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Abstract. Let πk be the projection of an n-dimensional projective space Σ (2 ≤
n <∞) from the point Bk onto the hyperplane αk, k = 1, . . . , n+ 1, and assume
that α1, . . . , αn+1 are linearly independent. By the Wallace locus of π1, . . . , πn+1

we mean the set of all points X of Σ whose images π1(X), . . . , πn+1(X) are linearly
dependent. In a Pappian n-space each Wallace locus is either the entire space or an
algebraic hypervariety whose degree is at most n+1. In a Pappian plane a triangle
{B1, B2, B3} and a trilateral {α1, α2, α3} determine the same Wallace locus as the
triangle {α2∩α3, α3∩α1, α1∩α3} and the trilateral {B2∨ B3, B3∨ B1, B1∨ B2}.
An analogous exchange rule for 3 ≤ n < ∞ is not valid. For Wallace loci of a
Pappian plane with collinear centersB1, B2, B3 we exhibit a theorem wherefrom we
get the Wallace theorems for all degenerate Cayley-Klein planes by specialization.
Thus we get the orthogonal and oblique Euclidean Wallace lines, the orthogonal
and oblique pseudo-Euclidean Wallace lines, and the isotropic Wallace lines and,
by duality, the Wallace points of the dual-Euclidean plane, of the dual-pseudo-
Euclidean plane, and of the isotropic plane.

Key Words: triangle geometry, Wallace line, pedal line, Simson line, Wallace
subspace
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1. Introduction

1.1. There are five degenerate Cayley-Klein planes: the Euclidean plane Σ2E, the pseudo-
Euclidean (=Minkowskian) plane Σ2P , the isotropic (=Galilean) plane Σ2I , the dual-Euclidean
plane, and the dual-pseudo-Euclidean plane; cf. O. Giering [7, p. 137–138].

Assume Σ2 ∈ {Σ2E,Σ2P ,Σ2I}. A triangle of Σ2 is called admissible, if it is free of isotropic
sides. If X is a point and λ a non-isotropic line of Σ2, then the pencil of lines with vertex X

contains exactly one line µ being orthogonal to λ (in symbols: λ ⊥ µ). We call the unique
common point of λ and µ the ⊥-pedal point of X on λ.
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Wallace theorem. Let ∆ be an admissible triangle and X be a point of the Euclidean plane.
The three ⊥-pedal points of X on the sides of ∆ are collinear if, and only if, X is on the
circumcircle of ∆. A line joining three collinear ⊥-pedal points is called orthogonal Euclidean
Wallace line; see Fig. 2 and cf. E.M. Schröder [16, p. 81].

This theorem is due to William Wallace (1768–1843). Also the notations Simson line
and pedal line are in use (cf. [10], [12, p. 17–18]).

E.T. Steller [17] and also D. Wode [21] show that the Wallace theorem is valid in the
pseudo-Euclidean plane, too. In this case we speak of orthogonal pseudo-Euclidean Wallace
lines.

In the isotropic plane each point determines collinear ⊥-pedal points on the sides of any
admissible triangle; cf. [15, p. 20].

1.2. We endow the Euclidean plane Σ2E with a sense of rotation. Then we can measure the an-
gle from a line ξ to a line η in the sense of rotation using the interval
{x ∈ R | 0 < x < π} =: AE. Given ϕ ∈ AE, a point X, and a line λ, then the pencil
of lines with vertex X contains exactly one line µ such that the angle from λ to µ equals
ϕ. The unique common point of λ and µ is called the ϕ-pedal point of X on λ. By E.M.

Schröder [16, p. 81], the Wallace theorem remains valid, if we replace the words “⊥-pedal
points” with “ϕ-pedal points”. Thus we get Euclidean ϕ-Wallace lines. For ϕ 6= π

2
we speak

of oblique Euclidean Wallace lines; cf. R.H. Dye [6].
In the isotropic plane the measurement of the angle of two non-isotropic lines is done

via their slopes; cf. H. Sachs [15, p. 16] or W. Benz [2, p. 35]. For ϕ ∈ R \ {0} =: AI

the isotropic ϕ-pedal point of a point X on a non-isotropic line λ is defined analogously to
the Euclidean case. By J. Lang [11], the Wallace theorem holds for the isotropic plane and
ϕ-pedal points with ϕ ∈ AI . Thus we get isotropic ϕ-Wallace lines. See also J. Tölke [19].

