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Abstract. In this note, we give an analytic proof based on Pythagoras’ theorem
of a theorem of Bang stating that if the faces of a tetrahedron have equal areas
then they are congruent. We also place Bang’s theorem in the more general con-
text that deals with the existence and uniqueness of a tetrahedron PABC having
a given base ABC and having lateral faces of given areas. Our approach shows
also how to construct counter-examples to Bang’s statement in higher dimensions.
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1. Introduction

Bang’s theorem states that if the faces of a tetrahedron have equal areas then they are
congruent. Proofs of this elegant theorem are given in [1], [3], [4] and [6, Chapter 9, pp. 90–
97]. These proofs, however, are too geometric (or geo-trigonometric) to shed any light on
the situation in higher dimensions. In this paper, we adopt an analytic approach that places
Bang’s theorem in a more general context and indicates how to treat the problem in any
dimension. As a result, we obtain a new proof of Bang’s theorem and counter-examples to
Bang’s statement in higher dimensions. Other related results are obtained. We note that the
failure of Bang’s theorem in dimensions higher than three follows also from [8] where more
general results are established. Related issues are investigated in [7].
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2. An analytic proof of Bang’s theorem

We start with a theorem that implies a detailed version of Bang’s theorem.

Theorem 1. Let ABC be a triangle of side-lengths a, b, c with 0 < a ≤ b ≤ c, and let its
angles be denoted by A, B, C. Suppose that there exists a non-planar tetrahedron PABC
whose four faces have equal areas. Then

1. ABC is acute-angled.

2. The tetrahedron PABC is unique up to a symmetry about the plane of ABC.

3. Letting

Q =

√

1− a2

c2
+

√

1− b2

c2
and q = tanA tanB,

the projection P ′ of P on the plane of ABC lies inside, outside or on the boundary of
the triangle ABC according as Q < 1, Q > 1 or Q = 1. These conditions are equivalent
to q > 2, q < 2 or q = 2, in this order.

Conversely, if ABC is acute-angled, then there exists a non-planar tetrahedron PABC whose
four faces are congruent (and hence have equal areas).

Proof. Suppose that there exists a non-planar tetrahedron PABC whose four faces have equal
areas. Let ∆ be the area of the triangle ABC. For any point P , we let P ′ be the projection of
P on the plane of ABC. By symmetry, we let P range in only one of the two closed half-spaces
into which the plane of ABC divides the space. Thus a point P is uniquely determined by
P ′ and by the distance PP ′.

If h is the distance from the point P to the plane of ABC (i.e., to P ′) and if α, β and γ
are the areas of the triangles PBC, PCA and PAB (respectively), then the heights PA′, PB′

and PC ′ of these triangles are 2α/a, 2β/b and 2γ/c (respectively). Since BC is perpendicular
to both PA′ and PP ′, it follows that it is perpendicular to P ′A′. Thus the actual trilinear
coordinates of P ′ with respect to ABC are P ′A′, P ′B′ and P ′C ′. By Pythagoras’ theorem
(applied to the triangles PP ′A′, PP ′B′ and PP ′C ′), these trilinear coordinates are given by

±
√

(

2α

a

)2

− h2, ±

√

(

2β

b

)2

− h2, ±
√

(

2γ

c

)2

− h2.

Therefore the actual barycentric coordinates of P ′ are

±1

2

√
4α2 − a2h2, ±1

2

√

4β2 − b2h2, ±1

2

√

4γ2 − c2h2.

