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Abstract. Roofs considered in this article are defined as special geometric poly-
hedral surfaces, on the basis of two assumption: (1) all eaves of a roof form a
planar (simply connected or k-connected) polygon called the base of this roof,
(2) every hipped roof end forms the same angle slope with the (horizontal) plane
which contains the base of this roof. Basing on the Euler formula for regular roofs
formulated and proved in a previous paper we formulate properties which enable
a study of the shapes of roofs. We indicate how these properties may be used to
analyse the shapes of roofs. We suggest a method of classification and a detailed
classification of shapes of roofs for polygons with a small number of edges.
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1. Introduction

This article is the second part of a work which deals with geometrical properties of roofs
of buildings. In [7] we formulated and proved an Euler formula for regular roofs and basic
properties of roofs considered as a special class of polyhedral surfaces from the view point
of Graph Theory. In this paper we develop the geometrical characterization of roofs. We
formulate and prove the main theorem (Theorem 2) and useful detailed properties obtained
from it. These properties are the key to derive a classification of the shapes of roofs. Hence
we obtain a method to study the topological characterization of roofs. Next, we demonstrate
how these properties may be used to analyse and classify the shapes of roofs.

In this article we use the notation and terminology from [7]. First, let us recall the main
results obtained in [7]: (main) Theorem 1 (= Euler formula for regular roofs), Proposition 1
and the equations of a regular roof generated by a k-connected generalized v-gon. These are

Theorem 1 (Euler formula for regular roofs). If the base of a regular roof is a k-connected

generalized v-polygon, then the number of ridges of this roof is r = 2v + 3(k− 2), the number

of top points is t = v + 2(k − 2), and the number of disappearing ridges is d = v + 3(k − 2).
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Proposition 1. If a roof generated by a k-connected generalized v-polygon is regular, then

the graph (T, R′) of the line of disappearing ridges induced by this roof is connected.

And we recall the equations of roofs which belong to the class of regular roofs:

v
∑

i=3

mi = v, (1)

v
∑

i=3

imi = 5v + 6(k − 2), (2)

where mi denotes the number of i-gonal hipped roof ends for i = 3, 4, . . . , v.

2. Algebraic and geometric examination of the roof equations

First, we make two obvious statements. Two eaves of a roof are said to be adjacent (they
adjoin, border each other) if they have a common corner vertex of the base of this roof.
Similarly, two hipped roof ends are said to be adjacent (they adjoin, border each other) if
they have a common roof hips ridge (corner ridge).

Statement 1. If two triangles as hipped roof ends adjoin in a regular, simply connected roof,

then the base of this roof must be a triangle.

Proof. Let e1, e2 be two adjacent edges of the roof R(e1, e2, . . . , r1, r2, . . . ). Let us consider
two adjoining triangles (e1, r1, r2), (e2, r1, r3) as the hipped roof ends of a given roof with a
common ridge r1. Then the edges r1, r2, r3 meet in a common point T = (r1, r2, r3) which must
be a unique top point of the roof. Indeed, from the top point T starts no ridge r different from
r1, r2, r3. Then the edges r2, r3 must be two corner (roof hips) ridges. Hence the segments
r1, r2, r3 are all ridges of the roof. The endpoints of ridges r2, r3 different from T form a third
edge e3 of the roof. Therefore the roof R(e1, e2, e3, r1, r2, r3) is a unique roof satisfying our
assumptions. Then we obtain the complete roof having the triangle (e1, e2, e3) as the base.

Statement 2. If in any regular, simply connected roof there exists a quadrangle as hipped

roof end which adjoin with two triangles as hipped roof ends, then the base of this roof must

be a quadrangle.