In the pseudo-Euclidean plane the measure of an angle of two non-isotropic lines is an
ordered pair taken from R× {+1,−1}; cf. W. Benz [2, p. 55–57]. For ϕ ∈ (R× {+1,−1}) \
{(0,+1)} =: AP the pseudo-Euclidean ϕ-pedal point of a point X on a non-isotropic line λ is
defined as in the Euclidean case. As a side-result of the present paper we get, that the Wallace
theorem is valid for the pseudo-Euclidean plane and ϕ-pedal points with ϕ ∈ AP . Thus we
have pseudo-Euclidean ϕ-Wallace lines. Pseudo-Euclidean orthogonality is characterized by
the angle measure (0,−1); for ϕ 6= (0,−1) we speak of oblique pseudo-Euclidean Wallace
lines.

In Section 3 we exhibit a theorem of plane projective geometry wherefrom we can deduce
the Wallace theorems for all degenerate Cayley-Klein planes easily by specialization.

1.3. The Wallace theorem has been extended in numerous ways, for a survey see H. Martini

[12, p. 17–18]; especially T. Takasu [18] gave some projective generalizations all starting
from a given conic. M. de Guzman [5] and O. Giering [8] generalized via special triples
of projections, we continue this way and admit arbitrary projections.

Definition 1. Let Σn be an n-dimensional projective space with point set Pn and let A1, . . . ,

An+1 ∈ Pn be linearly independent. Put A1∨ . . .∨ Ak−1∨ Ak+1∨ . . .∨ An+1 =: αk, (∨ denotes
the join) k = 1, . . . , n + 1, for the n + 1 accompanying linearly independent hyperplanes; we
call {A1, . . . , An+1} =: A the basis (n+ 1)-gon and α1, . . . , αn+1 its faces.

By the center (n+ 1)-gon we mean a set B := {B1, . . . , Bn+1} ⊆ Pn of n+ 1 different points
with Bk 6∈ αk for k = 1, . . . , n+ 1. The projection of Σn from the center Bk onto the face αk
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is denoted by πk, in symbols

πk : Pn \ {Bk} → αk : X 7→ (X ∨ Bk) ∩ αk for k = 1, . . . , n+ 1. (1)

For X 6∈ {B1, . . . , Bn+1} we put

J(X) :=
n+1∨

k=1

πk(X). (2)

Additionally, for X = B1 we define

J(B1) :=
n+1∨

k=2

πk(X) (3)

and analogously for X = B2, . . . , X = Bn+1. By the Wallace locus of the basis (n+ 1)-gon A
with respect to the center (n+ 1)-gon B we mean the point set

{X ∈ Pn | dim J(X) < n} =: W (A;B). (4)

If dim J(X) < n, then we call J(X) the Wallace subspace of X with respect to the basis
(n+ 1)-gon A and the center (n+ 1)-gon B.

Wallace loci of the real projective plane with a center triangle {B1, B2, B3} were investi-
gated by P.D. Barry [1] and B. Orbán and M. Ţarină [13]. As an application of Wu’s
method of mechanical geometry theorem proving E. Roanes-Maćıas and E. Roanes-

Lozano computed in [14] the Wallace locus of a tetrahedron of the Euclidean 3-space with
respect to orthogonal (parallel) projections. In a Pappian n-space the Wallace locus is either
an algebraic hypersurface whose degree is at most n+1 or the complete space (see Lemma 6).
If the center (n+1)-gon spans a hyperplane, then the Wallace locus is either the entire space
or it decomposes into this hyperplane and a remaining algebraic hypersurface whose degree
is at most n (for details see Corollary 7). If A and B are triangles of a Pappian plane, then
following exchange rule holds: W (A;B) = W (B;A) (see Theorem 9). An analogous exchange
rule for dimensions greater than 2 is not valid (see Lemma 12).

The present article contains eight figures all created with Maple and LATEX on a computer.

2. Elementary properties of Wallace loci

In the subsequent, more exactly from Lemma 2 up to Corollary 7, the assumptions and
notations from Definition 1 are valid.

Lemma 2. Then we have:
(i) αj ∩ αk ⊆ W (A;B) for (j, k) ∈ {1, 2, . . . , n + 1}2 and j 6= k. In particular, A ⊆

W (A;B).

(ii) B ⊆ W (A;B).

(iii) Put B1∨. . .∨Bk−1∨Bk+1∨. . .∨Bn+1 =: βk, then αk∩βk ⊆ W (A;B) for k = 1, . . . , n+1.

