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Equifaciality of Tetrahedra whose Incenter
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Abstract. In this note, we show that if the incenter and the Fermat-Torricelli
center of a tetrahedron coincide, then the tetrahedron is equifacial (or isosceles)
in the sense that all its faces are congruent. The proof is intended to replace the
incorrect proof given in [8] for the same statement.
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1. Introduction

The centroid, the incenter, and the circumcenter of a non-planar tetrahedron, and in fact of
any non-degenerate n-simplex, are defined, in analogy with those of a triangle, as the point
of intersection of the medians, the center of the insphere, and the center of the circumsphere,
respectively. The orthocenter, however, does not exist for all tetrahedra, since the altitudes
of an arbitrary tetrahedron are not necessarily concurrent.

The Fermat-Torricelli center of a non-degenerate n-simplex S = A0A1 . . . An is defined as
the point whose distances from the vertices have a minimal sum. It is known [13, Theorem
1.1] that if the norm of the sum of the n − 1 unit vectors from one of the vertices Ai to the
remaining vertices does not exceed 1, then the Fermat-Torricelli center F of S coincides with
that vertex. Otherwise, F is interior and is characterized by the property that the sum of the
n unit vectors from F to the vertices is 0, i.e., by

n
∑

i=0

PAi

‖PAi‖
= 0. (1)
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It follows that the Fermat-Torricelli center F of a triangle ABC is interior if and only if the
measure of each angle of ABC is less than 2π/3, in which case F is is characterized by the
property that

∠BPC = ∠CPA = ∠APB = 2π/3 .

Similarly, the Fermat-Torricelli center F of a tetrahedron ABCD is interior if and only if the
measure of each solid vertex angle of ABCD is less than π, where the measure |〈P ;X,Y, Z〉|
of a solid angle 〈P ;X,Y, Z〉 with vertex P and arms PX, PY , and PZ is the area on the
surface of the unit sphere centered at P of the spherical triangle enclosed by PX, PY , and
PZ. In this case, F is characterized by the property that the solid angles 〈F ;A,B,C〉,
〈F ;B,C,D〉, 〈F ;C,D,A〉, and 〈F ;D,A,B〉 have equal measures, which in turn is equivalent
to the conditions that

∠AFB = ∠CFD, ∠AFC = ∠BFD, ∠AFD = ∠BPC ; (2)

see [1]. Rewriting (1) in the form

FA

‖FA‖
+

FB

‖FB‖
+

FC

‖FC‖
+

FD

‖FD‖
= 0 ,

taking the norms of both sides, and using (2), we obtain

cos∠AFB + cos∠BFC + cos∠CFA = −1 . (3)

It is easy to see that if any two of the above-mentioned five triangle centers (namely, the
centroid, the incenter, the circumcenter, the orthocenter, and the Fermat-Torricelli center)
coincide for a certain triangle, then it is equilateral; see [15, exercise 1, p. 37], [14, pp. 78–
79], and [7]. Theorem 4 of [8] states that if any two of the four relevant tetrahedron centers
coincide for a certain tetrahedron, then it is equifacial (or isosceles, in the terminology of
[2]), i.e., has congruent faces. Of the six statements that constitute that theorem, the one
pertaining to the incenter and the Fermat-Torricelli center is the most intricate. Regrettably,
the proof given in [8] of that statement is incorrect. More specifically, the conclusion made in
the last two lines of [8, (FI)] regarding the congruence of the tetrahedra OABC and OBAD
cannot be justified. The theorem below provides a correct version, and the note that follows
elaborates on why the proof in [8] is faulty.

We remind the reader that equifaciality of a tetrahedron ABCD is equivalent to the
seemingly weaker condition that the faces have equal areas; see [11, Chapter 9, pages 90–97]
and [6]. Also, it is trivially equivalent to the requirements that

AB = CD, AC = BD, AD = BC. (4)

2. The Main Theorem

Theorem. Let T = ABCD be a non-planar tetrahedron. If the incenter I and the Fermat-
Torricelli center F of T coincide, then T is equifacial.

Proof: We think of A, B, C, and D as position vectors in some coordinate system whose
origin O coincides with F and I. Let

a = ‖A‖, b = ‖B‖, c = ‖C‖, d = ‖D‖ (5)
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and let x, y, and z be defined by

x = cos∠BOC = cos∠DOA, y = cos∠COA = cos∠DOB, z = cos∠AOB = cos∠DOC.