Proof. Let us consider a quadrangle (e1, r1, r2, r3), and two triangles (e2, r1, r5), (e3, r3, r4)
adjoin with it as three hipped roof ends of a certain regular simply connected roof R(e1, e2, . . . ,

r1, r2, . . . ). Then r1, r3 are the common corner (roof hips) ridges of suitably two pairs hipped
roof ends ((e1, r1, r2, r3), (e2, r1, r5)), ((e1, r1, r2, r3), (e3, r3, r4)). Since the considered roof is
regular the ridge r2 is not any corner roof hips ridge. It is the consequence of the fact that the
corner ridges r1, r3 belong to one quadrangle. So the points T1 = (r1, r2, r5), T2 = (r2, r3, r4)
are unique top points of the regular roof R(e1, e2, . . . , r1, r2, . . . ) which satisfies the above
assumptions. Then the line segments r5, r2, r4 must be the ridges of a certain quadrangle
which has the ridges r4, r5 as corner roof hips ridges, the ridge r2 as disappearing ridge, and
a fourth ridge denoted by e4. Then we obtain the complete roof R(e1, e2, e3, e4, r1, r2, . . . , e5)
having a quadrangle (e1, e2, e3, e4) as the base.

From Theorem 1, Proposition 1 and due to classical Graph Theory we obtain the following
corollaries:
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Corollary 1. The graph (T, R′) of the line of disappearing ridges of a regular simply connected

roof is connected.

Proof. In Proposition 1 we set k = 1.

Corollary 2. The graph of disappearing ridges (T, R′) of an arbitrary regular simply connected

roof is a tree and has at least two leaves.

Proof. Due to Theorem 1 for k = 1 the graph (T, R′) has n (= v − 2) vertices and n − 1
(= v − 3) edges, and by Corollary 1 it is connected. So it is a tree (cf. [1], [2]). Then the
graph (T, R′) has at least two leaves.

Corollary 3. Every regular simply connected roof contains at least two triangular hipped roof

ends.

Proof. Due to Corollary 2 the graph of ridges of an arbitrary roof has at least two leaves.
From each of them three ridges are starting: one is a disappearing ridge and the two remaining
are corner ridges, which with any edge of the base of the roof form a triangle. Then we have
at least two triangular hipped roof ends.

A number of triangular hipped roof ends may be at least 2 and due to Statement 1

at most
[

v

2

]

(the symbol [.] denotes the function entier). For example, the “spiral” roof in

Fig. 1 has only two triangular hipped roof ends, the roof generated by a base with rectangular
half-transepts or cutting off corners has a lot of triangular hipped roof ends (cf. Fig. 1).

Now we formulate the theorem which exemplifies the number of sides of the hipped roof
ends.

Theorem 2. If a regular simply connected roof generated by a v-gon has si (v−n−i+1)-gonal

hipped roof ends for i = 1, 2, . . . , p with n ≥ 0, n + p + 2 ≤ v, 1 ≤
∑p

i=1 si ≤ v, then under

the assumption that certain i-gonal hipped roof ends may have a common disappearing ridge

v ≤ n+3+
n +

∑p
j=3

∑j−1
i=2 sjsi + (s1 − 1)

∑p
i=2 si +

∑p
i=2

si+1
2 si +

s1(s1−1)
2 +

∑p
i=1 si(i− 1)

∑p
i=1 si − 1

(3)

and, under the assumption that every two i-gonal hipped roof ends do not share any disap-

pearing ridge for i = 1, 2, . . . , p

v ≤ n + 3 +
n +

∑p

i=1 si(i− 1)
∑p

i=1 si − 1
. (4)

Proof. Case (i): Let us assume, that any i-gonal hipped roof end may have a common dis-
appearing ridge for i = 1, 2, . . . , v. Then we give the following reasoning:

The first (v− n)-gonal hipped roof end induces v− n− 3 disappearing ridges, the second
(v−n)-gonal hipped roof end induces v−n−4 successive disappearing ridges, and so on: the
s1-th hipped roof end induces successive v − n− 1− 3− (s1 − 1) disappearing ridges. Next,
the first (v− n− 1)-gonal hipped roof end induces successive v− n− 1− (p− 1)− 3− s1− 1
disappearing ridges, and so on, the last (v − n − (p − 1))-gonal hipped roof end induces
v − n− (p− 1)− 3− (s1 − 1)− s2 − . . .− sp−1 − sp disappearing ridges. The sum of all such
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Figure 1: Four regular roofs generated by a 20-gon as basis:

a) a “spiral” roof with the minimal number of two triangular hipped roof ends,
b) a roof on a base with rectangular half-transepts with five triangular hipped roof

ends,
c) a roof on a base with three rectangular half-transepts and four cutting off corners

with seven triangular hipped roof ends,
d) a nonsymmetric roof with the maximal number of ten triangular hipped roof ends

