problems. This is already implemented in Pascal programming
as in [1]. Indeed, the purpose of this paper is not to propose specific features for three-
dimensional shape description, but rather to provide mathematical tools for further studies.
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