
Journal for Geometry and Graphics
Volume 9 (2005), No. 1, 11–29.

Comparison of implicitization methods

Bohumı́r Bastl, Frantǐsek Ježek

Dept. of Mathematics, Fac. of Applied Sciences, Univ. of West Bohemia

Universitńı 22, 306 14 Plzeň, Czech Republic

email: bastl@kma.zcu.cz

Abstract. This paper overviews several methods for implicitization of an al-
gebraic variety (finding an implicit representation of a rational algebraic variety
given by its parametric equations): the classical implicitization using Gröbner
bases, the implicitization using resultants, polynomial interpolation, or moving
curves and surfaces, and the direct implicitization method. All these methods are
used for finding the implicit equation of NURBS curves and surfaces, which are
typical objects in geometric modeling. At the end, the computational costs for
finding the implicit equation needed by implementations of these different meth-
ods are compared.

Key Words: Implicitization methods, NURBS curves and surfaces

MSC 2000: 68W30, 13P10, 14Q05, 14Q10

1. Introduction

There are two standard ways of representing algebraic varieties, the implicit representation and
the parametric representation. The needs for either an implicit or parametric representation of
an algebraic variety depends on the operations to be perform with the variety. The parametric
representation is appropriate for generating points of the variety and for plotting it with the
computer. The implicit representation is convenient for checking whether a given point lies
on the variety. That’s why the transition from one representation to the other is important.

Typical objects of geometric modeling are rational Bézier curves and surfaces and NURBS
(Non-Uniform Rational B-Spline) curves and surfaces which are represented by parametric
equations. That’s why we will concentrate on implicitization problem, that is on finding an
implicit representation of a rational algebraic variety given by parametric equations.

In recent years, methods of implicitization of algebraic varieties have been intensively stu-
died. Basic approach lies in using variable elimination methods, such as resultants (see [7, 9,
16]) or Gröbner bases (see [3, 4]). By clearing denominators, the parametrization is converted
into a system of nonlinear algebraic equations from which parameters are eliminated. But
the implicit representation obtained by this method needs not be the smallest variety (in the
sense of inclusion) containing the given rational parametrization. When Gröbner bases are

ISSN 1433-8157/$ 2.50 c© 2005 Heldermann Verlag



12 B. Bastl, F. Ježek: Comparison of implicitization methods

used, the problem can be solved by including an additional equation and variable which ensure
that the denominators do not vanish. Thus the smallest variety containing the parametric
representation is obtained using the Gröbner bases method ([4]). Another approach to solve
this problem without including any additional variable is presented in [1].

On the other hand, even if we add the additional equation and variable which ensure that
the denominators do not vanish, the determinant of the resultant matrix needs not provide
exactly the implicit representation; it can contain extraneous factors. We only obtain the
so-called projection operator which always contains the resultant (and therefore the implicit
representation of the variety) but also extraneous factors which have to be eliminated.

Implicitization algorithms based on Gröbner bases and resultants suffer from problems
with parameterizations which involve base points (for details see Section 2.1). In such a case
the Dixon resultant (and any other resultant as the determinant of the resultant matrix)
vanishes identically and hence fails to produce the implicit equation. Then the projection op-
erator can be extracted from the resultant matrix by the RSC (Rank Submatrix Construction)
method (see [7, 8, 9, 16]). But this projection operator often contains extraneous factors.

Another method for the implicitization of algebraic varieties is the method of moving
curves and surfaces (see [17, 18]). This method allows to write the implicit equation in
a more compact form than the implicitization using resultants. For surfaces without base
points, this method expresses the implicit equation again as the determinant of a special
matrix which can be smaller than the resultant matrix. If base points exist, then the method
actually simplifies: the degree of some matrix elements decreases, or even the matrix reduces
its size.

Based on the method of moving lines (planes), [5] and [6] present a method for the
implicitization of rational curves (surfaces). In this method the implicit equation is given by
the determinant of a special implicitization matrix with the structure of a Sylvester matrix
(sparse matrix, simple entries) and the order of the Bézout (Dixon) matrix.

In recent years an interesting approach to the implicitization of curves and surfaces based
on numerical methods appeared. [12] and [13] present a method for the implicitization of
curves and surfaces based on the classical polynomial interpolation. The determinant of a
resultant matrix is interpolated by the classical Lagrange interpolation method (for curves)
or by extension of this method to the multivariate case (for surfaces).

A new implicitization method has appeared recently in [19]. This method is based on a
degree estimation of the implicit polynomial F with indeterminate coefficients ui which are
computed from the corresponding system of linear equations.

The paper under study is organized as follows: Section 2 overviews the implicitization
methods for curves and surfaces with rational parametrizations. Sections 3 and 4 are de-
voted to the main results of the paper, the application of implicitization methods to NURBS
curves and surfaces and mainly to the comparison of implementations of these methods in
Mathematica and Matlab.

2. Methods of implicitization-theory

2.1. Implicitization using Gröbner bases and resultants

The basic approach to the implicitization of algebraic varieties lies in using variable elimination
methods, such as Gröbner bases or resultants, because we want to eliminate parameters from
the parametrization of an algebraic variety in order to obtain an implicit equation.



B. Bastl, F. Ježek: Comparison of implicitization methods 13

Let

C(t) =

(
X(t)

W (t)
,
Y (t)

W (t)

)

(1)

be a rational parametrization of a plane curve. Then, by clearing denominators, the system
of equations

x ·W (t)−X(t) = 0,
y ·W (t)− Y (t) = 0

(2)

is obtained. If the parameter t is eliminated from the system (2) using the Gröbner basis
or resultants, a polynomial F (x, y) is obtained. This polynomial contains the implicit repre-
sentation of the plane curve C but it can also contain some extraneous factors1. Hence, in
this case it is not guaranteed that F (x, y) represents the smallest variety containing the curve
C given by the parametrization (1). This can be assured by adding one variable s and one
equation

1− s ·W (t) = 0 (3)

which ensures that the denominator of the parametrization (1) does not vanish. The resultant
R(x, y) obtained by the elimination of the variables s and t from both (2) and (3) represents
the smallest variety containing the curve C (see [4, Theorem 2 in Chapter 3, § 3]). Thus,
R(x, y) is the implicit representation of the curve C given by the parametrization (1).