(ten cuttings of corners)

ridges cannot exceed the number v − 3. Therefore we can write the following inequality

(v − n− 3) + (v − n− 3− 1) + . . . + (v − n− 3− (s1 − 1))
+ (v − n− 1− 3− (s1 − 1)− 1) + (v − n− 1− 3− (s1 − 1)− 2)

+ . . . + (v − n− 1− 3− (s1 − 1)− s2)
+ (v − n− 1− 3− (s1 − 1)− s2 − 1) + (v − n− 1− 3− (s1 − 1)− s2 − 2)

+ . . . + (v − n− 1− 3− (s1 − 1)− s2 − s3)
+ . . . +

+(v − n− 1− 3− (s1 − 1)− s2 − . . . − sp−1 − 1)
+ (v − n− 1− 3− (s1 − 1)− s2 − . . . − sp−1 − 2)

+ . . . + (v − n− 1− 3− (s1 − 1)− s2 − . . . − sp−1 − sp) ≤ v − 3

(5)

Note that the variable v appears
∑p

i=1 si-times with “plus” and once on the left side with
“minus”, the number 3 appears

∑p

i=1 si-times, n appears
∑p

i=1 si-times (to obtain the ex-
pression n(

∑p

i=1 si− 1) we must add n and simultaneously subtract n). Arranging the above
expressions we obtain

v
(

p
∑

i=1

si − 1
)

− 3
(

p
∑

i=1

si − 1
)

− n− n
(

p
∑

i=1

si − 1
)

, (6)

next, we arrange other expressions (in the first row we have sum 1 + 2 + . . . + s1 − 1, in the
second row we have sum 1 + 2 + . . . + s2 and s1− 1 occurs s2-times, in the third row we have
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sum 1 + 2 + . . . + s3 and s1 − 1 occurs s3-times, and s2 occurs s3-times, and so on) and we
obtain

−
s1(s1 − 1)

2

− s2(s1 − 1)−
s2 + 1

2
s2

− s3(s1 − 1)− s3s2 −
s3 + 1

2
s3

− s4(s1 − 1)− s4s2 − s4s3 −
s4 + 1

2
s4

. . . . . . . . . . . .

− sp−1(s1 − 1)− sp−1s2 − sp−1s3 − . . . − sp−1sp−2 −
sp−1 + 1

2
sp−1

− sp(s1 − 1)− sps2 − sps3 − . . . − spsp−1 −
sp + 1

2
sp.

(7)

Finally, we arrange the remaining expressions of the left hand side of the inequality in the
following manner:

−0s1 − 1s2 − 3s3 − 4s4 − . . . − (p− 1)sp ≤ 0. (8)

We rewrite the rows (7) in the following form:

−0 −0 −
s1(s1 − 1)

2

−0 −s2(s1 − 1) −
s2 + 1

2
s2

−

2
∑

i=2

s3si −s3(s1 − 1) −
s3 + 1

2
s3

−

3
∑

i=2

s4si −s4(s1 − 1) −
s4 + 1

2
s4

. . . . . . . . .

−

p−2
∑

i=2

sp−1si −sp−1(s1 − 1) −
sp−1 + 1

2
sp−1

−

p−1
∑

i=2

spsi −sp(s1 − 1) −
sp + 1

2
sp .

We rearrange (9) and obtain

−

p
∑

j=3

j−1
∑

i=2

sjsi − (s1 − 1)

p
∑

i=2

si −

p
∑

i=2

si + 1

2
si −

s1 − 1

2
s1 . (10)

Finally, we get the following form of the inequality ((6), (7), (8))

v
(

p
∑

i=1

si − 1
)

− 3
(

p
∑

i=1

si − 1
)

− n− n
(

p
∑

i=1

si − 1
)

−

p
∑

j=3

j−1
∑

i=2

sjsi−

(s1 − 1)

p
∑

i=1

s1 −

p
∑

i=2

si + 1

2
si −

s1 − 1

2
s1 −

p
∑

i=1

(i− 1) ≤ 0 . (11)



190 E. Koźniewski: On the Existence of Shapes of Roofs

Hence we obtain the inequality (3).

