Journal for Geometry and Graphics Volume 9 (2005), No. 1, 31–36.

The Monge Point and the 3(n+1) Point Sphere of an n-Simplex

Małgorzata Buba-Brzozowa

Department of Mathematics and Information Sciences, Warsaw University of Technology Pl. Politechniki 1, PL 00-661 Warsaw, Poland email: buba@mini.pw.edu.pl

Abstract. The hyperplanes through the centroids of the (n-2)-dimensional faces of an *n*-simplex and perpendicular to the respectively opposite 1-dimensional edges have a point in common. As a consequence, we define an analogue of the nine-point circle for any *n*-simplex.

Key words: nine-point circle, Feuerbach circle, Monge point, Euler line, 3(n + 1) point sphere, *n*-simplex, Menelaus theorem, Manheim theorem, Stewart theorem. MSC 2000: 51M04

1. Introduction

The theorem about the nine-point circle (also called the Feuerbach circle) can be generalized to the *n*-dimensional Euclidean space E^n . In [2] some properties connected with this theorem and the Euler line of orthocentric *n*-simplexes are given. Here we prove some of these theorems for the general case. For our consideration we will use the equation fulfilled on the Euler line of an orthocentric *n*-simplex Θ_{ort} , namely $H^nG^n : G^nO^n = 2 : (n-1), n \ge 2$, where H^n is the orthocenter, G^n the centroid and O^n the circumcenter of Θ_{ort} .

2. Quasi-medians and medians

Let Θ be a given, nondegenerate *n*-simplex, with the vertices A_1, \ldots, A_{n+1} in E^n . For i = 1 to n+1 the symbol Θ_i denotes the hyperplane $A_1 \ldots A_{i-1}A_{i+1} \ldots A_{n+1}$ and, at the same time, the corresponding (n-1)-dimensional face of Θ (which is opposite to the vertex A_i). Let G^n be the centroid of Θ and G_i^{n-1} be the centroid of the face Θ_i , $i = 1, \ldots, n+1$.

Definition 1 A line joining the centroid of any (n-2)-dimensional face of an *n*-simplex Θ with the midpoint of the opposite 1-dimensional edge of Θ will be called a *quasi-median* of the *n*-simplex Θ . An *n*-simplex has $\binom{n+1}{2}$ quasi-medians (a tetrahedron has only three quasi-medians because the opposite edges of it are both 1-dimensional).

ISSN 1433-8157/\$ 2.50 \bigodot 2005 Heldermann Verlag

For our next consideration we show the following

Lemma 1 The quasi-medians of Θ are concurrent at the centroid of Θ and intersect each other at the ratio 2 : (n-1).

Proof: Without loss of generality, let us examine the face Θ_n and Θ_{n+1} of Θ . Let $G_{1..n-1}^{n-2}$ be the centroid of the (n-2)-dimensional subspace $A_1 \ldots A_n$ of Θ_{n+1} . The median of Θ_{n+1} passing through this point is $A_n G_{1..n-1}^{n-2}$. Obviously, the centroid G_{n+1}^{n-1} of Θ_{n+1} belongs to this median. The median of Θ from the vertex A_{n+1} meets Θ_{n+1} at the point G_{n+1}^{n-1} and G^n belongs to $A_{n+1}G_{n+1}^{n-1}$. Similarly, for the face Θ_n the line $A_{n+1}G_{1..n-1}^{n-2}$ is the median of Θ_n and the centroid G_n^{n-1} of Θ_n belongs to $A_{n+1}G_{1..n}^{n-1}$. But the median of Θ from the vertex A_n meets Θ_n in G_n^{n-1} and G^n belongs to this line (Fig. 1). Let $B_{nn+1} = G^n G_{1..n-1}^{n-2} \cap A_n A_{n+1}$.

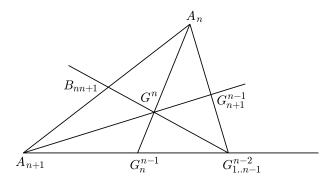


Figure 1: $B_{nn+1}G_{1..n-1}^{n-2}$ is a quasi-median

Thus, using the Area Principle (see [4]), we get

$$B_{nn+1}G^n : B_{nn+1}G_{1..n-1}^{n-2} = B_{nn+1}G^n : (B_{nn+1}G^n + G^nG_{1..n-1}^{n-2}) = (n-1) : (n+1)$$

and

$$A_n B_{nn+1} : B_{nn+1} A_{n+1} = 1.$$

Thus

$$G^{n}G_{1..n-1}^{n-2}: B_{nn+1}G^{n} = 2: (n-1)$$

Therefore the line $B_{nn+1}G_{1..n-1}^{n-2}$ must be the quasi-median joining the centroid of the subspace $A_1 \ldots A_{n-1}$ and the mid-point of $A_n A_{n+1}$. Conducting the same observations for all faces of Θ we get the proposition.

We conclude this section by noting a simple lemma (the proof is by induction applying the Stewart theorem).