A similar process can be used to implicitize rational surfaces. Let

S(u, v) =

(
X(u, v)

W (u, v)
,
Y (u, v)

W (u, v)
,
Z(u, v)

W (u, v)

)

(4)

be a rational parametrization of a surface. By clearing the denominators the system of
equations

x ·W (u, v)−X(u, v) = 0,
y ·W (u, v)− Y (u, v) = 0,
z ·W (u, v)− Z(u, v) = 0

(5)

is obtained. After eliminating the parameters2 u and v a polynomial F (x, y, z) is obtained
which contains an implicit representation of the surface S; but it can contain extraneous
factors, too. Hence, the system of equations (5) can be modified by adding a variable s and
the equation

1− s ·W (u, v) = 0 (6)

to ensure that the denominator of the parametrization (4) does not vanish. The resultant
R(x, y, z) obtained by the elimination of variables s, u, v from both (5) and (6) represents
the smallest variety containing the surface S (see [4, Theorem 2 in Chapter 3, §3]). Thus,
R(x, y, z) is the implicit representation of the surface S.

There is also another problem concerning the implicitization of surfaces, namely base
points. A base point is a common solution (u0, v0) ∈ C2 of a system of equations

X(u, v) = 0, Y (u, v) = 0, Z(u, v) = 0, W (u, v) = 0.

1Extraneous factors are factors of F (x, y) which do not belong to the implicit representation. More precisely,

only factors of F (x, y) for which F
(

X(t)
W (t) ,

Y (t)
W (t)

)

= 0 form the implicit representation of the given algebraic

variety. Factors which do not fulfil this condition are called extraneous.
2If a surface parametrization contains base points, then the elimination of parameters is not possible by

this method. A detailed explanation will be given later.



14 B. Bastl, F. Ježek: Comparison of implicitization methods

If the surface parametrization contains any base point, then both Gröbner bases and resultants
fail to provide an implicit representation of the surface S. In such a case the resultant equals
zero identically thus providing no condition on the initial system of equations (5) to have a
common solution. The reason is that base points represent non-trivial solutions of the system
(5) independent of x, y, z. Gröbner bases for the implicitization of surfaces are based on the
fact that the implicit representation is contained in the ideal I generated by the equations
(5). However, if the surface parametrization contains base points, the ideal I does not contain
any polynomial independent of u, v (besides 0); so the ideal I does not contain any implicit
representation of S.

There are several possibilities how to solve the problem with base points:
• We can add the equation (6) to ensure that the denominatorW (u, v) of the parametriza-

tion does not vanish and hence base points are excluded;

• we use a perturbation method to modify the initial system (5) (for more details see
[10, 11]);

• when we use resultants for the elimination of parameters, we can use the RSC (Rank
Submatrix Construction) method to extract the projection operator from the resultant
matrix even though the determinant of the resultant matrix is identically zero (for more
details see [7, 16]).

2.2. Implicitization using moving curves and surfaces

The method of moving curves and surfaces expresses an implicit equation of a curve or surface
given by parametric equations as the determinant of a matrix. Only a brief introduction will
be presented here; details can be found in [17, 18].

The most commonly used moving curves are moving lines and moving conics. A moving
line of degree m− 1 can be defined equivalently in two forms:

Lm−1(x, y)t
m−1 + . . . + L1(x, y)t+ L0(x, y) = 0 or A(t)x+B(t)y + C(t) = 0

where the Li(x, y) are linear polynomials in variables x, y and A(t), B(t), C(t) are polynomials
of degree m−1 in the variable t (at least one of them). For each t0 the moving line represents
an implicit equation of a line in the xy-plane.

A moving line is said to follow a rational curve (1) if

A(t)
X(t)

W (t)
+B(t)

Y (t)

W (t)
+ C(t) ≡ 0 or equivalently A(t)X(t) +B(t)Y (t) + C(t)W (t) ≡ 0

holds true. Geometrically, a moving line follows a rational curve if the implicit line corre-
sponding to the parameter t passes through the point on the rational curve corresponding to
the parameter t.

Moving lines have an interesting connection to the Bézout resultant. Each row in the
Bézout matrix corresponds to a moving line following the given curve.

For a rational curve C(t) of given degree m, we begin by seeking moving lines of degree
m− 1

Lm−1(x, y)t
m−1 + . . . + L1(x, y)t+ L0(x, y) = 0 (7)

that follow the curve. Since each Li(x, y) is linear in x and y, eq. (7) can be rewritten as

(Am−1x+Bm−1y + Cm−1)t
m−1 + . . . + (A1x+B1y + C1)t+ (A0x+B0y + C0) = 0. (8)



B. Bastl, F. Ježek: Comparison of implicitization methods 15

If we substitute x and y by rational functions X(t)/W (t) and Y (t)/W (t), resp., and multiply
it with W (t), we obtain a polynomial of degree 2m− 1 in the variable t

(Am−1X(t) +Bm−1Y (t) + Cm−1W (t))tm−1 + . . . + (A0X(t) +B0Y (t) + C0W (t)) = 0. (9)

In order to guarantee that eq. (8) represents a moving line which follows the rational curve,
the polynomial (9) has to vanish identically. This leads to a system of 2m homogeneous
linear equations in 3m unknowns Ak, Bk, Ck, k = 0, . . . ,m− 1, which has at least m linearly
independent solutions

p1(t) = L1,m−1(x, y)t
m−1 + . . . + L1,1(x, y)t+ L1,0(x, y) = 0,

... (10)

pm(t) = Lm,m−1(x, y)t
m−1 + . . . + Lm,1(x, y)t+ Lm,0(x, y) = 0.

Then

detR(x, y) =

∣
∣
∣
∣
∣
∣
∣

L1,0 . . . L1,m−1
...

...
Lm,0 . . . Lm,m−1

∣
∣
∣
∣
∣
∣
∣

= 0

is the implicit equation of the rational curve, provided that there are no base points.

Theorem 1 The method of moving lines always generates the correct implicit equation of a
rational curve, provided the rational curve has no base points.

Proof: See [18].

In the presence of base points the method has to be modified because a rational curve of
degree m with r base points is represented by an algebraic curve of degree m− r. Details of
this modification of the moving lines method can be found in [18].

An interesting way of representing the implicit equation of a rational curve lies in using
moving conics. A moving conic of degree m− 1 can be written in two ways:

Cm−1(x, y)t
m−1 + . . . + C1(x, y)t+ C0(x, y) = 0 (11)

or
A(t)x2 + B(t)xy + C(t)y2 +D(t)x+ E(t)y + F (t) = 0 (12)

where Cj(x, y) are polynomials of degree two in x, y and A(t), . . . , F (t) are polynomials of
degree m− 1 in t.

Similarly to the case of moving lines, the moving conic (12) follows any rational curve
C(t) if it vanishes on the curve, i.e., if

A(t)X2(t) +B(t)X(t)Y (t) + C(t)Y 2(t) +D(t)X(t)W (t) + E(t)Y (t)W (t) + F (t)W 2(t) ≡ 0.

Geometrically, a moving conic follows a rational curve if the implicit conic corresponding to
the parameter t passes through the point on the rational curve corresponding to the parameter
t.