Case (ii): Let us assume now, that every two i-gonal hipped roof ends do not share any
disappearing ridge for all i = 1, 2, . . . , v. Then each (v−n)-gon induces v−n−3 disappearing
ridges. This implies the inequality

(v − n− 3)s1 − (v − n− 1− 3)s2 − (v − n− 2− 3)s3 − . . . − (v − n− (p− 1)− 3)sp ≤ v − 3.

(12)
By arranging appropriate expressions we obtain

v
(

p
∑

i=1

si − 1
)

− 3
(

p
∑

i=1

si − 1
)

− n− n
(

p
∑

i=1

si − 1
)

−

p
∑

i=1

si(i− 1) ≤ 0 . (13)

Hence we easily obtain inequality (4).

As an immediate consequence of Theorem 2 we have the following corollaries:

Corollary 4. If a regular simply connected roof generated by a v-gon has s (v − n)-gonal

hipped roof ends with n + 3 ≤ v and 1 ≤ s ≤ v, then under the assumption that these hipped

roof ends may have a common disappearing ridge, the inequality

v ≤ n + 3 +
s

2
+

n

s− 1
(14)

holds, and under the assumption that every two of these hipped roof ends do not share any

disappearing ridge, the following inequality holds:

v ≤ n + 3 +
n

s− 1
. (15)

Proof. It suffices to set p = 1 and s1 = s in Eq. (3) of Theorem 2.

Corollary 5. If a regular simply connected generated by a v-gon roof has two v-gonal hipped

roof ends, then v ≤ 4.

Proof. We set p = 1, s1 = 2 and n = 0 in Eq. (3) of Theorem 2.

Corollary 6. If a regular simply connected generated by a v-gon roof has three v-gonal hipped

roof ends, then v ≤ 3.

Proof. If a roof has three v-gonal hipped roof ends, then it has two v-gonal hipped roof ends
and due to Corollary 5 v is equal 3 or 4. Due to Corollary 3 a regular simply connected roof
must contain at least two triangular hipped roof ends. Therefore the considered roof has no
three quadrangles. Consequently such a roof must contain three triangles as hipped roof ends,
hence at least two triangles must adjoin. When according to Statement 1 the considered roof
must be generated by a triangle.

It is convenient to formulate

Theorem 3. If in a regular simply connected roof generated by a v-gon there are s mi-gonal

hipped roof ends (3 < mi for i = 1, 2, . . . , s) such that no two of them share a disappearing

ridge, then
s
∑

i=1

mi − 3s + 3 ≤ v . (16)
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Proof. Suppose that a roof has s mi-gonal hipped roof ends such that no two share a disap-
pearing ridge. Then every such polygon induces mi − 3 ridges. These ridges are different,
therefore all s hipped roof ends together give

∑p

i=1(mi− 3) distinct disappearing ridges. The
obtained number must be less than or equal to v − 3. Hence we easily obtain the inequality
(3).

The particular specification mi = m for i = 1, 2, . . . , s yields

Corollary 7. If a regular simply connected roof generated by a v-gon has s m-gonal hipped

roof ends (3 ≤ m ≤ v) such that no two share a disappearing ridge, then

v ≥ s(m− 3) + 3. (17)

3. An existence analysis of the shapes of roofs generated by simply
connected polygons

In this section we will consider roofs generated by simply connected polygons. So we put
k = 1. Then the equations (1), (2) assume the following form

m3 + m4 + . . . + mv = v, (18)

3m3 + 4m4 + . . . + vmv = 5v − 6. (19)

Due to Corollary 6 every simply connected roof generated by a v-gon for v > 4 may contain
at most one v-gonal hipped roof end. The above remark is very useful for an algebraic
examination of the equations (18), (19). It eliminates a lot of solutions of these equations.

