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Abstract. The hyperplanes through the centroids of the (n − 2)-dimensional
faces of an n-simplex and perpendicular to the respectively opposite 1-dimensional
edges have a point in common. As a consequence, we define an analogue of the
nine-point circle for any n-simplex.
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1. Introduction

The theorem about the nine-point circle (also called the Feuerbach circle) can be generalized
to the n-dimensional Euclidean space En. In [2] some properties connected with this theorem
and the Euler line of orthocentric n-simplexes are given. Here we prove some of these theorems
for the general case. For our consideration we will use the equation fulfilled on the Euler line
of an orthocentric n-simplex Θort, namely HnGn : GnOn = 2 : (n − 1), n ≥ 2, where Hn is
the orthocenter, Gn the centroid and On the circumcenter of Θort .

2. Quasi-medians and medians

Let Θ be a given, nondegenerate n-simplex, with the vertices A1, . . . , An+1 in En. For i = 1
to n+1 the symbol Θi denotes the hyperplane A1 . . . Ai−1Ai+1 . . . An+1 and, at the same time,
the corresponding (n− 1)-dimensional face of Θ (which is opposite to the vertex Ai). Let G

n

be the centroid of Θ and Gn−1
i be the centroid of the face Θi, i = 1, . . . , n+ 1.

Definition 1 A line joining the centroid of any (n − 2)-dimensional face of an n-simplex Θ
with the midpoint of the opposite 1-dimensional edge of Θ will be called a quasi-median

of the n-simplex Θ. An n-simplex has
(

n+1

2

)

quasi-medians (a tetrahedron has only three
quasi-medians because the opposite edges of it are both 1-dimensional).
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For our next consideration we show the following

Lemma 1 The quasi-medians of Θ are concurrent at the centroid of Θ and intersect each
other at the ratio 2 : (n− 1).

Proof: Without loss of generality, let us examine the face Θn and Θn+1 of Θ. Let Gn−2
1..n−1

be the centroid of the (n − 2)-dimensional subspace A1 . . . An of Θn+1. The median of Θn+1

passing through this point is AnG
n−2
1..n−1. Obviously, the centroid G

n−1
n+1 of Θn+1 belongs to this

median. The median of Θ from the vertex An+1 meets Θn+1 at the point G
n−1
n+1 and G

n belongs
to An+1G

n−1
n+1. Similarly, for the face Θn the line An+1G

n−2
1..n−1 is the median of Θn and the

centroid Gn−1
n of Θn belongs to An+1G

n−1
1..n . But the median of Θ from the vertex An meets

Θn in Gn−1
n and Gn belongs to this line (Fig. 1). Let Bnn+1 = GnGn−2

1..n−1 ∩ AnAn+1.

Figure 1: Bnn+1G
n−2
1..n−1 is a quasi-median

Thus, using the Area Principle (see [4]), we get

Bnn+1G
n : Bnn+1G

n−2
1..n−1 = Bnn+1G

n : (Bnn+1G
n +GnGn−2

1..n−1) = (n− 1) : (n+ 1)

and
AnBnn+1 : Bnn+1An+1 = 1.

Thus
GnGn−2

1..n−1 : Bnn+1G
n = 2 : (n− 1).

Therefore the line Bnn+1G
n−2
1..n−1 must be the quasi-median joining the centroid of the subspace

A1 . . . An−1 and the mid-point of AnAn+1. Conducting the same observations for all faces of Θ
we get the proposition.

We conclude this section by noting a simple lemma (the proof is by induction applying
the Stewart theorem).

Lemma 2 Let aij denote the length of the 1-dimensional edge of Θ joining the vertices Ai

and Aj, and mi the length of the median of Θ from the vertex Ai (i, j = 1, . . . , n+ 1, i 6= j).
Then

(mk)
2 =

1

n

∑

i = 1, . . . , n;

i 6= k

(aik)
2 −

1

n2

∑

i = 1, . . . , n;

j = i + 1; i, j 6= k

(aij)
2 with n+ 2 ≡ 1 (mod n+ 1)

where k = 1, . . . , n+ 1.
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3. The Monge point and the Euler line of an n-simplex

Definition 2 A hyperplane through the mid-point of a given segment and perpendicular to
that segment will be called the mediator of the segment.

Now we may prove the generalization of the Monge theorem for the n-dimensional space
En (for the 3-dimensional case see [1] and [3]).

Theorem 3 The hyperplanes through the centroids of the (n − 2)-dimensional faces of an
n-simplex Θ and perpendicular to the 1-dimensional edges respectively opposite have a point
in common.

Proof: Let αnn+1 be the mediator of the segment AnAn+1 and α′nn+1 be the hyperplane
through the centroidGn−2

1..n of the (n−2)-dimensional face A1 . . . An−1 perpendicular to AnAn+1

(i.e. parallel to αnn+1). The quasi-median between AnAn+1 and Gn−2
1..n (containing Gn) joins

two points in these two hyperplanes, and these two hyperplanes are parallel, hence the seg-
ment intercepted by these hyperplanes on any line passing through the centroid Gn will be
intersected by Gn at the ratio 2 : (n−1). Now the hyperplane αnn+1 contains the circumcenter
On of Θ, hence α′nn+1 meets the line OnGn in a point Mn such that

GnMn : GnOn = 2 : (n− 1).

But the points On and Gn are independent of the particular edge AiAj considered, hence the
proposition holds true.

Definition 3 The hyperplanes perpendicular to the 1-dimensional edges of an n-simplex Θ
and passing through the centroids of the respective opposite (n − 2)-dimensional faces are
called the Monge hyperplanes of Θ. The point common to these hyperplanes is the Monge

point of the n-simplex Θ.