Then (3) can be rewritten as

x+ y + z + 1 = 0. (6)

Let the areas of the faces BCD, CDA, DAB, and ABC be denoted by α, β, γ, and δ,
respectively. Since O is the incenter, it follows that the tetrahedra OBCD, OCDA, ODAB
and OABC have the same altitude at O. Therefore the barycentric coordinates of O with
respect to ABCD, being proportional to the volumes of these tetrahedra, are proportional to
the base areas α, β, γ, and δ. On the other hand, they are proportional to a−1, b−1, c−1, and
d−1, since

A

a
+
B

b
+
C

c
+
D

d
= O (7)

by (1). Therefore (a−1, b−1, c−1, d−1) and (α, β, γ, δ) are proportional, and hence

aα = bβ = cγ = dδ . (8)

It remains to compute α, β, γ, and δ in terms of a, b, c, and d, and solve the resulting
equations.

If u, v, and w denote the side-lengths of ABC, then the Law of Cosines gives

u2 = a2 + b2 − 2abz, v2 = b2 + c2 − 2bcx, w2 = c2 + a2 − 2cay.

Substituting these in Heron’s Formula

16δ2 = 2(u2v2 + v2w2 + w2u2)− (u4 + v4 + w4),

we obtain (after laborious calculations verified by Maple) that

4δ2 = (a2b2 + b2c2 + c2a2)− (a2b2z2 + b2c2x2 + c2a2y2)

+2abc(ayz + bxz + cxy − ax− by − cz).

Similarly, we see that

4γ2 = (a2b2 + b2d2 + d2a2)− (a2b2z2 + b2d2y2 + d2a2x2)

+2abd(byz + axz + dxy − ay − bx− dz).

Therefore

4d2δ2 − 4c2γ2 = (z + 1)(bcd+ cda+ dab+ abc)H, (9)

where

H =
−x+ y

a
+
x− y

b
+
−x− y − 2

c
+
x+ y + 2

d
, (10)
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and where we have used the relation (6). Note that if z+1 = 0, then ∠AOB = ∠COD = 180◦,
and ABCD would be planar. Also bcd+ cda + dab + abc > 0. Thus dδ = cγ is equivalent to
H = 0. It follows that the system (8) is equivalent to the matrix equation QX = O, where

Q =





−x+ y x− y −x− y − 2 x+ y + 2
x− 1 −x− 2y − 1 x+ 2y + 1 −x+ 1

−2x− y − 1 y − 1 2x+ y + 1 −y + 1



 , X =









a−1

b−1

c−1

d−1









.

The leftmost 3× 3 submatrix of Q has determinant −4(x+1)(y+1)(z+1) 6= 0 and therefore
the rank of Q is 3. Therefore the solution space of the system QX = 0 has dimension 1 and
is necessarily generated by the obvious solution

(a−1, b−1, c−1, d−1) = (1, 1, 1, 1).

Thus a = b = c = d. Therefore O is the centroid (by (7)) (and the circumcenter by (5)).
It follows now from (the valid parts of) [8, Theorem 4] that T is equifacial, as desired.
Alternatively, one may use [12, Theorem 4.10], or directly prove (4) using a = b = c = d and
the law of cosines.

Note 1. The proof in [8] claims in effect that the single equation dδ = cγ implies that c = d.
We have just seen that dδ = cγ is equivalent to

−x+ y

a
+
x− y

b
+
−x− y − 2

c
+
x+ y + 2

d
= 0,

which would imply c = d if and only if a = b.

Note 2. Theorem 4 of [8], now correct by the Theorem above, considers the centroid,
the incenter, the circumcenter, and the Fermat-Torricelli center of a tetrahedron and proves
that the coincidence of any two of these centers implies equifaciality. It is easy to see that
the Monge point can be added to this list [4, Theorem 2.1], and it would be interesting to
explore whether other centers, such as the 1- and 2-centroids [3] and the Gergonne and Nagel
points [10], can be added too. It is also worth mentioning that the aforementioned theorem
[8, Theorem 4] does not admit an exact generalization to higher dimensional simplices; see
[9] and [4]. However, if one restricts oneself to orthocentric simplices, i.e., simplices whose
altitudes concur, then one gets the pleasant theorem that if any two of the centroid, incenter,
circumcenter, and orthocenter of an orthocentric simplex S coincide then S is regular; see [5].
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