First, we note that for every v-gon we have the following solution

m3 = 2, m4 = v − 3, m5 = 0, . . . , mv−1 = 0, mv = 1. (20)

Indeed, the equality

3 · 2 + 4 · (v − 3) + 5 · 0 + . . . + (v − 1) · 0 + v · 1 = 5v − 6 (21)

holds. Such a roof contains as one hipped roof end a polygon which has the maximal number
(equal v) of sides. The remaining hipped roof ends are triangles and quadrangles. The above
solution of a roof exists for all v with v ≥ 3. Moreover, note that the assumption of an
existing v-gonal hipped roof end determines the roof up to an isomorphism:
Indeed, the v-gonal hipped roof end has two corner ridges and v − 3 disappearing ridges
(each hipped roof end has exactly one edge and exactly two corner ridges independent of a
regularity of a roof). These v − 3 ridges form an unicoursal polygonal arc and they must be
ridges of v − 3 polygons. Each a such polygon must have exactly one disappearing ridge. So
these polygons must be quadrangles.
Indeed, if we assumed that these polygons were triangles or n-gones with 4 < n < v, then
triangles which have no disappearing ridges would induce a top point with degree 4, any
n-gon with 4 < n < v would have more than 1 common ridge with a v-gonal hipped roof end,
contrary to the regularity of the roof.
Such a roof will be called universal. Geometric shapes of such roofs are, e.g., “pie” or “stairs”
in Fig. 2.
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Figure 2: Universal shapes of regular roofs generated by a v-gon (for v = 10, 12, 20):
a) “stairs” (v = 10), a’) “pie” (v = 10);

b) “stairs” (v = 12), b’) “pie” (v = 12); c) “stairs” (v = 20)

3.1. Regular roofs generated by a v-gon, v=3,4,5,6,7,8

We will use the properties of roofs proved above in an examination of shapes of roofs. We
adopt the following convention: If a roof has n m-gonal hipped roof ends then we will write
m(n).

In order to study the shapes of roofs we will examine the equations of a roof (1), (2) for
k = 1. It appears that every roof spread over a v-gon for v ≥ 9 can be decomposed into
several roofs determined by v-gons with v = 5, 6, 7, 8. We restrict our considerations to the
discussion of only one (most representative) case for v = 8. The results of the analysis of
the remaining cases (for v = 3, 4, 5, 6, 7) are omitted in this paper; we will describe them
comprehensively in appropriate figures and in Table 1.

C8) Let v = 8.
For v = 8 the equations (1), (2) assume the form

{

m3 + m4 + m5 + m6 + m7 + m8 = 8,

3m3 + 4m4 + 5m5 + 6m6 + 7m7 + 8m8 = 34.

Consider the subcases:

C81) For m8 = 1 due to (20) we have only one geometrically correct solution 8(1), 7(0), 6(0),
5(0), 4(5), 3(2) (see Fig. 7c, c’).

C82) Let m8 = 0. We have subcases:

C821) m7 = s with s ≥ 2. This case due to Corollary 7 is impossible. It suffices to assume
v = 8, m = 7, s ≥ 2 in (17). Then we have one possibility.

C822) m7 = 1, then we have

C8221) m6 = m with m ≥ 1. This case is impossible. Indeed, due to Theorem 2 substituting
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Figure 3: a), a’), a”) seemingly different realizations of roofs determined by a quadrangle;
b), b’), b”) seemingly different realizations of roofs determined by a pentagon

Figure 4: Different topological kinds of roofs a), b), c) determined by a hexagon;
a), a’) seemingly different realizations of roofs determined by a hexagon

v = 8, p = 2, n = 1, s1 = 1, s2 = m into (3) we obtain an inequality

m + 1 ≤ 8 ≤ 5 +
1

m
+

m + 1

2
. (22)

The left inequality (22) is satisfied by m = 1, 2, . . . , 7. The right inequality (22) is not
satisfied by m = 1, 2, 3, 4. For m = 5, 6, 7 the equation (2) with k = 1, v = 8 is not satisfied.
Then we may consider the case 6(0) only.

C8222) Let m6 = 0.
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Figure 5: Different topological kinds of roofs determined by a 7-gon

Figure 6: A sketch of the analysis of some roofs

Let us consider the following subcases

C82221) m5 = 5. This case is impossible, because 3 · 2 + 4 · k + 5 · 5 + 7 · 1 > 34 (we must
regard at least two triangles) for every integer positive k.

