
Journal for Geometry and Graphics
Volume 9 (2005), No. 1, 67–75.

Blending curves
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Abstract. Two arbitrarily given curves k1(t) and k2(t) are blended to a third
curve b(t) so that b joins k1 and k2 in given points A1 and B2 C l- and Cm-
continuously, respectively. In order to meet this objective we use polynomial
functions αlm(t) for the blending process. The Casteljau algorithm for curves is
used in a special way to build the blended curve b(t). Furthermore we can use our
construction to generate interpolating spline curves.
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1. Introduction

Our aim is to find a simple method to join two curves k1(t) and k2(t) by a curve b(t) as shown
in Fig. 1. For both curves k1 and k2 we first choose a parameter interval [t0, t1] which choice
affects the final curve b. Then we assume t0 = 0 and t1 = 1 to simplify the notation which
can always be achieved by a simple parameter transformation. The curve b(t) shall start with
the parameter value t0 = 0 at the point k1(0) = A1 on k1 and end with the parameter value
t1 = 1 at the point k2(1) = B2 on k2. So we have

b(0) = k1(0) = A1, k1(1) = A2,

b(1) = k2(1) = B2, k2(0) = B1.

For b(t) we require

di

(dt)i
b(0) =

di

(dt)i
k1(0), i = 0, . . . , l,

di

(dt)i
b(1) =

di

(dt)i
k2(1), i = 0, . . . ,m.

(1)
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Figure 1: Two curves k1(t) and k2(t) are linearly blended to a third curve b(t)

2. Linear blending

Our construction shall be a linear blending process between the curves k1(t) and k2(t) (see
Fig. 1). Therefore we will use a function αlm(t) and the following setup to find a suitable
curve b(t):

b(t) = αlm(t) · k1(t) + [1− αlm(t)] · k2(t), t ∈ [0..1] ⊂ R. (2)

The function αlm(t) has to be chosen so that (1) holds.1

First we calculate the derivatives of the curve b(t)

b(t) = αlm(t) · [k1(t)− k2(t)] + k2(t)

ḃ(t) = α̇lm(t) · [k1(t)− k2(t)] + αlm(t) · [k̇1(t)− k̇2(t)] + k̇2(t)

b̈(t) = α̈lm(t) · [k1(t)− k2(t)] + 2α̇lm(t) · [k̇1(t)− k̇2(t)] +

+ αlm(t) · [k̈1(t)− k̈2(t)] + k̈2(t)
... (3)

dj

(dt)j
b(t) =

j
∑

i=0

(

j

i

)

dj−i

(dt)j−i
αlm(t) ·

[

di

(dt)i
k1(t)−

di

(dt)i
k2(t)

]

+
dj

(dt)j
k2(t).

If we compare (3) with (1) we find the following conditions for αlm(t):

αlm(0) = 1

αlm(1) = 0 (4)

dj

(dt)j
αlm(0) = 0, 1 ≤ j ≤ l,

dj

(dt)j
αlm(1) = 0, 1 ≤ j ≤ m.

Remark 1 In order to keep the construction simple we will use polynomial functions αlm(t).
Instead of that one can also use rational or transcendent functions as it is shown for instance

1The subscripts l and m of αlm indicate the order of continuity of b, k1 and b, k2 at the respective points
A1 and B2.
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in [5], [10] and [11]. In [5], [10], and [12] blending functions are also used to blend two surfaces
to a third one. Szilvási [11] even applies a special variant of the Coons’ method in order to
blend four surfaces to a fifth one.

Remark 2 In (4) we see the input data of a Hermite interpolation problem to the real
parameter values t0 = 0 < t1 = 1 (see [6, p. 15], [7, pp. 4–11]). Therefore we know that there
exists exactly one polynomial function αlm(t) with polynomial degree

deg αlm(t) ≤ l +m+ 1

satisfying (4).

Although there exists a Hermite interpolation formula to determine αlm(t) (see [1]) we
will use the Bernstein-polynomials

Bn
i (t) =

(

n

i

)

(1− t)n−iti

i, n ∈ N0, n ≥ i, t ∈ R, B0
0 := 1

}

. . . Bernstein-polynomials (5)

The Bernstein-polynomials form a basis of the vector space of all polynomials of order ≤ n.
Hence we can write αlm(t) in the form

αlm(t) =

l+m+1
∑

i=0

λi ·B
l+m+1
i (t), λi ∈ R. (6)

Due to the well known properties of the Bernstein-polynomials and their derivatives at t = 0
and t = 1 we obtain by straight forward computation

λ0 = . . . = λl = 1,

λl+1 = . . . = λl+m+1 = 0.

