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Abstract. This paper explores some new geometric properties of regular hep-
tagons. We add to the list of results from the Bankoff-Garfunkel famous
paper on regular heptagons 30 years ago enlisting the help from computers. Our
idea is to look at the central points (like incenters, centroids, circumcenters and
orthocenters) of certain triangles in the regular heptagon to find new related reg-
ular heptagons which have simple constructions with ruler and compass from the
original heptagon. In the proofs we use complex numbers and the software Maple
V. The eleven figures are made with the Geometer’s Sketchpad.
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1. Introduction

Leon Bankoff and Jack Garfunkel in the reference [1] thirty years ago gave the review
of several results on regular heptagons and on the associated heptagonal triangle (see Fig. 1).
In [3], [4] and [5] some of these initial theorems in [1] have been improved. In this paper
our goal is to continue these investigations. We use again complex numbers to discover new
relationships in these geometric configurations.

In order to simplify our statements we use the following notation. The midpoint of points
X and Y is [X; Y ] while X ‖ ` and X ⊥ ` are the parallel and the perpendicular to the line
` through the point X.

Let Θ = ABCDEFG be a regular heptagon inscribed into the circle k with the center O
and the radius R. We now define fourteen regular heptagons associated to Θ. It suffices to
describe only their first vertex because the other vertices are obtained by rotations about the
point O. The first vertices are shown in Fig. 1 and are defined as follows:

Am = [O; A], A = [O; A2], A′ = [A; B], Ad = AC ∩ BG,
As = BC ∩ AG, A′

m
= [Am; Bm], A′

2 = [A2; B2], Ad

m
= AmCm ∩ BmGm,

Ad

2 = A2C2 ∩ B2G2, As

m
= BmCm ∩ AmGm, As

2 = B2C2 ∩ A2G2,

and let A∗, A∗

m
, A∗

2 be the midpoints of the shorter arcs AB, AmBm, A2B2.
For different points X and Y and a real number r > 0 let γ(X; Y ) and γ(X; r) denote

circles with the center at X which goes through Y and with the radius r, respectively, while
ε(XY ) is the complement of the segment XY in the line XY .
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Figure 1: First vertices of 14 regular heptagons associated to the
regular heptagon ABCDEFG and one of its heptagonal triangles DEG

2. New theorems

We begin with an improvement of the observations attributed to Thébault on the pages 10
and 11 of [1]. The parts (1)–(4) are from there while (5)–(10) are new. When investigating
regular heptagons it seems natural to look for various regular heptagons associated to it. In
our first theorem we discovered four such heptagons.

Theorem 1

(1) The segment A′Fm is the diagonal of the square build on the inradius of Θ.

(2) Extend A′B over B to the point W so that |A′W | = |A′B∗|. The segment WO is the
diagonal of the square constructed on half the side of the equilateral triangle inscribed
to the circle k.

(3) The circle with the center at W which is orthogonal to k has |A′B∗

m
| as radius.

(4) Let T = AB ∩ (Fm ⊥ OF ), S = [O; T ], and m = γ(S; O). The points A′ and Fm are
on the circle m and the line A′B∗

m
is its tangent (Fig. 2).

(5) Let L = (m ∩ OB) \ {O}, H = m ∩ ε(OA), I = m ∩ ε(OD), J = m ∩ ε(OG), K =
m ∩ ε(OC). Then FmLA′HIJK is a regular heptagon with the length of sides |A′B∗

m
|.

(6) Let H ′ = m ∩ ε(A′B′), U ′ = m ∩ ε(A′C ′), L′ = (m ∩ A′D′) \ {A′}, Q′ = (m∩A′E ′) \
{A′}, K ′ = m ∩ ε(A′F ′), J ′ = m ∩ ε(A′G′). Then TH ′U ′L′Q′K ′J ′ is a regular hep-
tagon.

(7) The midpoints I ′′, H ′′, U ′′, L′′, Q′′, K ′′, J ′′ of shorter arcs TI, H ′H, U ′A′, L′L, Q′Fm,
K ′K, J ′J are vertices of a regular heptagon whose sides are parallel with sides of
DEFGABC.

(8) Let n = γ(A′; B∗

m
). The circles m and n intersect in the points H and L.

(9) Let M = n ∩ A′Fm, N = n ∩ A′J , P = n ∩ ε(A′L), Q = n ∩ ε(A′K), U = n ∩ ε(A′I).
Then B∗

m
MNHPQU is a regular heptagon.
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Figure 2: The circles m and n with the regular heptagons inscribed into them

(10) The circle with the center at W which is orthogonal to n has |A′A| as radius.

Proof: (1) In this proof we shall assume that the complex coordinates (or the affixes) of the
vertices of the heptagon ABCDEFG are

F = 1, G = f 2, A = f 4, B = f 6, C = f 8, D = f 10, E = f 12,

where f is the 14th root of unity.