In (11), each coefficient Cj(x, y) is quadratic in x, y. Hence, we can rewrite (11) as

(Am−1x
2 +Bm−1xy + Cm−1y

2 +Dm−1x+ Em−1y + Fm−1)t
m−1+

... (13)

+ (A0x
2 +B0xy + C0y

2 +D0x+ E0y + F0) = 0.



16 B. Bastl, F. Ježek: Comparison of implicitization methods

To implicitize the rational curve C(t) of degree 2m we seek for moving conics of degree
m− 1 which follow C(t). Hence, we substitute for x and y rational functions X(t)/W (t) and
Y (t)/W (t), resp., and we multiply the obtained equation by W 2(t). This yields

(Am−1X(t)2 +Bm−1X(t)Y (t) + . . . + Em−1Y (t)W (t) + Fm−1W
2(t))tm−1+

... (14)

+(A0X(t)2 +B0X(t)Y (t) + C0Y (t)2 +D0X(t)W (t) + E0Y (t)W (t) + F0W
2(t)) = 0.

Since X(t), Y (t) and W (t) are polynomials of degree 2m in t, (14) represents a polynomial
of degree 5m− 1 in t. (14) represents a moving conic following the rational curve C(t) if and
only if the polynomial (14) equals zero identically. This condition generates a system of 5m
homogeneous linear equations in 6m unknowns Ak, . . . , Fk, k = 0, . . . ,m − 1 which has at
least m linearly independent solutions

q1(t) = C1,m−1(x, y)t
m−1 + . . . + C1,1(x, y)t+ C1,0(x, y) = 0,

... (15)

qm(t) = Cm,m−1(x, y)t
m−1 + . . . + Cm,1(x, y)t+ Cm,0(x, y) = 0.

The coefficients of the moving conics (15) form a m×m matrix C(x, y) = (Cij(x, y)). Then
det(C(x, y)) = 0 is a good candidate to be an implicit equation of the given rational curve.
However, in some cases det(C(x, y)) can be identically zero, even if there are no base points;
and then the method of moving conics does not yield an implicit equation of the rational
curve. A necessary and sufficient condition for the method of moving conics to generate the
implicit equation of an even degree rational curve is given by following theorem:

Theorem 2 The method of moving conics generates the implicit equation for a rational curve
of degree 2m without base points if and only if there is no moving line of degree m− 1 that
follows the curve. Moreover, when there is a moving line of degree m − 1 that follows the
curve, any determinant generated by the method of moving conics is identically zero.

Proof: See [18].

Let S(u, v) = (X(u, v), Y (u, v), Z(u, v),W (u, v)) be a rational parametric surface in the
projective extension of E3 and

X(u, v) =
m∑

i=0

n∑

j=0

aiju
ivj, Y (u, v) =

m∑

i=0

n∑

j=0

biju
ivj ,

Z(u, v) =
m∑

i=0

n∑

j=0

ciju
ivj , W (u, v) =

m∑

i=0

n∑

j=0

diju
ivj.

Among moving surfaces only moving planes and moving quadrics are usually used. A moving
plane of bi-degree (σ1, σ2) is an implicit equation of the form

σ1∑

i=0

σ2∑

j=0

(Ai,jx+Bi,jy + Ci,jz +Di,jw) · u
ivj = 0. (16)



B. Bastl, F. Ježek: Comparison of implicitization methods 17

For fixed values of u and v, the expression (16) represents the implicit equation of a plane.
The moving plane is said to follow the rational surface S(u, v) if

σ1∑

i=0

σ2∑

j=0

(Ai,jX(u, v) + Bi,jY (u, v) + Ci,jZ(u, v) +Di,jW (u, v)) · uivj ≡ 0. (17)

Eq. (17) represents a polynomial of degree m + σ1 in u and degree n + σ2 in v. By setting
the coefficients of the monomials uivj for i = 0, . . . ,m+ σ1 and j = 0, . . . , n+ σ2 to zero, we
obtain a system of (m+σ1+1)(n+σ2+1) homogeneous linear equations in 4(σ1+1)(σ2+1)
unknowns {Ai,j, Bi,j , Ci,j, Di,j}, i = 0, . . . , σ1, j = 0, . . . , σ2. The solution of this system
provides a collection of moving planes which follow the surface S(u, v).

For moving planes we usually choose σ1 = 2m − 1 and σ2 = n − 1. Then from (17) we
obtain a system of 6mn homogeneous linear equations in 8mn unknowns. Such a system
has at least 2mn linearly independent solutions which represent moving planes following the
surface S(u, v):

L1 ≡
2m−1∑

i=0

n−1∑

j=0

(A1
i,jx+B1

i,jy + C1
i,jz +D1

i,jw) · u
ivj = 0,

... (18)

L2mn ≡
2m−1∑

i=0

n−1∑

j=0

(A2mn
i,j x+B2mn

i,j y + C2mn
i,j z +D2mn

i,j w) · uivj = 0.

The determinant of the coefficients of uivj of moving planes (18), i.e.,

∣
∣
∣
∣
∣
∣
∣

A1
0,0x+B1

0,0y + C1
0,0z +D1

0,0w · · · A1
2m−1,n−1x+ . . . +D1

2m−1,n−1w
...

...
A2mn

0,0 x+B2mn
0,0 y + C2mn

0,0 z +D2mn
0,0 w · · · A2mn

2m−1,n−1x+ . . . +D2mn
2m−1,n−1w

∣
∣
∣
∣
∣
∣
∣

vanishes whenever (x, y, z, w) lies on the surface S(u, v). Hence if this determinant does not
vanish identically, then it is a multiple of the implicit equation of surface S(u, v). This for-
mulation generates a matrix of the same size as the implicitization using the Dixon resultant,
and therefore both formulations are equivalent; each row of the Dixon matrix represents one
moving plane following the rational surface S(u, v).

An interesting way how the matrix size can be reduced is the usage of moving quadrics.
A moving quadric of bi-degree (σ1, σ2) is an implicit equation of the form

σ1∑

i=0

σ2∑

j=0

(Ai,jx
2 +Bi,jy

2 + Ci,jz
2 +Di,jxy + Ei,jxz + Fi,jyz+

Gi,jxw +Hi,jyw + Ii,jzw + Ji,jw
2) · uivj = 0. (19)

For fixed values u and v the expression (19) represents the implicit equation of a quadric.
The moving quadric is said to follow rational surface S(u, v) if

σ1∑

i=0

σ2∑

j=0

(Ai,jX(u, v)2+Bi,jY (u, v)2+ . . . + Ii,jZ(u, v)W (u, v) + Ji,jW (u, v)2) · uivj = 0. (20)



18 B. Bastl, F. Ježek: Comparison of implicitization methods

Eq. (20) represents a polynomial of degree 2m+ σ1 in u and degree 2n+ σ2 in v. By setting
the coefficients of the monomials uivj for i = 0, . . . , 2m+σ1 and j = 0, . . . , 2n+σ2 to zero, we
obtain a system of (2m+σ1+1)(2n+σ2+1) homogeneous linear equations in 10(σ1+1)(σ2+1)
unknowns {Ai,j , Bi,j, . . . , Ii,j , Ji,j}, i = 0, . . . , σ1, j = 0, . . . , σ2. Solving this system gives a
collection of moving quadrics which follow the surface S(u, v).