Proof. From X ∈ αj ∩ αk ⇒ πj(X) = πk(X) follows (i) and (3) implies (ii).
For the proof of (iii) we may assume k = 1 without loss of generality. Clearly, dimβ1 =
dim(B2 ∨ . . . ∨ Bn+1) ≤ n − 1. If X ∈ α1 ∩ β1, then X = π1(X) ∈ β1. Moreover, π2(X) ∈
β1, . . . , πn+1(X) ∈ β1, hence π1(X)∨π2(X)∨ . . .∨πn+1(X) ⊆ β1. Thus, dim(π1(X)∨π2(X)∨
. . . ∨ πn+1(X)) ≤ n− 1.
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Lemma 3. If the center (n+1)-gon B spans a subspace σ with dim σ < n, then σ ⊆ W (A;B).

Proof. Let X be an arbitrary point of σ. If X 6∈ B, then πk(X) ∈ Bk ∨ X ⊆ σ for k =
1, . . . , n + 1 and hence J(X) ⊆ σ, i.e., dim J(X) < n, and consequently X ∈ W (A;B). If
X = B1, then dim J(X) ≤ n− 1 according to (3), i.e., X ∈ W (A;B).

The Wallace locus W (A;B) can be the entire space even under the assumption that the
center (n+ 1)-gon B consists of linearly independent points, as the following Lemma shows.

Lemma 4. Assume that Σn is Pappian with (commutative) coordinatizing field K and that
Ak = Bk for k = 1, 2, . . . , n+ 1. Put charK =: p.

If p 6= 0 and p is a divisor of n, then W ({A1, . . . , An+1}; {A1, . . . , An+1}) = Pn.

If p = 0 or if p 6= 0 and p is no divisor of n, then W ({A1, . . . , An+1}; {A1, . . . , An+1}) =
α1 ∪ α2 . . . ∪ αn+1.

Proof. We may assume that Σn is the projective space on the right vector space Kn and

Ak = (δ1k, δ2k, . . . , δn+1,k)K, k = 1, 2, . . . , n + 1,

where δjk denotes the Kronecker symbol. For an arbitrary point

(ξ1, ξ2, . . . , ξn+1)K ∈ Pn \ {Bk}

holds: πk(X) = (ξ1, . . . , ξk−1, 0, ξk+1, . . . , ξn+1)K, k = 1, 2, . . . , n + 1. Thus X ∈ W (A1, . . . ,
An+1; A1, . . . , An+1) is equivalent to the vanishing of the subsequent determinant:

∣
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ξ1 ξ2 ξ3 ξ4 . . . ξn 0

ξ1 0 ξ3 ξ4 . . . ξn ξn+1

ξ1 ξ2 0 ξ4 . . . ξn ξn+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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0 0 −ξ3 0 . . . 0 ξn+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . −ξn ξn+1

0 0 0 0 . . . 0 nξn+1
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= (−1)n−1nξ1ξ2 . . . ξn+1.

Remark 5. If Σn is an elliptic space with absolute polarity µn and if the basis (n + 1)-gon is self
polar, i.e., µn(Ak) = αk for k = 1, . . . , n + 1, then the construction of orthogonal elliptic Wallace
subspaces leads to the situation of Lemma 4.

Lemma 6. Assume that Σn is Pappian. Then W (A;B) is either the entire space or an
algebraic hypervariety whose degree is at most n+ 1.

Proof. We may assume that Σn is the projective space on the right vector space Kn, Bk =
(bk1, bk2, . . . , bk(n+1))K, and that the hyperplane αk is described by Σn+1

j=1αkjxj = 0, k =
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1, . . . , n + 1. Because of Bk 6∈ αk we have Σn+1
j=1αkjbkj 6= 0. For X = (ξ1, ξ2, . . . , ξn+1)K we

compute πk(X) = (`k1, `k2, . . . , `k(n+1))K with

`km := −bkmΣ
n+1
j=1αkjξj + ξmΣ

n+1
j=1αkjbkj and (k,m) ∈ {1, . . . , n + 1}2.

The coordinates of πk(X) are linear homogeneous forms in ξ1, ξ2, . . . , ξn+1. From the theorem
of Laplace follows that the determinant of the matrix (`km)

m=1,...,n+1
k=1,...,n+1 is a homogeneous form

of degree n+ 1.

From Lemma 3 and 6 follows

Corollary 7. Assume that Σn is Pappian. If the center (n + 1)-gon B spans a hyperplane
σ, then the Wallace locus W (A;B) is either the entire space or it decomposes into σ and an
algebraic hypervariety whose degree is at most n.