From A′ =
f6 + f4

2
and Fm = 1

2
follows that 2 |A′O|2 − |A′Fm|2 is equal to

(f4 + f2 − 1)p+ p
−

4
,

where

p− = f 6 − f 5 + f 4 − f 3 + f 2 − f + 1 and p+ = f 6 + f 5 + f 4 + f 3 + f 2 + f + 1.

But, f 14 − 1 is (f 2 − 1) p− p+ and p+ = 1 + 2 i (1 + 2 cos π

7
) sin 2 π

7
6= 0. We see that p− = 0

so that |A′Fm| = (R cos π

7
)
√

2.

(2) The point W is on AB and γ(A′; B∗) if f 4 W + W − f 10 − f 8 = 0 and

2WW − (f 10 + f 8)W − (f 6 + f 4)W + f 13 + f 11 + f 3 + f − 2 = 0.

By solving this system we get

W =
f6 + f4 − f3

√

f(f − 1)2(f2 + f + 2)(2 f2 + f + 1)

2
.
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It is now easy to check that 3

2
− |WO|2 =

(f11 − 3f8 − 3f7 + 3f + 3) p
−

2
= 0.

(3) One of the intersections of k and the circle with diameter WO is the point Z with affix

2 +
√

2(f13 − f12 + f11 − f2 + f − 2)

f7(f3 + f +
√

f(f − 1)2(f2 + f + 2)(2f2 + f + 1))
.

The difference |WZ|2 − |A′B∗

m
|2 contains p− as a factor.

(4) The equations of AB and Fm ⊥ OF are f 6z + f 2z = 1 − f 10 and z + z = 1. Hence,

S =
f10 + f2 − 1

2f2(1 − f4)
. Since both |SO|2 − |A′S|2 and |SO|2 − |FmS|2 contain p− as a factor we

infer that A′ and Fm are on m. Also, the lines A′B∗

m
and A′S are perpendicular.

(5) Note that f 2k (Fm − S) + S for k = 1, 2, 3, 4, 6 lie on lines OC, OG, OD, OA, OB while
for k = 5 it agrees with A′. Hence, these are the vertices of FmKJIHA′L. Moreover,
|A′L| = |A′B∗

m
|.

(6) Now f 2k (T − S) + S for k = 1, . . . , 6 lie on lines A′B′, A′C ′, A′D′, A′E ′, A′F ′, A′G′ so
that these are the last six vertices of the regular heptagon TH ′U ′L′Q′K ′J ′.

(7) This part is more complicated even on a computer so that we only outline main steps.
First find the equation of m and of the line ` joining S with the midpoint of the segment IT .
One of the points in the intersection m ∩ ` is I ′′. Then we rotate six times through the angle
2 π

7
to get points H ′′, U ′′, L′′, Q′′, K ′′, and J ′′. Finally, we check that (only one) corresponding

sides of I ′′H ′′U ′′L′′Q′′K ′′J ′′ and DEFGABC are parallel.

(8) The equations of the circles m and n (Fig. 2) are

2(f 4 − 1) z z + f 4(f 6 + f 4 − 1) z − (f 10 + f 8 − 1) z = 0,

and
4 z z − 2f 4(f 2 + 1)(f 4 z + z) + f 13 + f 11 + f 3 + f − 1 = 0.

Their intersections have rather complicated affixes but after some clever manipulation with
square roots one can show that they represent points H and L.

(9) We rotate the point B∗

m
about the point A′ six times through the angle 2 π

7
. The third

point concides with the point H while the others are on lines A′Fm, A′J , A′L, A′K, and A′I,
so that B∗

m
MNHPQU is indeed a regular heptagon.

(10) Similar to the proof of (3).

Theorem 2 Let the lines BE and BG intersect the line AD in points M and N . Let U , V ,
and W denote circumcenters of the triangles BDM , BMN , and ABN (Fig. 3).

(1) W = A∗ and U is the reflection of O at the line BD.

(2) V is the reflection of W at the line BG and the midpoint of the shorter arc BM on the
circumcircle of BDM .

(3) |UV | = R and |UW | = |UH| = R
√

2, where H is the intersection of the lines AO and
GV . Also, |V W | = |OV | = |AH|.

(4) If X = OA ∩ (B ⊥ DC), Y = OD ∩ (X ⊥ CB), and Z = OC ∩ (G ⊥ GA), then
OV WXY GZ is a regular heptagon whose sides are perpendicular to the corresponding
sides of FEDCBAG.
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Figure 3: The triangle on circumcenters U , V , W of the triangles BDM , BMN , and
ABN and two regular heptagons with sides perpendicular to sides of ABCDEFG

(5) If I = GV ∩ (U ⊥ CB), J = DU ∩ (I ⊥ BA), K = OB ∩ (J ⊥ GA), L = AF ∗∩(K ⊥
FG), and P = AF ∗ ∩ (D ⊥ BG), then V UIJKLP is a regular heptagon whose sides
are perpendicular to the corresponding sides of DCBAGFE.