For a moving quadric we usually choose σ1 = m − 1 and σ2 = n − 1. Then we obtain
from (20) a system of 9mn homogeneous linear equations in 10mn unknowns. Such a system
has at least mn linearly independent solutions which represent moving quadrics following the
surface S(u, v):

Q1 ≡

σ1∑

i=0

σ2∑

j=0

(A1
i,jx

2 +B1
i,jy

2 + . . . + I1i,jzw + J1
i,jw

2) · uivj = 0,

... (21)

Qmn ≡

σ1∑

i=0

σ2∑

j=0

(Amn
i,j x

2 +Bmn
i,j y

2 + . . . + Imn
i,j zw + Jmn

i,j w
2) · uivj = 0.

The determinant of the coefficients of uivj of moving quadrics (21), i.e.,
∣
∣
∣
∣
∣
∣
∣

A1
0,0x

2 +B1
0,0y

2 + . . . + J1
0,0w

2 . . . A1
m−1,n−1x

2 +B1
m−1,n−1y

2 + . . . + J1
m−1,n−1w

2

...
...

Amn
0,0 x

2 +Bmn
0,0 y

2 + . . . + Jmn
0,0 w

2 . . . Amn
m−1,n−1x

2 +Bmn
m−1,n−1y

2 + . . . + Jmn
m−1,n−1w

2

∣
∣
∣
∣
∣
∣
∣

vanishes whenever (x, y, z, w) lies on the surface S(u, v). Hence, if this determinant does not
vanish identically, then it is a multiple of the implicit equation of surface S(u, v).

2.3. Implicitization using polynomial interpolation

This method uses an efficient computation of the resultant by means of classical bivariate or
multivariate Lagrange interpolation to find the implicit equation of a curve or surface given
by any rational parametrization.

Let (1) be a proper parametrization of a rational plane algebraic curve, i.e., GCD(X,W ) =
GCD(Y,W ) = 1. Since GCD is the greatest common divisor of the given polynomials, the
condition GCD(X,W ) = GCD(Y,W ) = 1 means that there is no common factor of X and
W (and similarly for Y and W ). For such a parametrization, an implicit equation F (x, y) of
curve C is given by

Res(xW (t)−X(t), yW (t)− Y (t)) = 0.

The condition GCD(X,W ) = GCD(Y,W ) = 1 can be removed, but in this case also parame-
trizations with base points are included for which the resultant matrix is singular (so, the
zero polynomial will be interpolated). Similarly to the implicitization using resultants, any
submatrix of the resultant matrix with full rank can be taken to interpolate the projection
operator (which contains the resultant, i.e., the implicit equation).

In this method the concept of an interpolation space is essential. The following theorem
says which is the most suitable interpolation space.

Theorem 3 Let C(t) = (X(t)/W(t), Y(t)/W(t)) be a proper rational parametrization of the
irreducible curve C defined by F (x, y) and let GCD(X,W ) = GCD(Y,W ) = 1. Then

m = max{degt(X), degt(W )} = degy(F )

n = max{degt(Y ), degt(W )} = degx(F ).



B. Bastl, F. Ježek: Comparison of implicitization methods 19

Proof: See [12].

This theorem states that each polynomial F (x, y) defining an implicit equation of the
curve C belongs to the polynomial space Πn,m(x, y).

The polynomial F (x, y) can be computed by classical Lagrange interpolation. If the
interpolation nodes (xi, yj), i = 0, . . . , n, j = 0, . . . ,m, and interpolation data fij ∈ K,
i = 0, . . . , n, j = 0, . . . ,m are given, we want to find a polynomial

F (x, y) =
∑

(i,j)∈I

cijx
iyj ∈ Πn,m(x, y), I = {(i, j) | i = 0, . . . , n, j = 0, . . . ,m}

such that
F (xi, yj) = fij ∀(i, j) ∈ I. (22)

The interpolation conditions (22) can be written as a system of linear equations

Ac = f (23)

where the coefficient matrix A is given by the Kronecker product3 A = Vx⊗Vy, and where Vx,
Vy are Vandermonde matrices, c is the column vector of unknown coefficients of the implicit
equation F (x, y) and f is the column vector containing the interpolation data.

The interpolation nodes (xi, yj) can be chosen such that xi = i for i = 0, . . . , n and yj = j
for j = 0, . . . ,m which ensures non-singularity of matrix A. Then the interpolation data fij
correspond to values F (i, j) of the resultant at points (i, j). That is, if M is the symbolic
Bézout matrix for the equations xW (t)−X(t) and yW (t)−Y (t) with respect to t and if Mij

is the matrix M where i, j are substituted for x, y, resp., then fij = detMij.
At the end, the special structure of matrix A is used for a fast solving of the system (23).

The problem of solving the linear system (23) with A = Vx⊗Vy can be reduced to the solution
of n + 1 systems with the same matrix Vy followed by solving m + 1 systems with the same
matrix Vx (for details see, e.g., [2]). Since Vx and Vy are Vandermonde matrices, a special
method for solving linear systems with such a coefficient matrix can be used (for details see
[12]).

The generalization for rational surfaces is very straightforward. Let S be the surface
with the parametrization (4). Clearing denominators in the parametrization yields three
polynomials

X(u, v)− xW (u, v), Y (u, v)− yW (u, v), Z(u, v)− zW (u, v) (24)

with total degrees d0, d1, d2.
Again, the first step is to determine an appropriate interpolation space Πl,m,n(x, y, z) such

that the Macaulay resultant R(x, y, z) for the polynomials (24) with respect to u and v is
included in Πl,m,n(x, y, z). By [13, Proposition 3] holds

l = degx(R(x, y, z)) ≤ d1d2,

m = degy(R(x, y, z)) ≤ d0d2,

n = degz(R(x, y, z)) ≤ d0d1.

Then the interpolation problem is solved for the interpolation nodes (xi, yj, zk) and the in-
terpolation data rijk, i = 0, . . . , l, j = 0, . . . ,m, k = 0, . . . , n in the interpolation space

3The Kronecker product B ⊗D is defined by blocks as (bklD), with B = (bkl).



20 B. Bastl, F. Ježek: Comparison of implicitization methods

Πl,m,n(x, y, z) to interpolate the resultant R(x, y, z). This leads to a system of linear equa-
tions

Ac = r (25)

where the coefficient matrix is given by the Kronecker product A = (Vx⊗Vy)⊗Vz, where Vx,
Vy and Vz are Vandermonde matrices, c is the column vector of unknown coefficients of the
implicit equation R(x, y, z), and r is the column vector containing the interpolation data.