Remark 8. If Σn is a Euclidean or pseudo-Euclidean space, then the construction of orthogonal
Euclidean or pseudo-Euclidean Wallace subspaces leads to the situation of Corollary 7 with the
hyperplane at infinity being σ. If 3 ≤ n < ∞, then the Wallace locus can not decompose into an
irreducible quadric and the repeatedly counted hyperplane at infinity, since an irreducible quadric
never contains all (n−2)-dimensional, i.e., at least 1-dimensional, “edges” αj ∩αk of a basis (n+1)-
gon A; cf. Lemma 2.

Theorem 9 (“Exchange rule”). Let A = {A1, A2, A3} and B = {B1, B2, B3} be triangles
of a Pappian plane Σ2 with Bk 6∈ Am ∨ An and Ak 6∈ Bm ∨ Bn for all (k,m, n) ∈ {1, 2, 3}3

with {k,m, n} = {1, 2, 3}. The Wallace locus of the basis triangle A with respect to the center
triangle B coincides with the Wallace locus of the basis triangle B with respect to the center
triangle A, in symbols: W (A;B) = W (B;A).

Proof. We may assume that Σ2 is the projective space on the right vector space K3, Ak = akK
with ak = (ak1, ak2, ak3), and Bk = bkK with bk = (bk1, bk2, bk3), k = 1, 2, 3, and X = xK
with x = (ξ1, ξ2, ξ3). Clearly, A := det(a1, a2, a3) 6= 0 and B := det(b1,b2,b3) 6= 0. Using a
computer we get: /def/breite1.5mm

π1(X) = (−b11E1 + ξ1F1, −b12E1 + ξ2F1, −b13E1 + ξ3F1)K with

E1 := det(a2, a3,x) and F1 := det(a2, a3,b)

π2(X) = (−b21E2 + ξ1F2, −b22E2 + ξ2F2, −b23E2 + ξ3F2)K with

E2 := det(a3, a1,x) and F2 := det(a3, a1,b)

π3(X) = (−b31E3 + ξ1F3, −b32E3 + ξ2F3, −b33E3 + ξ3F3)K with

E3 := det(a1, a2,x) and F3 := det(a1, a2,b).

The Wallace locus W (A;B) is described by the vanishing of the determinant

Wab :=

∣
∣
∣
∣
∣
∣

−b11E1 + ξ1F1 −b12E1 + ξ2F1 −b13E1 + ξ3F1

−b21E2 + ξ1F2 −b22E2 + ξ2F2 −b23E2 + ξ3F2

−b31E3 + ξ1F3 −b32E3 + ξ2F3 −b33E3 + ξ3F3

∣
∣
∣
∣
∣
∣

.

InWab we interchange akm and bkm and get the determinantWba whose vanishing describes the
other Wallace locus W (B;A). Finally, we check with the help of a computer: BWab = AWba.
Because of A 6= 0 and B 6= 0 follows: Wab = 0 ⇐⇒ Wba = 0.

Equivalent to Theorem 9 is
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Corollary 10. Let {A1, A2, A3} and {B1, B2, B3} be triangles of a Pappian plane Σ2, assume
Bk 6∈ Am ∨ An and Ak 6∈ Bm ∨ Bn, and put πk for the projection of Σ2 from Bk onto
Am ∨ An, and ρk for the projection of Σ2 from Ak onto Bm ∨ Bn for all (k,m, n) ∈ {1, 2, 3}3

with {k,m, n} = {1, 2, 3}.
If the images π1(X), π2(X), π3(X) of a point X are collinear (look at the line JAB(X) of
Fig. 1), then the images ρ1(X), ρ2(X), ρ3(X) are also collinear (look at the line JBA(X)).

Remark 11. The irreducible cubic in Fig. 1 represents the Wallace locus W (A;B) =W (B;A).

A1

A2A3

B1 B2

B3

X

JAB(X) JBA(X)

Figure 1: Wallace locus (n = 2, non-collinear centers) and exchange rule

Lemma 12. Let A be a basis (n+1)-gon of a projective Pappian n-space Σn with 3 ≤ n <∞.
Then there exists a basis (n+ 1)-gon B of Σn such that W (A;B) 6= W (B;A).