Lemma 2 Let a_{ij} denote the length of the 1-dimensional edge of Θ joining the vertices A_i and A_j , and m_i the length of the median of Θ from the vertex A_i $(i, j = 1, ..., n + 1, i \neq j)$. Then

$$(m_k)^2 = \frac{1}{n} \sum_{\substack{i=1,\dots,n;\\i \neq k}} (a_{ik})^2 - \frac{1}{n^2} \sum_{\substack{i=1,\dots,n;\\j=i+1;\ i,j \neq k}} (a_{ij})^2 \quad \text{with} \ n+2 \equiv 1 \pmod{n+1}$$

where k = 1, ..., n + 1.

3. The Monge point and the Euler line of an n-simplex

Definition 2 A hyperplane through the mid-point of a given segment and perpendicular to that segment will be called the *mediator* of the segment.

Now we may prove the generalization of the Monge theorem for the *n*-dimensional space E^n (for the 3-dimensional case see [1] and [3]).

Theorem 3 The hyperplanes through the centroids of the (n-2)-dimensional faces of an *n*-simplex Θ and perpendicular to the 1-dimensional edges respectively opposite have a point in common.

Proof: Let α_{nn+1} be the mediator of the segment A_nA_{n+1} and α'_{nn+1} be the hyperplane through the centroid $G_{1..n}^{n-2}$ of the (n-2)-dimensional face $A_1 \ldots A_{n-1}$ perpendicular to A_nA_{n+1} (i.e. parallel to α_{nn+1}). The quasi-median between A_nA_{n+1} and $G_{1..n}^{n-2}$ (containing G^n) joins two points in these two hyperplanes, and these two hyperplanes are parallel, hence the segment intercepted by these hyperplanes on any line passing through the centroid G^n will be intersected by G^n at the ratio 2: (n-1). Now the hyperplane α_{nn+1} contains the circumcenter O^n of Θ , hence α'_{nn+1} meets the line O^nG^n in a point M^n such that

$$G^{n}M^{n}: G^{n}O^{n} = 2: (n-1).$$

But the points O^n and G^n are independent of the particular edge $A_i A_j$ considered, hence the proposition holds true.

Definition 3 The hyperplanes perpendicular to the 1-dimensional edges of an *n*-simplex Θ and passing through the centroids of the respective opposite (n-2)-dimensional faces are called the *Monge hyperplanes* of Θ . The point common to these hyperplanes is the *Monge point* of the *n*-simplex Θ .

Remark In the Euclidean plane E^2 this theorem is also true: the Monge point is the orthocenter and the quasi-medians are the medians of a triangle.

Definition 4 The line joining the centroid and the circumcenter of an *n*-simplex (and containing the Monge point) will be referred to as the *Euler line* of the *n*-simplex.

An immediate consequence from the above and [2] is

Corollary 4 In an orthocentric *n*-simplex Θ the Monge point coincides with the orthocenter of Θ .

Corollary 5 The Monge point of Θ belongs to the Euler line and

$$M^{n}G^{n}: G^{n}O^{n} = 2: (n-1), \quad n \ge 2.$$

The second theorem related to the Monge point of the n-simplex is the Mannheim theorem (see also [3]):

Theorem 6 The 2-dimensional planes determined by the n + 1 altitudes of an *n*-simplex Θ and the Monge points of the corresponding faces pass through the Monge point of Θ .

Proof: We consider the face Θ_{n+1} and the vertex A_{n+1} of Θ . Let H_{n+1} be the foot of the altitude from A_{n+1} and G' the projection of the centroid G^n of Θ upon Θ_{n+1} . Then G' belongs to $H_{n+1}G_{n+1}^{n-1}$. Using the Area Principle we have $H_{n+1}G': H_{n+1}G_{n+1}^{n-1} = n: (n+1)$. Let O_{n+1}^{n-1} be the circumcenter and M_{n+1}^{n-1} the Monge point of the face Θ_{n+1} . Therefore, using Corollary 2 and some properties of the Euler line (see [2]) we get (Fig. 2)

$$M_{n+1}^{n-1}G_{n+1}^{n-1}:G_{n+1}^{n-1}O_{n+1}^{n-1} = 2:(n-2) \text{ and } M_{n+1}^{n-1}G_{n+1}^{n-1}:M_{n+1}^{n-1}O_{n+1}^{n-1} = 2:n$$

The lines $M_{n+1}^{n-1}O_{n+1}^{n-1}G_{n+1}^{n-1}$ and $H_{n+1}G'$ intersect in G_{n+1}^{n-1} ; so there exists a common point of $M_{n+1}^{n-1}H_{n+1}$ and $G'O_{n+1}^{n-1}$, say C. The Menelaus theorem for the triangle $G'G_{n+1}^{n-1}O_{n+1}^{n-1}$ and the line $H_{n+1}CM_{n+1}^{n-1}$ states that

$$(H_{n+1}G':H_{n+1}G_{n+1}^{n-1})\cdot(M_{n+1}^{n-1}G_{n+1}^{n-1}:M_{n+1}^{n-1}O_{n+1}^{n-1})\cdot(O_{n+1}^{n-1}C:CG')=1.$$

Hence $CG': O_{n+1}^{n-1}C = 2: (n+1)$. The point O_{n+1}^{n-1} is the projection of the circumcenter O^n and