Hence the unique polynomial that solves (4) can be written in the form

αlm(t) =
l
∑

i=0

Bl+m+1
i (t) (7)

We summarize in

Theorem 1 Given two parametric curves k1, k2 with

k1(t) 6= k2(t), t ∈ R, k1 ∈ Cn1, k2 ∈ Cn2, n1, n2 ∈ N0

and

k1(0) = A1, k1(1) = A2, k2(0) = B1, k2(1) = B2, A1 6= B1, A2 6= B2.

Then there exists exactly one polynomial function αlm(t) with degαlm(t) ≤ l+m+1, so that
for the curve

b(t) = αlm(t) · k1(t) + [1− αlm(t)] · k2(t)

the conditions (1) hold.

αlm(t) can be written in the form

αlm(t) =
l
∑

i=0

Bl+m+1
i (t), 0 ≤ l ≤ n1, 0 ≤ m ≤ n2.
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For the special case that the two curves k1 and k2 have common points A1 = B1 and
A2 = B2 and common derivatives at this points we state the following theorem:

Theorem 2 Given two parametric curves k1, k2

k1(t) 6= k2(t), t ∈ R, k1 ∈ Cn1, k2 ∈ Cn2, n1, n2 ∈ N0

with
k1(0) = A1 = B1 = k2(0) ∧ k1(1) = A2 = B2 = k2(1)

and

di

(dt)i
k1(0) =

di

(dt)i
k2(0), 1 ≤ i ≤ l1 and 1 ≤ l1 < l ≤ n1

di

(dt)i
k1(1) =

di

(dt)i
k2(1), 1 ≤ i ≤ m1 and 1 ≤ m1 < m ≤ n2 (8)

Then there exists exactly one polynomial function

αλµ(t) := αl−l1−1,m−m1−1(t) and degαλµ(t) ≤ l − l1 +m−m1 − 1 = λ+ µ+ 1,

so that for the curve

b(t) = αλµ(t) · k1(t) + [1− αλµ(t)] · k2(t)

the conditions (1) hold. αλµ(t) can be written in the form

αλµ(t) =
λ
∑

i=0

B
λ+µ+1

i (t), λ = l − l1 − 1, µ = m−m1 − 1. (9)

Proof: If we compare (8) with (3) we find the following conditions for αλµ(t):

αλµ(0) = 1,

αλµ(1) = 0, (10)

dj

(dt)j
αλµ(0) = 0, 1 ≤ j ≤ l − l1 − 1,

dj

(dt)j
αλµ(1) = 0, 1 ≤ j ≤ m−m1 − 1.

The conditions (10) are again the input data of a Hermite interpolation problem. So we know
that there exists exactly one polynomial function with

deg αλµ(t) ≤ l − l1 +m−m1 − 1 = λ+ µ+ 1

which solves our problem. Analogously to Theorem 1 the polynomial αλµ(t) can be expressed
in the form (9) with the help of the Bernstein polynomials.

Remark 3 With the linear parameter transformation

t(τ) =
τ − τ0

τ1 − τ0

, τ0 ≤ τ ≤ τ1

one can adapt an arbitrary parameter interval [τ0, τ1] to [0, 1].
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Remark 4 The curve b(t) lies within the convex hull of the the two curve segments k1(t),
k2(t), t ∈ [t0, t1] and its construction is affinely invariant.

Remark 5 In the neighborhood of the points b(0) and b(1) the curve b sticks closely to k1

and k2, respectively. So you can imagine its shape before constructing the curve b(t) .

Remark 6 One can use line segments as tangents and circles of curvature at the points
A1 and B2 to generate C1- and C2-continuous blending curves. Fig. 2 shows our blending
construction between two line segments and a circle. The blending function alm must be of
order l +m+ 1 = 1 + 2 + 1 = 4. So the blending curves b1, b2 are of order six.

A1

A2B1

l1

l2

B2 = C1

C2
D1

D2

b1

b2

c

Figure 2: Two blending curves b1, b2 joining a circle c with the line segments l1, l2.
The curves b1, b2 are C1-continuous at A1 and D2 and C2-continuous at B2 = C1.

Remark 7 With our construction we can also build blending curves which connect space
curves.

Remark 8 The advantage of using polynomial blending functions αlm is that the blending
curve b is polynomial if the curves k1 and k2 are so. A disadvantage of the uniquely defined
blending functions αlm is the lack of design parameters.

If we want to have more scope of design in the construction of blending curves we have
to use polynomial functions with degree > l +m+ 1. If we prescribe a degree l +m+ 1 + d

then a simple consideration shows that every possible polynomial function ᾱlm satisfying (4)
can be written in the form

ᾱlm(t) =
l
∑

i=0

Bn
i (t) +

d
∑

i=1

λi ·B
n
l+i(t), (11)

n = l +m+ 1 + d, d ∈ N, λi ∈ R.
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This endows the user with d design parameters λ1, . . . , λd. The blending curve b can now be
described by

b(t) = ᾱlm(t)k1 + [1− ᾱlm(t)] · k2(t) =

=
l
∑

i=0

Bn
i · k1(t) +

d
∑

i=1

Bn
l+i · [λi · k1(t) + (1− λi) · k2(t)] +

n
∑

i=l+d+1

Bn
i · k2(t) (12)

Remark 9 In order to guarantee that the blending curve b lies within the convex hull of the
two curve segments k1(t), k2(t), t ∈ [t0, t1], one has to choose 0 ≤ λi ≤ 1.