Proof. We may assume Ak = (δ1k, δ2k, . . . , δn+1,k)K, k = 1, 2, . . . , n + 1. We choose B1 =
(1, 1, 1, . . . , 1, 0, 0)K, Bj = Aj for j = 2, . . . , n, and Bn+1 = (0, 0, 0, 0, . . . , 0, 1, 1)K. The reader
checks easily that {B1, . . . , Bn+1} is an (n + 1)-gon. Put β2 := B1 ∨ B3 ∨ . . . ∨ Bn ∨ Bn+1

and βn := B1 ∨ B2 ∨ . . . ∨ Bn−1 ∨ Bn+1. We have:

E := (1, 1, 1, . . . , 1, 1, 1)K ∈ B1 ∨ Bn+1 ⊆ β2 ∩ βn
Lemma 2(i)

⊆ W (B;A).

It suffices to show
E 6∈ W (A;B). (5)

Obviously, πn+1(E) = B1, π2(E) = (1, 0, 1, . . . , 1, 1, 1)K, . . ., πn(E) = (1, 1, 1, . . . , 1, 0, 1)K,
and π1(E) = B2. From
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1 1 1 . . . 1 0 0

1 0 1 . . . 1 1 1

1 1 0 . . . 1 1 1
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0 0 0 . . . 0 1 1
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1 1 1 . . . 1 0 0

0 −1 0 . . . 0 1 1

0 0 −1 . . . 0 1 1
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0 0 0 . . . 0 0 1

0 0 0 . . . 0 1 1

∣
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∣
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∣

= (−1)n−3 6= 0
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follows (5).

3. n = 2 and collinear centers B1, B2, B3

3.1. Commuting projectivities. From [20, Ch. VIII, p. 226–227] we recall three items:

1) If p is a non-parabolic non-involutoric projectivity of a Pappian plane, then there exists
exactly one projective involution commutative with p.

2) The projective involution commutative with a given non-parabolic non-involutoric projec-
tivity p is called the involution belonging to p. A projective involution belongs to itself.

3) If a non-parabolic projectivity p of a Pappian plane has fixed points, then the involution
belonging to p has the same fixed points.

Theorem 13. Let A = {A1, A2, A3} be a triangle of PG(2,K), K commutative and charK 6=
2. Put α1 := A2 ∨ A3, α2 := A3 ∨ A1, α3 := A1 ∨ A2. Let B = {B1, B2, B3} be a set of
mutually different collinear points whose join ω does not contain Ak for k = 1, 2, 3 and assume
Bj 6∈ αj, j = 1, 2, 3. By p we denote the unique autoprojectivity of ω with αj ∩ ω 7→ Bj for
j = 1, 2, 3.
(i) If p is non-parabolic, then the Wallace locus W (A;B) decomposes into ω and the cir-

cumconic k of A whose involution of conjugate points on the non-tangent ω belongs to
p.

(ii) If p is parabolic, then the Wallace locus W (A;B) decomposes into ω and the circumconic
k of A being tangent to ω at the fixed point of p.

Proof. Without loss of generality we may assume A1 = (0, 0, 1)K, A2 = (1, 0, 1)K, A3 =
(0, 1, 1)K, and that ω = {xK ∈ P2|x3 = 0}, x := (x1, x2, x3). Thus α1 = {xK ∈ P2|x1 +
x2 − x3 = 0}, α2 = {xK ∈ P2|x1 = 0}, α3 = {xK ∈ P2|x2 = 0}, and α1 ∩ ω = (1,−1, 0)K,
α2 ∩ ω = (0, 1, 0)K, α3 ∩ ω = (1, 0, 0)K. For the projectivity p we have:

p : ω → ω; (x1, x2, 0)K 7→ (p11x1 + p12x2, p21x1 + p22x2, 0)K, pjk ∈ K, and

det(P ) 6= 0, P :=

(
p11 p12

p21 p22

)

, (6)

i.e., B1 = (p11 − p12, p21 − p22, 0)K, B2 = (p12, p22, 0)K, B3 = (p11, p21, 0)K and because of
Bj 6∈ αj holds

p11 − p12 + p21 − p22 6= 0, p12 6= 0, p21 6= 0. (7)

For an arbitrary point X = (ξ1, ξ2, ξ3)K we compute:

π1(X) =
(
ξ1(p22 − p21) + ξ2(p11 − p12) + ξ3(p12 − p11),
ξ1(p21 − p22) + ξ2(p12 − p11) + ξ3(p22 − p21), ξ3 (p12 + p22 − p11 − p21)

)
K,

π2(X) = (0, ξ1p22 − ξ2p12, −ξ3p12)K,

π3(X) = (ξ1p21 − ξ2p11, 0, ξ3p21)K.