Hence the existence of a non-planar tetrahedron PABC having faces of equal areas is equiv-
alent to the existence of a positive solution h to one of the eight equations

2∆ = ±
√
4∆2 − a2h2 ±

√
4∆2 − b2h2 ±

√
4∆2 − c2h2. (1)

The uniqueness of such a PABC is equivalent to the condition that there do not exist two
distinct values of h such that each is a solution to one of these eight equations. Setting

u =
(

a

2∆

)2

, v =

(

b

2∆

)2

, w =
(

c

2∆

)2

and T = h2, (2)

(1) takes the form
1 = ±

√
1− uT ±

√
1− vT ±

√
1− wT . (3)
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Since 0 < a ≤ b ≤ c, it follows that 0 < u ≤ v ≤ w and that T ranges over the interval
(0, 1/w]. It also follows that each of the six quantities

−
√
1− uT ±

√
1− vT ±

√
1− wT , ±

√
1− uT −

√
1− vT ±

√
1− wT

is less than 1. Actually, the largest of these six quantities is
√
1− uT −

√
1− vT +

√
1− wT

and this is clearly less than or equal to
√
1− uT . Thus of the eight equations in (3), the only

relevant ones are

f(T ) :=
√
1− uT +

√
1− vT +

√
1− wT = 1, (4)

g(T ) :=
√
1− uT +

√
1− vT −

√
1− wT = 1. (5)

Note that if u+ v ≤ w, then (1− uT )(1− vT ) > (1− wT ) and

(
√
1− uT +

√
1− vT )2 − (1 +

√
1− wT )2

= (w − u− v)T + 2(
√
1− uT

√
1− vT −

√
1− wT ) > 0.

Therefore if u+v ≤ w, then
√
1− uT +

√
1− vT > 1+

√
1− wT and neither of the equations

(4) and (5) has a solution. Thus we restrict our attention to the case when u + v > w. By
(2), this is equivalent to the condition that a2+ b2 > c2 which in turn is the requirement that
ABC is acute-angled (since c is the largest side). This proves part 1.

Let

Q =
√

1− u/w +
√

1− v/w.

We first note that if Q = 1, then T = 1/w is a solution to both (4) and (5) and this solution
gives a tetrahedron with P ′ on the boundary of the triangle ABC. So we restrict our attention
to solutions of (4) and (5) in (0, 1/w) and we show that (4) (respectively (5)) has a solution
if and only if Q < 1 (respectively Q > 1) and that the solution is unique. Clearly, a solution
T ∈ (0, 1/w) of (4) (respectively of (5)) corresponds to a tetrahedron PABC with P ′ lying
inside ( respectively outside) ABC.

Since f(T ) decreases with T (on [0, 1/w]) and since f(0) = 3 > 1 and f(1/w) = Q, it
follows that (4) has a (necessarily unique) solution in (0, 1/w) if and only if Q < 1.

We next consider (5). If v = w, then g(T ) =
√
1− uT and (5) has no solutions in (0, 1/w].

Otherwise,

g′(T ) = 0

⇐⇒ −u

2
√
1− uT

+
−v

2
√
1− vT

+
w

2
√
1− wT

= 0

⇐⇒ u
√
1− wT√
1− uT

+
v
√
1− wT√
1− vT

= w.

Setting

H(T ) =
u
√
1− wT√
1− uT

+
v
√
1− wT√
1− vT

,

we easily see that

H ′(T ) =
u(u− w)

2
√
1− wT

√

(1− uT )3
+

v(v − w)

2
√
1− wT

√

(1− vT )3
< 0.
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Also, H(0) = u + v > w > 0 = H(1/w). It follows that there is a unique T in (0, 1/w) for
which H(T ) = w, i.e., for which g′(T ) = 0. Since g′(0) = (−u− v + w)/2 < 0 and g(0) = 1,
it follows that there exists T ∈ (0, 1/w) for which g(T ) = 1 if and only if g(1/w) > 1, i.e., if
and only if Q > 1. Here too, we record that when this happens then the solution is unique.

To complete the proof of parts 2 and 3, it remains to show that the conditions Q < 1 and
tanA tanB > 2 are equivalent. This is seen as follows:

√

1− u/w +
√

1− v/w < 1

⇐⇒
√
w − u+

√
w − v <

√
w

⇐⇒ 2
√
w − u

√
w − v < u+ v − w

⇐⇒ 4(w − u)(w − v) < (u+ v − w)2

⇐⇒ 3w2 − 2uw − 2vw + 2uv < u2 + v2

⇐⇒ 2(c4 − a4 − b4 + 2a2b2) < 2a2b2 + 2b2c2 + 2c2a2 − a4 − b4 − c4

⇐⇒ 2(c2 − a2 + b2)(c2 + a2 − b2) < 16(∆)2 = (4∆)(4∆)

(by Heron’s Formula [2, page 12])

⇐⇒ 2(2bc cosA)(2ac cosB) < (2bc sinA)(2ac sinB)

⇐⇒ tanA tanB > 2.