Proof: (1) The affixes of the points M , N , U , V , W , and H are

f 10 − f 8 + f 6,
f10 + f6 + f4

f4 + f2 + 1
, f 10 + f 6,

f10 + f6

f4 + f2 + 1
,

f10 + f8 + f6 + f4

f4 + f2 + 1
,

f2(f4 + 1)2

2f4 + f2 + 2
,

respectively. Since |WA∗|2 =
(

f6 p
−

f4 + f2 + 1

)2

, we infer that W = A∗. It is easy to find the

reflection of O in the line BD and check that it coincides with the point U .

(2) Since the reflection of a complex number x in the line determined by different complex

numbers y and z is
y(x − z) + z(y − x)

y − z
, by direct substitution of affixes, we see that V is a

reflection of W in the line BG.

(3) Since |UV |2 = |OW |2, we get |UV | = 1 = R. Also, since |UW |2 =
2(f2+2f4+f6−f10−f12)

(f4 + f2 + 1)2

and |UW |2 − 2 factors as

(

2f10 + f8 + 2f6 − 2f4 − 3f2 − 2
)

p+p
−

(f4 + f2 + 1)
2

, it follows that |UW | =
√

2 = R
√

2. In a similar fashion we can also prove that |UH| =
√

2 = R
√

2 and that
|V W | = |OV | = |AH|.

(4) Let T =
f12 + f8

f6 − 1
denote the circumcenter of the triangle OV W . Then f 2k(O − T ) + T for

k = 1, . . . , 6 is Z, G, Y , X, W , V . Hence, OV WXY GZ is a regular heptagon. Since OV is
perpendicular to FE, its sides are perpendicular to the corresponding sides of FEDCBAG.
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of triangles BDM , BMN , and ABN with |XZ| =
R
√

2

2

(5) Similar to the proof of (4).

There is a similar result for centers of the nine-point circles instead of circumcenters.

Theorem 3 Let the lines BE and BG intersect the line AD in points M and N . Let A0,
B0, C0, D0, E0, F0, G0 and N0 be midpoints of the segments AM , BM , CM , DM , EM ,
FM , GM and BN . Let X, Y and Z be centers of the nine-point circles d9, m9 and a9 of the
triangles BDM , BMN and ABN (Fig. 4).

(1) The point X is the midpoint of the segment MO and the point Y is the midpoint of
the shorter arc A0B0 of the nine-point circle d9 of the triangle BDM .

(2) The point Z is the reflection of Y at the line A0N0. Also, |XY | =
R

2
and |XZ| =

|OZ| =
R
√

2

2
.

(3) The polyhedron A0B0C0D0E0F0G0 is a regular heptagon inscribed into d9 which is the
image of ABCDEFG in the homothety h(M, 1

2
).

(4) Let N ′ be the projection of the point N on the side AB, let K = BN ∩ Y Z, let L be
the reflection of K in the line A0N0, let P = [A; N ] and S = [M ; N ]. Let Q = [B; G],
H = N ′N0 ∩ G0Y and T = D0Y ∩ A0C0. Then A0STB0HN0K and N0A

′N ′PQA0L are
regular heptagons inscribed into m9 and a9 related by the homothety h([Y ; Z], −1) and
homothetic with the heptagon CBAGFED.
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Proof: (1) The affixes of the points M and N have been given in the proof of the previous
theorem. It follows that the midpoints A0, B0, N0 are

f10 − f8 + f6 + f4

2
,

f10 − f8 + 2f6

2
,

2f10 + f8 + 2f6 + f4

2(f4 + f2 + 1)

while X, Y , Z are

f10 − f8 + f6

2
,

2f10 + f8 + 2f6 + f4 + 1

2(f4 + f2 + 1)
,

f10 + f8 + 2f6 + f4

2(f4 + f2 + 1)
,

respectively. By direct inspection we see that X is the midpoint of MO and that Y is the
midpoint of the shorter arc A0B0 of the nine-point circle of BDM because |XY | = 1

2
and

|Y A0|2 = |Y B0|2.

(2) Just as easy is to check that Z is the reflection of Y at the line A0N0. Finally, since

|XZ|2 =
f6 + 2f4 − f10 − f12

2(f8 + 2f6 + 3f4 + 2f2 + 1)
and both |XZ|2− 1

2
and |OZ|2− 1

2
contain the polynomial

p− as a factor we get that |XZ| = |OZ| =

√
2

2
.