Equivalent to dim
(
π1(X)∨π2(X)∨π3(X)

)
< 2 is the vanishing of the determinant of the ma-

trix formed by the coordinates of the three points, i.e., W (A1, A2, A3;B1, B2, B3) is described
by

ξ3 (p11p22 − p12p21)
︸ ︷︷ ︸

6= 0 by (6)

(
p21ξ

2
1 + (p22 − p11)ξ1ξ2 − p21ξ1ξ3 − p12ξ

2
2 + p12ξ2ξ3

)

︸ ︷︷ ︸

=: K(X)

= 0.
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Now k := {xR ∈ P2|K(X) = 0} is a conic since for the determinant dk of the matrix of the
bilinear form corresponding to K(X) holds dk = 2−2p12p21(p11 − p12 + p21 − p22) 6= 0 because
of (7). The assertion {A1, A2, A3} ⊆ k follows either from Lemma 2 or can be checked directly
by substitution.

By (7), (1, 0, 0, )K 6∈ k and (0, 1, 0)K 6∈ k, hence the determination of k ∩ ω is equivalent

to the solution of the quadratic equation p21

(
ξ1

ξ2

)2

+ (p22 − p11)
ξ1

ξ2
− p12 = 0 in the unknown

ξ1

ξ2
; for its discriminant we have Dk := (p22 − p11)

2 + 4p12p21. We compute the characteristic

polynomial of the matrix (pjk):
∣
∣
∣
∣

p11 − ρ p12

p21 p22 − ρ

∣
∣
∣
∣
= ρ2 − (p11 + p22) ρ+ p11p22 − p12p21

and its discriminant De := (p11 + p22)
2 − 4(p11p22 − p12p21). Immediately we check Dk = De.

Consequently, p is parabolic if, and only if, k is tangent to ω.

Case i: Dk 6= 0. The points

(y1, y2, 0)K and
(

1
2
(p22 − p11)y1 − p12y2, −p21y1 +

1
2
(p11 − p22)y2, 0

)
K

are conjugate with regard to k, hence

b : ω → ω ; (y1, y2, 0)K 7→ (b11y1 + b12y2, b21y1 + b22y2, 0)K with

B :=

(
b11 b12

b21 b22

)

=

(
1
2
(p22 − p11) −p12

−p21
1
2
(p11 − p22)

)

is the involution of conjugate points on ω with regard to k. Finally, PB = BP shows the
assertion.

Case ii: Dk = 0. Now k is tangent to ω at T := (p11−p22, 2p21, 0)K. The point p(T ) coincides
with T because of

∣
∣
∣
∣

p11 − p22 2p21

p11(p11 − p22) + 2p12p21 p21(p11 − p22) + 2p22p21

∣
∣
∣
∣
= −p21Dk = 0,

i.e., T is fixed by p.

3.2. Giering’s generalization. We compare Fig. 6 from O. Giering [8] and Fig. 2 which
shows the ordinary Euclidean circumcircle of a triangle and the envelope of its Wallace lines.
We assert that these two pictures correspond in a collineation. In order to prove the validity
of this assertion, we use in PG(2,R) the same coordinates for ω (corresponds to f in [8]) and
{A1, A2, A3} as in 3.1 and choose the point Z = (z1, z2, z3)R with Z 6∈ α1 ∪ α2 ∪ α3 ∪ ω, i.e.,

z1z2z3(z1 + z2 − z3) 6= 0.

According to [8], the three centers of the
projections are: Bk = (Z ∨ Ak) ∩ ω for
k = 1, 2, 3, hence B1 = (z1, z2, 0)R, B2 =
(z1 − z3, z2, 0)R, B3 = (z1, z2 − z3, 0)R. The
projectivity p from 3.1 maps αk ∩ ω to Bk,
k = 1, 2, 3. Consequently, we get for the ma-
trix describing p (compare (6)):

PGie :=

(
z1z2 −z1(z1 − z3)

z2(z2 − z3) −z1z2

)

.

A2

A3

A1

B3
B2

B1

X

J(X)

Figure 2: Orthogonal Euclidean Wallace
line J(X)
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We compute PGie PGie = −z1z2z3(z1 + z2 − z3)diag(1, 1), hence Giering’s construction yields
always involutoric projectivities pGie. For z1z2z3(z1 + z2 − z3) < 0 the involution pGie is
elliptic and for z1z2z3(z1 + z2 − z3) > 0 hyperbolic. We endow PG(2,R) with pGie as ab-
solute involution; this yields a Euclidean or pseudo-Euclidean plane, respectively. From the
structural point of view, Giering’s article covers the orthogonal Euclidean and orthogonal
pseudo-Euclidean Wallace lines, but not oblique and isotropic Wallace lines. See also O.
Giering [9].