To prove the converse, let ABC be a given acute-angled triangle. We complete ABC to
a parallelogram ABCD and fixing ABC, we swing ACD against the edge AC. As we do
so, the angle between BC and CD decreases from ∠BCA + ∠ACD = ∠C + ∠A > ∠B to
∠BCA − ∠ACD = ∠C − ∠A < ∠B. If we stop the swinging when BC and CD make an
angle equal to ∠B, then it is easy to check that we get the desired tetrahedron.

Bang’s theorem now follows as a trivial corollary. We mention that tetrahedra with
congruent faces are referred to in the literature as equifacial or isosceles. Some of their
properties are investigated in [5].

Corrolary 2 (Bang’s Theorem). Let PABC be a non-planar tetrahedron. If the faces have
equal areas, then they are congruent.

Before turning to higher dimensions, let us note that Bang’s theorem can be viewed as
an answer to a very special case of the following question: For a given triangle (of area δ say)
and positive numbers α, β and γ, what are the conditions that guarantee the existence and
uniqueness of a non-planar tetrahedron PABC such that the areas of the faces PBC, PCA
and PAB are α, β and γ ? Bang’s theorem guarantees existence and uniqueness in the case
when ABC is acute-angled and when α = β = γ = δ. The following theorem shows that the
restriction α = β = γ is not sufficient to guarantee uniqueness.

Theorem 3. Let α, β, γ, and δ be positive numbers such that

α + β − γ > δ, α− β + γ > δ, −α + β + γ > δ.

Then there exist a triangle ABC of area δ and four tetrahedra PjABC, 1 ≤ j ≤ 4, such
that, for each j, the areas of the faces PjBC, PjCA and PjAB are α, β and γ, respectively,
and such that the projections of the Pj’s on the plane of ABC are the incenter and the three
excenters of the triangle ABC.
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Proof. Since δ > 0, it follows that α, β and γ qualify as the side-lengths of a triangle. Thus
there is a triangle ABC with area δ and with

BC : CA : AB = α : β : γ. (6)

Let I be the incenter of ABC and draw from I a half-line perpendicular to the plane of ABC.
Then for every point P on L, the heights from P of the triangles PBC, PCA and PAB are
equal. Thus it follows from (6) that

area(PBC) : area(PCA) : area(PAB) = α : β : γ. (7)

Let h be the distance IP . As P moves along L away from I, h increases from 0 to ∞ and
the quantity

F (h) := area(PBC) + area(PCA) + area(PAB) (8)

moves from δ to ∞. Since
δ < α + β + γ, (9)

it follows that there is h > 0 such that

F (h) = α + β + γ. (10)

By (7), the corresponding P satisfies the conditions

area(PBC) = α, area(PCA) = β, area(PAB) = γ,

as desired.
To construct the other three tetrahedra, we replace I by any of the three excenters and

repeat the same procedure. Equations (8), (9) and (10) will be modified accordingly. For
example, for the excenter corresponding to C, these equations are replaced by

F (h) = area(PBC) + area(PCA)− area(PAB)

δ < α+ β − γ

F (h) = α+ β − γ,

respectively. This completes the proof.

3. Higher dimensions

We now turn to higher dimensions. Let ABCD be a given tetrahedron with volume ∆ and
with face-areas a, b, c and d. The existence of a four-dimensional simplex PABCD whose
tetrahedral faces have equal volumes is equivalent to the existence of a solution to one of the
16 equations

1 = ±
√
1− uT ±

√
1− vT ±

√
1− wT ±

√
1− sT (11)

where

u =
(

a

3∆

)2

, v =

(

b

3∆

)2

, w =
(

c

3∆

)2

, s =

(

d

3∆

)2

, (12)

and where T is the square of the height from P to the hyperplane of ABCD. The conditions
for the existence of such a solution are worth exploring. As for uniqueness, it is not sufficient
to show that none of the 16 equations in (11) can have more than one solution. It may
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happen that for a given tetrahedron two or more of these equations have solutions that do
not coincide. This gives a clue to how to construct an example of a simplex whose tetrahedral
faces have equal volumes without being congruent. The following theorem provides many
such examples.