Remark In the Euclidean plane E2 this theorem is also true: the Monge point is the ortho-
center and the quasi-medians are the medians of a triangle.

Definition 4 The line joining the centroid and the circumcenter of an n-simplex (and con-
taining the Monge point) will be referred to as the Euler line of the n-simplex.

An immediate consequence from the above and [2] is

Corollary 4 In an orthocentric n-simplex Θ the Monge point coincides with the orthocenter
of Θ.

Corollary 5 The Monge point of Θ belongs to the Euler line and

MnGn : GnOn = 2 : (n− 1), n ≥ 2.

The second theorem related to the Monge point of the n-simplex is the Mannheim theorem
(see also [3]):

Theorem 6 The 2-dimensional planes determined by the n+ 1 altitudes of an n-simplex Θ
and the Monge points of the corresponding faces pass through the Monge point of Θ.
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Proof: We consider the face Θn+1 and the vertex An+1 of Θ. Let Hn+1 be the foot of the
altitude from An+1 and G

′ the projection of the centroid Gn of Θ upon Θn+1. Then G
′ belongs

to Hn+1G
n−1
n+1. Using the Area Principle we have Hn+1G

′ : Hn+1G
n−1
n+1 = n : (n+ 1). Let On−1

n+1

be the circumcenter andMn−1
n+1 the Monge point of the face Θn+1. Therefore, using Corollary 2

and some properties of the Euler line (see [2]) we get (Fig. 2)

Mn−1
n+1G

n−1
n+1 : G

n−1
n+1O

n−1
n+1 = 2 : (n− 2) and Mn−1

n+1G
n−1
n+1 :M

n−1
n+1O

n−1
n+1 = 2 : n.

The lines Mn−1
n+1O

n−1
n+1G

n−1
n+1 and Hn+1G

′ intersect in Gn−1
n+1; so there exists a common point of

Mn−1
n+1Hn+1 and G

′On−1
n+1, say C. The Menelaus theorem for the triangle G′Gn−1

n+1O
n−1
n+1 and the

line Hn+1CM
n−1
n+1 states that

(Hn+1G
′ : Hn+1G

n−1
n+1) · (M

n−1
n+1G

n−1
n+1 :M

n−1
n+1O

n−1
n+1) · (O

n−1
n+1C : CG′) = 1.

Hence CG′ : On−1
n+1C = 2 : (n+1). The point On−1

n+1 is the projection of the circumcenterOn and

Figure 2: The 2-plane An+1Hn+1M
n−1
n+1 passes through the Monge point Mn

G′ the projection of the centroid upon Θn+1, hence the perpendicular at C to Θn+1 will meet
the Euler line of Θ in a point Mn such that MnGn :MnOn = 2 : (n+1). Therefore Mn must
be the Monge point of the n-simplex Θ. But CMn lies in the plane An+1Hn+1M

n−1
n+1 (An+1Hn+1

and CMn are perpendicular to Θn+1 and there exists only one direction perpendicular to the
hyperplane so they are parallel), hence this plane passes through Mn, the Monge point of the
n-simplex. Conducting the same observations for the others points Ai (i = 1, . . . , n) we get
our result.

4. The 3(n+1) point sphere related to an n-simplex

Now we introduce the analogue of the nine-point circle for any n-simplex (see [1] and [3] for
a tetrahedron and [2] for an orthocentric n-simplex): Let S ′ be the sphere determined by
the n + 1 centroids of the faces of Θ. From [2] we have that S ′ is the homothetic of the
circumsphere S of Θ with respect to the centroid Gn of Θ, the homothetic ratio being −1 : n.
Hence the center O′ of S ′ lies on the Euler line GnOn of Θ and GnO′ : GnOn = 1 : n. S ′ is
called the 3(n+ 1) point sphere.
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Figure 3: The 3(n+ 1) point sphere with center O′ passes through A′n+1

We consider the face Θn+1 of Θ (Fig. 3).MnO′GnOn is the Euler line and An+1G
n−1
n+1 the

median of Θ. Therefore GnO′ : O′Mn = (n−1) : (n+1) and An+1G
n−1
n+1 : G

n−1
n+1G

n = (n+1) : 1
(see [2]). Let A′n+1 be the common point of the lines An+1M

n andGn−1
n+1O

′. Applying Menelaus’
theorem to the triangle MnAn+1G

n and the transversal A′n+1O
′ we have

(MnA′n+1 : A
′
n+1An+1) · (G

nO′ : O′nMn) · (An+1G
n−1
n+1 : G

n−1
n+1G

n) = 1.

Hence
MnA′n+1 : A

′
n+1An+1 = 1 : (n− 1)

and
MnA′n+1 :M

nAn+1 =MnA′n+1 : (M
nA′n+1 + A′n+1An+1) = 1 : n.

On the other hand, by applying Menelaus’ theorem to the triangle An+1A
′
n+1G

n−1
n+1 and the

transversal MnO′Gn we obtain

(An+1G
n : GnGn−1

n+1) · (M
nA′n+1 : A

′
n+1An+1) · (O

′Gn−1
n+1 : A

′
n+1O

′) = 1.

And finally
A′n+1O

′ : O′Gn−1
n+1 = 1.

Thus the sphere S ′ passes through the point A′n+1 such that MnA′n+1 : MnAn+1 = 1 : n,
and through the n analogous points A′i, respectively relative to the vertices Ai, i = 1, . . . , n.
Moreover, the point A′i and the centroid Gn−1

i of the face Θi are diametrically opposite on
the sphere S ′ (i = 1, . . . , n + 1). Therefore S ′ passes through the projection A′′i of A′i upon
Θi, i = 1, . . . , n + 1. Thus we have 3(n + 1) points on S ′, which justifies the name given to
this sphere.
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