In the following three subsections we deal with the Euclidean, pseudo-Euclidean and
isotropic plane. An introductory, simultaneous exposition of these three planes can be found in
[15, p. 124–150].

3.3. Euclidean and dual-Euclidean case. Put

AE :=

(
0 −1
1 0

)

and PE :=

(
cosϕ − sinϕ
sinϕ cosϕ

)

, ϕ ∈ R, 0 < ϕ < π.

We assume that ω = {xR ∈ P2|x3 = 0} is the line at infinity. The matrix AE describes an
elliptic involution aE of ω which we use as absolute involution. Because of AEPE = PEAE ,
the involution aE belongs to the projectivity pE corresponding to PE. In Theorem 13 we use
Bk = pE(αk ∩ ω) as centers, k = 1, 2, 3. The projection πk is a parallel projection of angle ϕ
onto αk, k = 1, 2, 3, since pE is induced by a rotation through an angle of measure ϕ. This
shows that the Euclidean Wallace theorem can be derived from Theorem 13 by specialization.

Fig. 3 shows the triangle {A1, A2, A3} and its
circumcircle in the ordinary Euclidean plane.
For the point X of the circumcircle the ϕ-
Wallace line J(X) for ϕ = π

3
is drawn. The

centers of projection are the pointsB1, B2, B3

at infinity. As X varies in the circumcircle,
the associated ϕ-Wallace lines J(X) envelope
a curve with three cusps which is also given
in Fig. 3.

Fig. 4 shows the dual-Euclidean case, illus-
trated in the ordinary Euclidean plane. Con-
sider the Euclidean rotation ρ about the
point ω∗ through the Euclidean angle π

2
. As

absolute involution we choose the restriction
of ρ to the pencil of lines with vertex ω∗.

A2

A3

A1

B3B2

B1 X

J(X)

Figure 3: Euclidean ϕ-Wallace line J(X)

The conic in Fig. 4 is the dual-Euclidean circumcircle of the sides A∗
1, A

∗
2, A

∗
3 of the triangle

{α∗
1, α

∗
2, α

∗
3}. (From the Euclidean point of view ω∗ is the Euclidean focus of the conic). For

the tangent X∗ of the conic the ϕ-Wallace point J(X∗) for ϕ = π
3
is given. If X∗ varies in

the tangent set of the conic, then the associated ϕ-Wallace points J(X∗) describe a curve e∗

which is also drawn in Fig. 4.

Remark 14. The curve e∗ contains the points α∗
j and A∗

j ∩ B∗
j for j = 1, 2, 3. The reader easily

checks that in Fig. 2 and 3 the lines Aj ∨ Bj are tangent to the envelope, j = 1, 2, 3.
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A∗
1

A∗
2

A∗
3

α∗
1

α∗
2

α∗
3

B∗
1

B∗
2

B∗
3

X∗

J(X∗)
ω∗

Figure 4: Dual-Euclidean ϕ-Wallace point J(X∗)

3.4. Pseudo-Euclidean and dual-pseudo-Euclidean case. We choose I1 := (1, 1, 0)R
and I2 := (1,−1, 0)R as absolute points such that the absolute involution is described by

AP :=

(
0 1
1 0

)

.

Denote by LO the pencil of lines with vertex (0, 0, 1)R. To a non-isotropic line ` ∈ LO there
exists exactly one line dϕ(`) ∈ LO such that the angle measure from ` to dϕ(`) equals a given
ϕ ∈ R× {+1,−1}.