Usually the interpolation nodes (xi, yj , zk) are chosen as grid points, that is, (xi, yj, zk) =
(i, j, k) for i = 0, . . . , l, j = 0, . . . ,m, k = 0, . . . , n. The interpolation data rijk correspond to
the values R(i, j, k) of the resultant at the grid points (i, j, k). That is, if M is the symbolic
Macaulay matrix (or any other resultant matrix) for the equations (24) with respect to u and v
and if Mijk is the matrix M where i, j, k are substituted for x, y, z, resp., then rijk = detMijk.

Again, the special structure of the coefficient matrix A is used for a fast solving of the
system (25). Since matrix A is a Kronecker product of matrices Vx, Vy and Vz, the procedure
of solving the system of linear equations with coefficient matrix A of order (l+1)(m+1)(n+1)
can be replaced by solving (n + 1) system with the coefficient matrix Vz followed by solving
(m + 1) systems with the coefficient matrix Vy and then (l + 1) systems with the coefficient
matrix Vx. Reader can find more details in [13].

2.4. Implicitization using direct method

This simple method for the conversion of rational parametric equations of curves and surfaces
into implicit equations has been presented recently in [19]. The method is based on solving a
system of linear algebraic equations for the coefficients of the implicit equation F of estimated
degree.

The method is formulated for rational surfaces but it works in the similar way for rational
curves. Let a rational surface be defined by (4). The main task is to determine a polynomial
F (x, y, z) such that

F (x, y, z) = F

(
X(u, v)

W (u, v)
,
Y (u, v)

W (u, v)
,
Z(u, v)

W (u, v)

)

≡ 0.

There are two possibilities how the degree of polynomial F can be estimated:
1. the total degree of the polynomial F ,

2. individual degrees of the polynomial F in x, y and z.
If the total degree n of F is given, then F can be set up in the form

F =
∑

i≥0,j≥0,k≥0
i+j+k≤n

aijkx
iyjzk with

∑

i≥0,j≥0,k≥0
i+j+k=n

a2ijk > 0 (26)

where the coefficients aijk are unknown and must be found. After substituting (4) into (26)
a rational expression

∑

i≥0,j≥0,k≥0
i+j+k≤n

aijk
X iY jZk

W iW jW k
=

g

h
= 0 (27)

is obtained. Since g has to vanish identically, the coefficients of all monomials uαvβ in g
must equal zero. Each such nonzero coefficient is linear in the variables aijk and represents
an equation of a system of linear algebraic equations whose nontrivial solution represents the
coefficients of an implicit equation F . The surface (4) has an implicit equation of degree



B. Bastl, F. Ježek: Comparison of implicitization methods 21

≤ n if and only if this linear system has a nontrivial solution for aijk, say āijk. The implicit
polynomial of the rational surface (4) is obtained as a nonconstant factor of F |aijk=āijk

only
in the variables x, y, z.

In case that the individual degrees of F in the variables x, y, z are used, F can be written
in the form

F =
nx∑

i=0

ny∑

j=0

nz∑

k=0

aijkx
iyjzk. (28)

For degree estimation the method described in Section 2.3 can be used. Then, the algorithm
of the direct method continues in the same way as for the polynomial F given by its total
degree. Reader can find more details in [19].

3. Application to NURBS curves

A NURBS curve of degree p is defined by

C(t) =

n∑

i=0

Ni,p(t)wiPi

n∑

i=0

Ni,p(t)wi

, a ≤ t ≤ b, (29)

where Pi are control points (forming a control polygon), wi are weights of control points and
Ni,p(t), i = 0, . . . , n, are the B-spline basis functions of degree p defined on a non-periodic
(and non-uniform) knot vector

T = {a, . . . , a
︸ ︷︷ ︸

p+1

, tp+1, . . . , tm−p−1, b, . . . , b
︸ ︷︷ ︸

p+1

}

by the recurrent formula

Ni,0(t) =

{
1 for ti ≤ t ≤ ti+1

0 otherwise

Ni,p(t) =
t− ti

ti+p − ti
Ni,p−1(t) +

ti+p+1 − t

ti+p+1 − ti+1

Ni+1,p−1(t).

Reader can find more details on NURBS curves in [14].

3.1. Examples and comparison of methods for curves

Now several testing examples will be presented: The implicitization methods described in
Section 2 will be used to solve the implicitization problem for several NURBS curves. All
implicitization methods were implemented by the authors in Matlab 6.5, including the
computation of the Dixon resultant, the Dixon dialytic resultant and the RSC method for
the extraction of the projection operator from the resultant matrix. Only Gröbner basis
computations are performed using external calls of the Computer Algebra System CoCoA

4.24 (see [15]). Almost all methods were also implemented by the authors in Mathematica

5.0, except the computation of the Dixon dialytic resultant (this implementation will be done
soon) and the implicitization where the Dixon resultant for the system of equations (2) and

4External calls of CoCoA are done by the Matlab command “!”



22 B. Bastl, F. Ježek: Comparison of implicitization methods

0 2 4 6 8 10 12
−2

−1

0

1

2

3

4

5

0 2 4 6 8 10 12
−2

0

2

4

6

8

10

Figure 1: NURBS curves for the Examples 1 (left) and 2 (right)

Matlab 6.5 Mathematica 5.0

Part 1 Part 2 Part 1 Part 2

Gröbner Basis 0.0788 0.0850 0.002 0.002

Dixon Resultant1 0.5388 0.5450 0.001 0.002

Dixon Resultant2 1.0225 1.0413 — —

Dixon Dialytic 0.8787 0.9038 — —

Interpolation 0.8063 0.8188 0.004 0.004

Moving Lines 0.2050 0.2050 0.001 0.001

Moving Conics 0.2737 0.2725 0.001 0.

Direct 0.1438 0.1437 0. 0.001

Table 1: Computational costs (in seconds) for Example 1

(3) is used. In Mathematica 5.0 the Gröbner basis is computed using the built-in function
GroebnerBasis. For both these mathematical software, the same algorithms were used for
each developed function.

The computational costs (in seconds, obtained by the function Cputime in Matlab

6.55 and by the function Timing in Mathematica 5.06) needed by each method for solving
the implicitization problem for each segment of NURBS curves in the Examples 1–4 are
summarized in the Tables 1–4. There are two rows denoted by “Dixon resultant” differing
only in superscript. “Dixon Resultant1” means that the Dixon resultant for the system
(2) with respect to t was computed to find the implicit equation of a given curve. “Dixon
Resultant2” means that the Dixon resultant for the system (2) together with the additional
equation (3) with respect to s and t was computed to find the implicit equation. The row
denoted by “Dixon Dialytic” means that the Dixon dialytic resultant for the system (2) with
respect to t was computed to find the implicit equation. Each time value in the tables was
acquired from 10 initiations of a corresponding program for implicitization. The smallest and
the biggest value were dropped and the average of other values is included in the table.