Theorem 4. Let ABCD be a tetrahedron with volume ∆ and with face-areas a, b, c and d,
0 < a ≤ b ≤ c ≤ d. Suppose that

a2 + b2 + c2 + d2 > d2 and

√

1− a2

d2
+

√

1− b2

d2
+

√

1− c2

d2
≤ 1. (13)

Then there exist at least two points P and R not in the hyperplane of ABCD such that the
tetrahedral faces of the simplexes PABCD and RABCD have equal volumes and such that
the projections of P and R on the hyperplane of ABCD lie, respectively, inside and outside
the tetrahedron ABCD. In particular, there exists a four-dimensional simplex whose five
tetrahedral faces have equal volumes but are not congruent (i.e. isometric).

Proof. Let u, v, w and s be as in (12). Then it follows from (13) that

u+ v + w > s and

√

1− u

s
+

√

1− v

s
+

√

1− w

s
≤ 1.

Also let

F (T ) :=
√
1− uT +

√
1− vT +

√
1− wT +

√
1− sT

G(T ) :=
√
1− uT +

√
1− vT +

√
1− wT −

√
1− sT

It is clear that F decreases on [0, 1/s] and that

F (0) = 4 > 1 and F (1/s) =

√

1− u

s
+

√

1− v

s
+

√

1− w

s
≤ 1.

Therefore, there exists T ∈ (0, 1/s] for which F (T ) = 1.
Calculations similar to those we have performed on g in the proof of Theorem 1 show

that G′(0) < 0 and that G′(T ) = 0 at exactly one point in (0, 1/s). Since G(0) = 2 and
G(1/s) ≤ 1, it follows that there is one T ∈ (0, 1/s) at which G(t) = 1. This finishes the
proof of the first statement.

It remains to construct a simplex PABCD for which Bang’s statement does not hold.
Start with a regular tetrahedron ABCD of volume 1 and let P ′ be the point whose barycentric
coordinates are (1/2, 1/2, 1/2, −1/2). Let L be the half-line from P ′ perpendicular to the
hyperplane of ABCD, let P move on L and let h be the distance from P ′ to P . Since the
tetrahedra P ′BCD, P ′ACD, P ′ABD and P ′ABC have equal volumes, it follows that their
heights from P ′ are equal. Pythagoras’ theorem then implies that the heights from P of the
tetrahedra PBCD, PACD, PABD and PABC are equal and hence their volumes are equal.
As h increases from 0 to ∞, the volume of PABC increases from 1/2 to ∞. Thus for some
h > 0, the tetrahedra will each have volume 1 and the tetrahedral faces of PABCD will
have equal volumes. The tetrahedral faces of PABCD cannot be congruent because that
would imply that PABCD is the regular simplex [2, pages 396-414], and that the barycentric
coordinates of P ′ would be (1/4, 1/4, 1/4, 1/4). Finally, our PABCD is non-degenerate
because it corresponds to h > 0. This completes the proof.
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The conditions imposed on ABCD in the previous theorem are not severely restrictive.
In fact, if ABCD is regular (or has equal faces), then

u+ v + w = 3s and

√

1− u

s
+

√

1− v

s
+

√

1− u

s
= 0

and our conditions are lavishly satisfied. Thus in constructing a simplex for which Bang’s
theorem does not hold, we have a rich variety of choices for the base tetrahedron ABCD.

We close by posing the question regarding what tetrahedra qualify as facets of four-
dimensional simplices with congruent facets. In view of Theorem 1, such tetrahedra would
be, in a sense, three-dimensional analogues of acute-angled triangles.
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