Firstly, we discuss the case ϕ = (Φ,+1) with Φ ∈ R \ {0}. If x2 = tanhα · x1 is the

A1

A2

A3

B1

B2

B3

I1I2

X

J(X)

I∗1

I∗2

A∗
1

A∗
2

A∗
3

α∗
2

α∗
3

B∗
1 B∗

2

B∗
3

X∗

J(X∗)
ω∗

Figure 5: Pseudo-Euclidean ϕ-Wallace
line J(X)

Figure 6: Dual-pseudo-Euclidean
ϕ-Wallace point J(X∗)
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equation of `, then dϕ(`) is described by x2 = tanh(α+ Φ) · x1; cf. [2, p. 55–57]. Hence

ω ∩ ` = (coshα, sinhα, 0)R and ω ∩ dϕ(`) =
(
cosh(α+ Φ), sinh(α + Φ), 0

)
R =

(coshα coshΦ + sinhα sinhΦ, sinhα coshΦ + coshα sinhΦ, 0)R,

i.e., ω ∩ ` is mapped to ω ∩ dϕ(`) by the autoprojectivity pP of ω corresponding to

PP :=

(
coshΦ sinhΦ
sinhΦ coshΦ

)

, Φ ∈ R \ {0};

cf. [15, p. 138,(8.32a)]. Now APPP = PPAP shows the validity of the Wallace theorem in the
pseudo-Euclidean plane and for ϕ-pedal points with ϕ ∈ (R \ {0})× {+1}.

Secondly, ϕ = (Φ,−1) with Φ ∈ R. Now dϕ maps x1 = tanhα · x2 onto x1 = tanh(α +
Φ) · x2 and we have

ω ∩ dϕ(`) =
(
sinh(α+ Φ), cosh(α + Φ), 0

)
R.

In the second case ω∩ ` is mapped to ω∩ dϕ(`) by the autoprojectivity qP of ω corresponding
to

QP :=

(
sinhΦ coshΦ
coshΦ sinhΦ

)

, Φ ∈ R;

cf. [15, p. 139,(8.32b)]. Again we check APQP = QPAP .

The pseudo-Euclidean case is demonstrated in Fig. 5, the dual pseudo-Euclidean in Fig. 6.
The reader easily interprets the figures by virtue of the labels.

Remark 15. Also in these two cases Remark 14 is valid. Furthermore, we see in Fig. 6 that the
curve e∗ is tangent to the absolute lines I∗1 and I∗2 in the double point ω∗. Consequently, the envelope
e in Fig. 5 has the line ω at infinity as double tangent with the absolute points I1 and I2 as points
of contact.

3.5. Isotropic case. We assume that ω = {xR ∈ P2 |x3 = 0} and O := (0, 1, 0)R form the
absolute flag. Consider the motion (cf. [15, p. 17]):

dϕ : P2 → P2; (x1, x2, x3)R 7→
(
x1 + ax3, ϕ x1 + x2 + bx3, x3

)
R, a, b, ϕ ∈ R, ϕ 6= 0.

Using [15, p. 15–16,(2.13)–(2.15)] the reader proves easily: If ` is a non-isotropic line, then
the angle measure from ` to dϕ(`) equals ϕ. Put

PI :=

(
1 0
ϕ 1

)

.

The projectivity pI corresponding to PI is parabolic and fixes O. As centers in Theorem 13
we use Bk = pI(αk ∩ ω) for k = 1, 2, 3. The projection πk is a parallel projection of angle
ϕ onto αk, k = 1, 2, 3, since pI is the restriction of the motion dϕ. This shows that also the
isotropic Wallace theorem can be derived from Theorem 13 by specialization.

Due to the metric duality of the isotropic plane (cf. [15, Chpt. 6]) there exist isotropic
Wallace lines and isotropic Wallace points. Fig. 7 shows the ϕ-Wallace line of the point X of
the circumcircle of the triangle {A1, A2, A3} and the envelope of all ϕ-Wallace lines; for details
on the envelopes of isotropic Wallace lines see [19, Section 3 and Fig. 2]. Fig. 8 demonstrates
the construction of a ϕ-Wallace point and the curve described by all ϕ-Wallace points. Again
the reader checks the validity of Remark 14.
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A1

A2

A3

B1B2
B3

O X

J(X)

A∗
1

A∗
2

A∗
3

α∗
2

α∗
3

B∗
1B∗

2B∗
3

X∗
J

O

J := J(X∗)

Figure 7: Isotropic ϕ-Wallace line J(X) Figure 8: Isotropic ϕ-Wallace point J
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Wien-Zürich, 1976.

[5] M. de Guzman: An extension of the Wallace-Simson theorem: Projecting in arbitrary
directions. Am. Math. Mon. 106, no. 6, 574–580 (1999).

[6] R.H. Dye: The parabola as the envelope of a set of oblique Simson lines of a triangle.
Nieuw Arch. Wiskd., IV. Ser., 6, 251–254 (1988).
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[18] T. Takasu: Sur la généralisation projective et affine de la droite simsonienne. Sci. Rep.
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