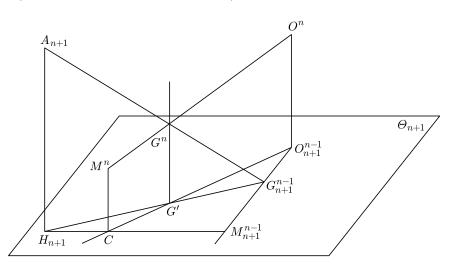


Figure 2: The 2-plane $A_{n+1}H_{n+1}M_{n+1}^{n-1}$ passes through the Monge point M^n

G' the projection of the centroid upon Θ_{n+1} , hence the perpendicular at C to Θ_{n+1} will meet the Euler line of Θ in a point M^n such that $M^n G^n : M^n O^n = 2 : (n+1)$. Therefore M^n must be the Monge point of the *n*-simplex Θ . But CM^n lies in the plane $A_{n+1}H_{n+1}M_{n+1}^{n-1}$ ($A_{n+1}H_{n+1}$ and CM^n are perpendicular to Θ_{n+1} and there exists only one direction perpendicular to the hyperplane so they are parallel), hence this plane passes through M^n , the Monge point of the *n*-simplex. Conducting the same observations for the others points A_i ($i = 1, \ldots, n$) we get our result.

4. The 3(n+1) point sphere related to an n-simplex

Now we introduce the analogue of the nine-point circle for any *n*-simplex (see [1] and [3] for a tetrahedron and [2] for an orthocentric *n*-simplex): Let S' be the sphere determined by the n + 1 centroids of the faces of Θ . From [2] we have that S' is the homothetic of the circumsphere S of Θ with respect to the centroid G^n of Θ , the homothetic ratio being -1 : n. Hence the center O' of S' lies on the Euler line G^nO^n of Θ and $G^nO': G^nO^n = 1 : n$. S' is called the 3(n + 1) point sphere.



Figure 3: The 3(n+1) point sphere with center O' passes through A'_{n+1}

We consider the face Θ_{n+1} of Θ (Fig. 3). $M^n O' G^n O^n$ is the Euler line and $A_{n+1} G_{n+1}^{n-1}$ the median of Θ . Therefore $G^n O' : O' M^n = (n-1) : (n+1)$ and $A_{n+1} G_{n+1}^{n-1} : G_{n+1}^{n-1} G^n = (n+1) : 1$ (see [2]). Let A'_{n+1} be the common point of the lines $A_{n+1} M^n$ and $G_{n+1}^{n-1} O'$. Applying Menelaus' theorem to the triangle $M^n A_{n+1} G^n$ and the transversal $A'_{n+1} O'$ we have

$$(M^{n}A'_{n+1}:A'_{n+1}A_{n+1})\cdot(G^{n}O':O'^{n}M^{n})\cdot(A_{n+1}G^{n-1}_{n+1}:G^{n-1}_{n+1}G^{n})=1.$$

Hence

$$M^{n}A'_{n+1}: A'_{n+1}A_{n+1} = 1: (n-1)$$

and

$$M^{n}A'_{n+1}: M^{n}A_{n+1} = M^{n}A'_{n+1}: (M^{n}A'_{n+1} + A'_{n+1}A_{n+1}) = 1:n.$$

On the other hand, by applying Menelaus' theorem to the triangle $A_{n+1}A'_{n+1}G^{n-1}_{n+1}$ and the transversal $M^nO'G^n$ we obtain

$$(A_{n+1}G^n : G^n G_{n+1}^{n-1}) \cdot (M^n A'_{n+1} : A'_{n+1} A_{n+1}) \cdot (O' G_{n+1}^{n-1} : A'_{n+1} O') = 1.$$

And finally

$$A'_{n+1}O': O'G^{n-1}_{n+1} = 1.$$

Thus the sphere S' passes through the point A'_{n+1} such that $M^n A'_{n+1} : M^n A_{n+1} = 1 : n$, and through the *n* analogous points A'_i , respectively relative to the vertices A_i , i = 1, ..., n. Moreover, the point A'_i and the centroid G_i^{n-1} of the face Θ_i are diametrically opposite on the sphere S' (i = 1, ..., n + 1). Therefore S' passes through the projection A''_i of A'_i upon Θ_i , i = 1, ..., n + 1. Thus we have 3(n + 1) points on S', which justifies the name given to this sphere.

References

- N. ALTSHILLER-COURT: Modern Pure Solid Geometry. 2nd ed., Chelsea, Bronx, NY, 1964.
- [2] M. BUBA-BRZOZOWA: The n-sphere of the 3(n+1) points. Proc. of Graphica 2001, São Paulo/Brazil 2001, 479–483.

35

- [3] R.A. CRABBS: Gaspard Monge and the Monge Point of the Tetrahedron. Math. Mag. **76**, no. 3, 193–203 (2003).
- [4] B. GRUENBAUM, G.C. SHEPHARD: Ceva, Menelaus and the area principle. Math. Mag. 68, 254–268 (1995).

Received August 1, 2004; final form July 26, 2005