5Matlab 6.5 was running on AMD Athlon XP 2500+, 512MB RAM
6Mathematica 5.0 was running on Intel Pentium M 1.6GHz, 512 MB RAM (CPU speed similar to AMD

Athlon XP 2500+)



B. Bastl, F. Ježek: Comparison of implicitization methods 23

Matlab 6.5 Mathematica 5.0

Part 1 Part 2 Part 3 Part 1 Part 2 Part 3

Gröbner Basis 0.0950 0.1050 0.0975 0.004 0.004 0.004

Dixon Resultant1 1.1000 1.1525 1.1712 0.016 0.0151 0.014

Dixon Resultant2 2.3312 2.4250 2.4263 — — —

Dixon Dialytic 1.6688 1.7150 1.7213 — — —

Interpolation 1.7912
Wrong
result 1.8725

Wrong
result 1.8800

Wrong
result 0.01 0.01 0.09

Moving Lines 0.3088 0.3112 0.3163 0.002 0.002 0.002

Moving Conics 0.3700 0.3813 0.3812 0.003 0.004 0.003

Direct 0.2275 0.2350 0.2400 0.005 0.007 0.0051

Table 2: Computational costs (in seconds) for Example 2

Matlab 6.5 Mathematica 5.0

Part 1 Part 2 Part 1 Part 2

Gröbner Basis 0.3850 0.4150 0.007 0.007

Dixon Resultant1 2.0688 2.0987 0.0191 0.02

Dixon Resultant2 4.5425 4.6387 — —

Dixon Dialytic 2.0212 2.6913 — —

Interpolation 3.4650
Wrong
result 3.5200

Wrong
result 0.022 0.024

Moving Lines 0.4413 0.4450 0.002 0.003

Moving Conics 0.3825 0.3950 0.003 0.004

Direct 0.3675 0.3688 0.008 0.01

Table 3: Computational costs (in seconds) for Example 3

Example 1 A NURBS curve is given by 4 control points with corresponding weights [1, 2, 3, 1]
and by the knot vector T = {0, 0, 0, 1/2, 1, 1, 1} (see Fig. 1 (left)). The computational costs
needed for finding implicit equations of both parts of the NURBS curve are summarized in
Table 1. ¥

Example 2 A NURBS curve is given by 6 control points with the corresponding weights
[1, 3, 1, 5, 2, 1] and by the knot vector T = {0, 0, 0, 0, 1/3, 2/3, 1, 1, 1, 1} (see Fig. 1 (right)).
The different computational costs are summarized in Table 2. ¥

Example 3 A NURBS curve is given by 6 control points with corresponding weights [1, 2, 4, 6,
2, 1] and by the knot vector T = {0, 0, 0, 0, 0, 1/2, 1, 1, 1, 1, 1} (see Fig. 2 (left)). The compu-
tational costs are summarized in Table 3. ¥

Example 4 A NURBS curve is given by 8 control points with corresponding weights [1, 2, 6,
5, 8, 2, 4, 1] and by the knot vector T = {0, 0, 0, 0, 0, 0, 0, 1/2, 1, 1, 1, 1, 1, 1, 1} (see Fig. 2
(right)). The computational costs are summarized in Table 4. ¥



24 B. Bastl, F. Ježek: Comparison of implicitization methods

Matlab 6.5 Mathematica 5.0

Part 1 Part 2 Part 1 Part 2

Gröbner Basis 83 326 106 836 2.3394 2.8861

Dixon Resultant1 5.7363 5.7862 0.0771 0.078

Dixon Resultant2 13.7725 13.9913 — —

Dixon Dialytic 6.0575 6.2550 — —

Interpolation 9.7412
Wrong
result 9.9088

Wrong
result 0.0781 0.0791

Moving Lines 0.9200 1.0325 0.015 0.016

Moving Conics 0.6913 0.7675 0.013 0.015

Direct
Wrong
result

Wrong
result 0.1002 0.1352

Table 4: Computational costs (in seconds) for Example 4

0 5 10 15
−3

−2

−1

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16 18 20
−6

−4

−2

0

2

4

6

8

10

12

Figure 2: NURBS curves for the Examples 3 (left) and 4 (right)

Comparing the times used for implicitization methods in Matlab, we can see that the
method based on the usage of Gröbner bases is very fast but only for low degree parametriza-
tions. It is very hard to estimate in advance from a given parametrization whether the com-
putation of Gröbner basis will be very fast or very slow. For very similar parametrizations the
computational costs can be very different. That’s why Gröbner bases are not the best choice
to implicitize curves given by a rational parametrization. One of the reasons why Gröbner
bases are fast in some testing examples is that although all other methods were implemented
by authors in Matlab without using any special algorithms and programming techniques.
Gröbner bases are computed using the specialized computer algebra system CoCoA.

For low degree parametrizations, the direct method seems to be suitable. This sim-
ple method produces the implicit equation for simple parametrizations very fast. But for
parametrizations of higher degrees the computation cost increases faster than for other meth-
ods. An interesting problem concerning this method was also discovered: Although our imple-
mentation produces a correct implicit equation for parametrizations of all tested degrees (up
to 10) which was generated randomly (random coefficients of the polynomials of given degree
for rational parametrization), the method gives a wrong answer for rational parametrizations
of NURBS curves of degree 5 and higher, probably due to rounding errors.

As for the methods based on resultants, first of all it should be mentioned that all three
methods give the same implicit equation in all tested cases. So, it does not matter if we add



B. Bastl, F. Ježek: Comparison of implicitization methods 25

the additional equation (3) or not, actually it only increases the computation cost. In case
of curves, the Dixon resultant seems to be faster than the Dixon dialytic resultant, but in
comparison with other presented methods the resultants seems to be quite slow for low degree
parametrizations (only the interpolation method is slower). However, the computational
costs are less dependent on the degree of the parametrization than in some other methods
(mainly the direct method, the method based on Gröbner bases and the method based on
interpolation). Hence, the implicitization method based on resultants can be much faster for
high degree parametrization than these methods.

In our opinion, the worst implicitization method in Matlab (among methods presented
in this paper) is the interpolation method. This method is the slowest for all tested examples,
except the usage of the Dixon resultant for the system with the additional equation (3)
which is used very rarely (almost never) and is very slow for all types of parametrizations
independently on the degree of parametrization. A direct implementation of the algorithm in
Matlab also suffers from rounding errors because of huge intermediate numbers appearing
in the computation, and that’s why it yields a wrong answers to the implicitization problem.