C82222) m5 = 4. The case 5(4) is impossible because we have 3 · 2 + 4 · k + 5 · 4 + 7 · 1 6= 34
and 3 · 3 + 4 · k + 5 · 4 + 7 · 1 6= 34 and 3 · 4 + 4 · k + 5 · 4 + 7 · 1 6= 34 for every positive integer k.

C82223) m5 = 3. Then we have a solution 8(0), 7(1), 6(0), 5(3), 4(0), 3(4) and a roof must
contain four triangles as hipped roof ends. A line of disappearing ridges has a form which is
displayed in Fig. 6b (a line with four components 1, 2, 3, 4 derives from the 7-gon). Then a
number of disappearing ridges is equal to 6, which is impossible (d = 8−3 6= 6, cf. Theorem 1
for k = 1, v = 8).

C82224) m5 = 2. Then we have a solution 8(0), 7(1), 6(0), 5(2), 4(2), 3(3). The roof which
satisfies such parameters is displayed in Fig. 7a.

C82225) m5 = 1. Then we have a solution 8(0), 7(1), 6(0), 5(1), 4(4), 3(2). The roof which
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Figure 7: Different topological kinds of roofs determined by an octagon

Figure 8: Remaining topological kinds of roofs determined by an octagon

satisfies such parameters is displayed in Fig. 8b, b’.

Let us consider

C823) Let m7 = 0. Then we have the following cases:

C8231) m6 = s with m ≥ 3. This case due to Corollary 4 with parameters n = 2, s is
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Table 1: Classification of solutions of shapes of a regular roof generated by a simply connected
v-gon, v = 3, 4, 5, 6, 7, 8. The symbol ‘+’ indicates the existence of a roof (in the algebraic
sense this symbol shows the existence of a solution of the equations of a roof). The symbols
‘n)’ and ’−’ stand for the non-existence of a geometrical (i.e., real) roof

Code
Base of Number of v-gons Kind of solution

the roof 3 4 5 6 7 8 algebraic geometrical

T01 triangle 3 + + (universal roof)
Q01 quadrangle 2 2 + + (universal roof, Figs. 3a, a’, a”)

P01n) pentagon 3 0 2 + − (Statement 1)

P02n) 1 4 0 + − (Corollary 3)
P03 3 0 2 + + (universal roof, Figs. 3b, b’, b”)

H01n) hexagon 4 0 0 2 + − (Statement 1)

H02n) 3 1 1 1 + − (Statement 2)
H03 2 3 0 1 + + (universal roof, Fig. 4c)
H04 2 2 2 0 + + (Figs. 4a, a’)
H05 3 0 3 0 + + (Fig. 4b)
S01 7-gon 2 4 0 0 1 + + (universal roof, Fig. 5b)
S02 3 1 2 1 0 + + (Fig. 5d)
S03 2 3 1 1 0 + + (Fig. 5c)
S04 2 2 3 0 0 + + (Fig. 5a)

S05n) 3 2 0 2 0 + − (Corollary 7)

S06n) 4 0 1 2 0 + − (Statement 1)

O01n) octagon 6 0 0 0 0 2 + − (Statement 1)

O02n) 5 0 1 1 0 1 + − (Statement 1)
O03 2 5 0 0 0 1 + + (universal roof, Figs. 7c, c’)
O04 3 2 2 0 1 0 + + (Fig. 7a)
O05 2 4 1 0 1 0 + + (Figs. 8b, b’)
O06 4 0 2 2 0 0 + + (Fig. 8d)
O07 3 2 1 2 0 0 + + (Fig. 8c)
O08 2 4 0 2 0 0 + + (Fig. 7b)
O09 2 3 2 1 0 0 + + (Figs. 7d, d’; d∗)
O10 3 1 3 1 0 0 + + (Fig. 8a)

O11n) 3 0 5 0 0 0 + − (the case C82342)
O12 2 2 4 0 0 0 + + (Fig. 7e)

impossible. Indeed, then we have an inequality

8 ≤ 5 +
s

2
+

2

s− 1
. (23)

The numbers s = 3, 4, 5 do not satisfy the above inequality. For s = 6, 7 at least two hexagonal
hipped roof ends must be adjacent. Then a line of disappearing ridges would contain at least
six components, which is impossible (cf. Theorem 1).