Fig. 3 shows the uniquely defined cubic blending function α11(t) = 2t3 − 3t2 + 1 and two
quartic blending functions for C1-continuously blending at t = 0 and t = 1. The quartic
functions ᾱlm depend on one design parameter λ: ᾱ11(t) = B4

0(t) + B4
1(t) + λ · B4

2(t). In the
figure we set λ = 0.2 and λ = 0.9.

0 1

1

¸ = 0:2

¸ = 0:9

®11(t)

Figure 3: The uniquely defined blending function α11(t) and two quartic
blending functions with the design parameters λ = 0.2 and λ = 0.9

for C1-continuous blending at t = 0 and t = 1

3. Algorithm

1. If we consider the representations of the uniquely defined function αlm(t) in eq. (7)
and the blending curve b in eq. (2) we see that we can evaluate the curve point b(t) at
one fixed parameter value t with the help of the Casteljau-algorithm (see for instance
[4] or [9]). As shown in Fig. 4 we construct the point b(t) as the curve point of a
(l +m+ 1)th-order Bézier curve to the Bézier points

k1(t) = P0 = . . . = Pl and Pl+1 = . . . = Pl+m+1 = k2(t)
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b(t)k1(t) = P0 =; : : : ;= Pl

k2(t) = Pl+1 =; : : : ;= Pl+m+1

A1

A2 B1

B2

Figure 4: The construction of a curve point b(t) for a fixed parameter value t

with the help of the Casteljau-algorithm

2. If we want to use design parameters for the construction of our blending curve b we can
apply the Casteljau-algorithm again (see eq. (12)). The curve point b(t) for one fixed
parameter value t can be evaluated as the curve point of a (l+m+1+d)th-order Bézier
curve to the Bézier points

P0 = . . . = Pl = k1(t),

Pl+i = λi · k1(t) + [1− λi] · k2(t), λi ∈ R, i = 1, . . . , d,

Pl+d+1 = . . . = Pl+m+1+d = k2(t)

If we choose 0 ≤ λi ≤ 1 then the Bézier point Pl+i lies in between the straight line
segment P1Pl+m+1+d.

A2 B1

A1 B2

Pl+1

¹Pl+1

k2(t) = Pl+2 =; : : : ;=Pl+m+2

k1(t) = P0 =; : : : ;= Pl

b1
b2

Figure 5: Two alternative curves b1, b2 to the blending curve b of Fig. 4 (deg bi = deg b+ 1,
b2 is drawn grey). The additional design parameter is λ = 0.9 for b1 and λ = 0.1 for b2.

The corresponding Bézier points Pl+1, P̄l+1 are marked by quadrangles

4. Examples

We can use our construction and Theorem 2 to build spline curves which interpolate given
points P0, . . . , Pk at corresponding parameter values t0, . . . , tk.

1. A well known interpolant is the Overhauser spline (see [2, 3, 4, 8]). It uses parabolas
ki and ki+1 which interpolate the point triples (Pi−1, Pi, Pi+1) and (Pi, Pi+1, Pi+2),
respectively. Then the curves ki and ki+1 are blended by the linear function α00(t) =

t− ti

ti+1 − ti
to bi (see Fig. 6).

2. With the help of the polynomial α11(t) we can improve Example 1 to build a C2-
continuous interpolating spline curve of order 5. Our spline curve depends only on a
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bi

Pi¡1

Pi

Pi+1

Pi+2

ki

ki+1

Figure 6: The C1-continuous Overhauser spline

few points. Changing one point Pi influences only the spline curve between Pi−2 to Pi+2

(see Fig. 7).

Pi¡1

Pi

Pi+1

Pi+2

Pi¡3

Pi¡2

Pi+3

ki¡2

ki+2

bi¡2

bi¡1

bi
bi+1

Figure 7: Parabolas blended to a C2-continuous spline

5. Conclusion

In this paper we have shown the construction of polynomial functions αlm(t) aimed to blend
two arbitrarily given parametric curves k1(t) and k2(t) to a third curve b(t). It turned out that
the function αlm(t) can be described in a very simple form by means of Bernstein-polynomials.
This fact enables us to use the de Casteljau-algorithm to generate the points of the blending
curve b(t). Furthermore we can use our construction to build interpolating spline curves.
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