On the other hand, the best implicitization methods are the methods of moving lines and
moving conics (generally the methods of moving curves). These methods are very fast for
low degree and also for high degree parametrizations. For low degree parametrizations the
method of moving conics is not so effective and the method of moving lines is a little bit
faster. The full strength of methods of moving conics occurs for high degree parametrizations
where this method is very fast, the fastest among all presented methods.

The main observation following from the computation of implicit representations of
NURBS curves in the Examples 1–4 in Mathematica is that Mathematica is incredibly
fast in comparison withMatlab. The computation costs for different implicitization methods
used in Mathematica are very similar, the differences are very small, but similarly to the
case of computation in Matlab as the fastest implicitization method seems to be method
of moving curves. The speed of the interpolation method is quite similar to the method
which uses the Dixon resultant, sometimes the interpolation method is faster, sometimes
not. The problem concerning the interpolation method in Matlab — a wrong answer of
the algorithm because of rounding errors — was removed in Mathematica. The direct
method for curves is also very fast in Mathematica, in all examples even faster than the
interpolation method or the method which uses the Dixon resultant. For the direct method,
the problem with Example 4 in Matlab where the method returned a completely wrong
answer also disappeared in Mathematica.

Quite interesting are computation costs for the implicitization method based on Gröbner
bases. For low degree parametrizations, the method is very fast (as in Matlab (CoCoA)),
but in Mathematica the implicit representation of NURBS curve from Example 4 can also
be found in a very short time (compare the computation time needed by Mathematica to
obtain the implicit representation with that needed by Matlab (CoCoA)).

We also tested examples with floating point numbers in coordinates and weights of control
points, not only with integers. In such a case the floating point numbers are approximated by
rational expressions and we obtain very similar computational costs as for integer coefficients
(since it is necessary to do this approximation only once, at the start of the algorithm, to
rationalize given parametrization). Of course, the computations are a little bit slower (but
similarly in both mathematical software), but it is probably caused by computations with
more complicated fractions. Thus, we decided not to study this situation in more detail.



26 B. Bastl, F. Ježek: Comparison of implicitization methods

4. Application to NURBS surfaces

A NURBS surface of degree p in u and degree q in v is defined by

S(u, v) =

m∑

i=0

n∑

j=0

Ni,p(u)Nj,q(v)wi,jPi,j

m∑

i=0

n∑

j=0

Ni,p(u)Nj,q(v)wi,j

, 0 ≤ u, v ≤ 1, (30)

where Pi,j are control points (forming a control net), wi,j are weights of control points and
Ni,p(u), i = 0, . . . , ,m, and Nj,q(v), j = 0, . . . , n, are the B-spline basis functions defined on
non-periodic (and non-uniform) knot vectors

U = {0, . . . , 0
︸ ︷︷ ︸

p+1

, up+1, . . . , ur−p−1, 1, . . . , 1
︸ ︷︷ ︸

p+1

}, V = {0, . . . , 0
︸ ︷︷ ︸

q+1

, vq+1, . . . , vs−q−1, 1, . . . , 1
︸ ︷︷ ︸

q+1

}

by the same recurrent formula as in the case of NURBS curves. Reader can find more details
on NURBS surfaces in [14].

4.1. Examples and comparison of methods for surfaces

As in the case of curves, several testing examples will be presented now. The implicitization
methods described in Section 2 can also be used to find an implicit equation of a rational
surface, and all these methods were implemented by the authors for the case of surfaces also
in Matlab 6.5. Similarly to the case of curves, almost all methods (except the method
which uses the Dixon dialytic resultant and the method which uses the Dixon resultant for
the system of equations (5) and (6)) were implemented by the authors also in Mathematica

5.0.

The computation cost (in seconds, obtained by the function Cputime in Matlab 6.57

and by the function Timing in Mathematica 5.08) needed by each method to solve the
implicitization problem for each segment of the NURBS surfaces in the Examples 5–6 are
summarized in Tables 5–6. There are two rows denoted by “Dixon resultant” differing only in
superscript. “Dixon Resultant1” means that the Dixon resultant for the system of equations
(5) with respect to u and v was computed to find an implicit equation of the given surface.
“Dixon Resultant2” means that the Dixon resultant for the system (5) together with the
additional equation (6) with respect to s, u and v was computed to find the implicit equation.
The row denoted by “Dixon Dialytic” means that the Dixon dialytic resultant for the system
(5) with respect to u and v was computed to find an implicit equation. Each time value in
the table was acquired from several initiations of a corresponding program for implicitization.

Example 5 A NURBS surface is given by a control net (4× 3 points) with all weights equal
to 1 and by the knot vectors U = {0, 0, 0, 1/2, 1, 1, 1}, V = {0, 0, 0, 1, 1, 1} (see Fig. 3 (left)).
Computational costs needed for finding implicit equations of all parts of the NURBS surface
are summarized in Table 5. ¥

7Matlab 6.5 was running on AMD Athlon XP 2500+, 512MB RAM
8Mathematica 5.0 was running on Intel Pentium M 1.6GHz, 512 MB RAM (CPU speed similar to AMD

Athlon XP 2500+)



B. Bastl, F. Ježek: Comparison of implicitization methods 27

0

2

4

6

8

0

2

4

6

8

10
−4

−3

−2

−1

0

1

2

3

4

0
1

2
3

4
5

6

0

2

4

6

8
−2

−1

0

1

2

3

Figure 3: NURBS curves for Examples 5 (left) and 6 (right)

Matlab 6.5 Mathematica 5.0

Patch 1 Patch 2 Patch 1 Patch 2

Gröbner Basis 0.0867 0.0933 0.00333 0.00667

Dixon Resultant1 19.5233 18.4467 0.03333 0.03333

Dixon Resultant2 19.6300 18.4967 — —

Dixon Dialytic 3.0000 3.1033 — —

Interpolation 1364.8333
Wrong
result

Integer too large
in context 0.08333 0.08667

Moving Planes 4.5133 3.1100 0.10033 0.097

Moving Quadrics 6.1833 30.1233 0.26367 0.27633

Direct 375.0633 5898.77 16.417 18.0993

Table 5: Computational costs (in seconds) for Example 5

Matlab 6.5 Mathematica 5.0

Patch 1 Patch 2 Patch 1 Patch 2

Gröbner Basis
More than
24 hours

More than
24 hours

Abnormal program
termination

Abnormal program
termination

Dixon Resultant1 1713.9 1743.87 0.985 0.95467

Dixon Resultant2 1720.3 1748.13 — —

Dixon Dialytic 10.3633 10.3367 — —

Interpolation Out of memory Out of memory 1.699 1.67233

Moving Planes 46.32 161.243 0.80433 0.79767

Moving Quadrics 2025.3
Integer too large

in context 945.156 950.146

Direct 18056 19309 1266.86 1353.85

Table 6: Computational costs (in seconds) for Example 6



28 B. Bastl, F. Ježek: Comparison of implicitization methods

Example 6 A NURBS surface is given by a control net (5× 4 points) with all weights equal
to 1 and by the knot vectors U = {0, 0, 0, 0, 1/2, 1, 1, 1, 1}, V = {0, 0, 0, 0, 1, 1, 1, 1} (see Fig. 3
(right)). Computational costs needed for finding implicit equations of all parts of the NURBS
surface are summarized in Table 6. ¥