C8232) m6 = 2. Then we have
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C82321) m5 = s with s ≥ 3. Assuming that m3 ≥ 2 this case is algebraically impossible.
The equation 3m3 + 4m4 + 5s + 6 · 2 = 34 has not got any solution for s ≥ 3.

C82322) m5 = 2. Then we have the solution 8(0), 7(0), 6(2), 5(2), 4(0), 3(4). Due to
Theorem 1 two hexagononal hipped roof ends must have a common disappearing ridge and
with regard to an existence of four triangles the roof must have a form displayed in Fig. 8d.

C82323) m5 = 1. We have a solution 8(0), 7(0), 6(2), 5(1), 4(2), 3(3). Due to Theorem 1 two
hexagononal hipped roof ends must have a common disappearing ridge and with regard to
the existence of three triangles these hexagons must be adjacent along the first disappearing
ridge. Then we obtain the roof which is displayed in Fig. 8c.

C82324) m5 = 0. We have a solution 8(0), 7(0), 6(2), 5(0), 4(4), 3(2). Notice that three
quadrangles may not be adjacent in a sequence and two hexagons may not have any common
corner ridge. In both cases a line of disappearing ridges would contain too many components.
Therefore the roof has a form displayed in Fig. 7b.

C8233) m6 = 1. Let us consider the following cases:

C82331) m5 = s with s ≥ 4. Such a case is impossible because the solution 3m3 + 4m4 +
5s + 6 · 1 = 34 has no solution for m3 ≥ 2. Then we may examine in turn:

C82332) m5 = 3. Then we have a solution 8(0), 7(0), 6(1), 5(3), 4(1), 3(3). With regard to
a number of leaves of graph of a line of disappearing ridges a hexagon must be adjacent with
a triangle and with a quadrangle. Such conditions in a roof displayed in Fig. 8a hold.

C82333) m5 = 2. Then we have a solution 8(0), 7(0), 6(1), 5(2), 4(3), 3(2). A hexagon and
one pentagon must be adjacent or a hexagon must be adjacent with two quadrangles because
a line of disappearing ridges must be unicoursal (there exist exactly two triangles). Then we
have two different shapes of roofs. In the first case we have a roof in Fig. 7d∗, in the second
case we have a roof presented in Fig. 7d, d’. But a configuration in which a sequence (hexagon,
quadrangle, quadrangle) exists is impossible. Indeed, if one of two adjacent quadrangles is
adjacent to a hexagon we would have the case displayed in Fig. 6c. In such a case a fitting
two adjacent pentagons and one quadrangle is impossible because from the points T1, T2 may
not start any corner ridge.

C8234) m6 = 0. Let us consider the following subcases:

C82341) m5 = s with s ≥ 6. This case is obviously algebraically impossible.

C82342) m5 = 5. Then we have a solution 8(0), 7(0), 6(0), 5(5), 4(0), 3(3). From five
pentagons two must be adjacent and a configuration in which there exists a sequence of three
adjacent pentagons is impossible. Let us denote by Γ1, Γ2 two such adjacent pentagons.
Next, this configuration must be extended as follows: We place two triangles ∆1, ∆2, the
first adjacently to Γ1, the second to Γ2. Next, we place the third pentagon Γ3 (we have only
one possibility) beside to one of two triangles, e.g, ∆2 such that the pentagons Γ2 and Γ3

have any common disappearing ridge. Next, beside Γ3 we place the third triangle ∆3. In
Fig. 8a the obtained configuration is displayed. Notice that two remaining pentagons may
not be inserted. Then four ridges would meet in a point T2, contrary to the assumption
of the regularity of a roof. Such a configuration may be completed only by a hexagon and
a quadrangle (see Fig. 8a). So the above solution is geometrically incorrect. We have the
interesting nontrivial algebraically correct case of a “roof” which does not exist.

C82343) m5 = 4. Then we have a solution 8(0), 7(0), 6(0), 5(4), 4(2), 3(2). In Fig. 7e such
roof is displayed.

C82344) m5 = s with s = 0, 1, 2, 3. This case is algebraically impossible. 2
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In Table 1 we list the above results — including the cases for v = 3, 4, 5, 6, 7 which were
not proved here.
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