From Tables 5–6 it is obvious that the conclusion about the implicitization methods for
surfaces will be similar to the case of curves. In case that Matlab 6.5 was used, the method
based on a Gröbner bases is again fast for low degree parametrizations but has significant
problems with the bicubic patches in Example 6 where the computation of a Gröbner basis
using CoCoA does not end even after 24 hours. The method which uses the Dixon resultant
gives results in both examples but the computations last quite long. It is interesting that
the computational costs are very similar independently on the used system of equations for
the Dixon resultant computation (with or without the additional equation (6)). The method
which uses the Dixon dialytic resultant seems to be very fast for surfaces — this method
is surprisingly the fastest of all implicitization methods used for surfaces. As in the case
of curves, the method of moving surfaces is fast. For the low degree surfaces the method
of moving planes is faster than the method of moving quadrics which would be probably
faster for surfaces of higher degree. The biggest problems arose again with the interpolation
method (in Matlab). The function F (x, y, z) returned by the interpolation method does not
represent in most cases the implicit equation of the given patch. The reason lies in rounding
errors because the method is very sensitive to rounding errors. Sometimes the method does
not return anything because Matlab crashes after several hours of computation with the
“Out of memory” error message.

Mathematica 5.0 is — as in the case of curves — much faster than Matlab 6.5 for
the implicitization of surfaces. A problem appears only when the implicitization using a
Gröbner basis is applied to Example 6. After several hours of computation, Mathematica

always crashes with “Runtime error: Abnormal program termination” error message. Thus,
Mathematica is not able to find the Gröbner basis in this case. The direct method is much
slower than all other methods in both examples. Thus, the direct method is more suitable for
curves than for surfaces. The method of moving quadrics is not so fast for these low degree
surfaces and has a considerable problem to implicitize the NURBS surface given in Example 6.
The rest of the methods — method based on the Dixon resultant, method of moving planes
and interpolation method — are very fast in both examples. For surfaces of higher degree it
seems that the method of moving planes will be faster than other methods. Surprisingly, the
interpolation method is very fast in Mathematica providing a correct implicit equation in
both examples (no problems with rounding errors as in Matlab).

The main conclusion of this comparison is that the fastest implicitization method is the
method of moving curves and surfaces.

Acknowledgements

Both authors were supported by the Research Plan MSM 4977751301. This support has been
highly appreciated.



B. Bastl, F. Ježek: Comparison of implicitization methods 29

References

[1] C. Alonso, J. Gutierrez, T. Recio: An Implicitization Algorithm with Fewer Vari-
ables. Comput.-Aided Geom. Design 12, 3, 251–258 (1995).

[2] B. Bastl: Symbolic manipulation in geometric modeling. Dissertation. Dept. of Math-
ematics, Fac. of Applied Sciences, Univ. of West Bohemia, Pilsen 2004.

[3] T. Becker, V. Weispfenning: Gröbner bases — A Computational Approach to Com-
mutative Algebra. Graduate Texts in Mathematics, Springer-Verlag, New York 1993.

[4] D. Cox, J. Little, D. O’Shea: Ideals, Varieties, and Algorithms. Undergraduate
Texts in Mathematics, Springer-Verlag, New York 1992.

[5] E. Chionh, M. Zhang, R. Goldman: Implicitization Matrices in the Style of Sylvester
with the Order of Bezout. Proceedings of Curve & Surface Design: Internat. Conference
Saint-Malo, 17–26, 2000.

[6] E. Chionh, M. Zhang, R. Goldman: Efficient Implicitization of Rational Surfaces
by Moving Planes. Proceedings of ASCM 2000, 142–151, 2000.

[7] A.-D. Chtcherba: A new Sylvester-type Resultant Method based on the Dixon-Bézout
Formulation. Dissertation, Dept. of Computer Science, Univ. of New Mexico, 2003.

[8] D. Kapur, T. Saxena, L. Yang: Algebraic and Geometric Reasoning Using Dixon
Resultants. Proceedings Internat. Symposium on Symbolic and Algebraic Computation
1994 (ISSAC ’94), Oxford, United Kingdom, 99–107, 1994.

[9] D. Kapur, T. Saxena: Comparison of Various Multivariate Resultant Formulations.
Proc. Internat. Symposium on Symbolic and Algebraic Computation 1995 (ISSAC ’95),
Montreal, Canada, 187–194, 1995.

[10] D. Manocha, F. Canny: Implicit Representation of Rational Parametric Surfaces. J.
Symbolic Computation 13, 5, 485–510, Academic Press, 1992.

[11] D. Manocha, F. Canny: Algorithm for Implicitizing Rational Parametric Surfaces.
Comput.-Aided Geom. Design 9, 1, 25–51 (1992).

[12] A. Marco, J.J. Mart́inez: Using Polynomial Interpolation for Implicitizing Algebraic
Curves. Comput.-Aided Geom. Design 18, 4, 309–319 (2001).

[13] A. Marco, J.J. Mart́inez: Implicitization of Rational Surfaces by Means of Polyno-
mial Interpolation. Comput.-Aided Geom. Design 19, 5, 327–344 (2002).

[14] L. Piegl, W. Tiller: The NURBS Book. Monographs in Visual Communications.
Springer, Berlin 1997.

[15] L. Robbiano: CoCoA System [computer programm]. Vers. 4.2 for Windows, Italy,
2002, [cited 2003-04-15]. Available on <http://cocoa.dima.unige.it>. Computer Algebra
System. Freeware.

[16] T. Saxena: Efficient Variable Elimination using Resultants. Doctoral Thesis, Dept. of
Computer Science, State Univ. of New York at Albany, 1996.

[17] T. Sederberg, F. Chen: Implicitization using Moving Curves and Surfaces. Computer
Graphics Proc., Annual Conference Series, 301–308, ACM SIGGRAPH 1995.

[18] T. Sederberg, R. Goldman, H. Du: Implicitizing Rational Curves by the Method of
Moving Algebraic Curves. J. Symbolic Computation 23, 2-3, 153–175 (1997).

[19] D. Wang: A simple method for implicitizing rational curves and surfaces. J. Symbolic
Computation 38, 1, 899–914 (2004).

Received February 4, 2005; final form June 1, 2005