(3) This part is obvious.
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(4) In a routine fashion we discover that the affixes of the points N ′, K, L, P , Q, H, S and
T are

f10 + f8 + 3f6 + f4

2(f4 + f2 + 1)
,

f10 + 3f8 + 3f6 + 3f4 + f2 + 1

2(f12 + f4 + 2f2 + 2)
,

f12 + 2f10 + 2f8 + 3f6 + 3f4 + f2

2(f12 + f4 + 2f2 + 2)
,

f10 + f8 + 2f6 + 2f4

2(f4 + f2 + 1)
,

f6 + f2

2
,

5 f12 + f10 − 3f8 − 2f6 + 5f2 + 6

2(3 f10 + 4f8 + 3f6 − 2f2 − 2)
,

2f10 + 2f6 + f4 + 1

2(f4 + f2 + 1)
,

−2 f12 − f10 + f4 − f2 − 1

2(f12 − f8 − 2f6 − f4 + 1)
,

respectively. Since f 2k(A0 − Y ) + Y for k = 1, . . . , 6 is K, N0, H, B0, T , S, we infer that
A0STB0HN0K is a regular heptagon inscribed into m9. Since A0S is parallel to BC, it is
homothetic to CBAGFED (Fig. 5).
Similarly, since f 2k(N0 − Z) + Z for k = 1, . . . , 6 is L, A0, Q, P , N ′, A′, we get that
N0A

′N ′PQA0L is a regular heptagon inscribed into a9. Since A′N ′ is parallel to AB, it is
homothetic to CBAGFED.

Of course, the triangles UV W and XY Z from the previous two theorems are closely
related as the following result clearly shows.

Recall that triangles ABC and XY Z are orthologic provided the perpendiculars at vertices
of ABC onto sides Y Z, ZX, and XY of XY Z are concurrent. It is well-known that the
relation of orthology for triangles is reflexive and symmetric.

Theorem 4 Let U ′V ′W ′ and X ′Y ′Z ′ be reflections of UV W and XY Z at the line AD. Let
K be the intersection of the lines AF and DG. Then any two among the triangles UV W ,
XY Z, U ′V ′W ′ and X ′Y ′Z ′ are orthologic. The triangles UV W and U ′V ′W ′ are images under
the homotheties h(K, 2) and h(B, 2) of the triangles X ′Y ′Z ′ and XY Z (Fig. 6).

Proof: Since the points U ′, V ′, W ′, X ′, Y ′, Z ′ have the affixes

f 10 − f 8,
f10 + f6 + f4 + 1

f4 + f2 + 1
,

f6 + f4

f4 + f2 + 1
,

2f10 − f8 + f6 + f4

2
,

f10 + 2 f6 + f4 + 1

2(f4 + f2 + 1)
, and

f10 + f8 + 2 f6 + 2 f4 + 1

2(f4 + f2 + 1)
,

respectively, it is easy to check using Theorem 5 in [2] that the triangles UV W and XY Z
are orthologic. It is also easy to verify that X ′, Y ′, Z ′ are midpoints of the segments KU ,
KV , KW and that X, Y , Z are midpoints of the segments BU ′, BV ′, BW ′ which proves the
claims about homotheties.

Theorem 5 Let ABCDEFG be a regular heptagon inscribed to a circle of radius R. Let
the lines BE and BG intersect the line AD in points M and N . If H and K are the de
Longchamps points of the triangles BDM and ABN , then |HK| = R

√
11.

Proof: Since H = 2 f 10 + f 8 + 2f 6 and K =
2f10 + 2f8 + f6 + 2f4

f4 + f2 + 1
, we get that |HK|2 − 11 is

−5 p+p
−

f8 + 2f6 + 3f4 + 2f2 + 1
.
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Theorem 6 Let the line BE in the regular heptagon ABCDEFG intersect the line AD in
the point M . Let H, I, J , K be centroids of the triangles BDM , DEM , EGM , BGM . Then

HIJK is a rhombus whose side is
2R

3
cos π

14
and whose area is 2/9 of the area of the quadrangle

BDEG. The angles ^IHK and ^KJI are equal to 4π

7
so that the regular heptagons build

on IH, HK and on IJ , JK share one side (Fig. 7).

Proof: Since M = f 10 − f 8 + f 6, we easily find that

H =
2f10 − f8 + 2f6

3
, I =

f12 + 2f10 − f8 + f6

3
, J =

f12 + f10 − f8 + f6 + f2

3
,

and K =
f10 − f8 + 2f6 + f2

3
.

Now, we compute |HI|2 − |IJ |2, |HI|2 − |JK|2, and |HI|2 − |KH|2 to discover that they
are all zero (this is immediate for the second difference while for the first and the third
it follows from the fact that both contain p− as a factor). Hence, the quadrangle HIJK
is the rhombus. The claim about the side and the angles is a consequence of easily ver-

ified equalities |IJ |2 = 4

9
cos2 π

14
and

|HP |2
|HI|2 = cos2 2π

7
, where P is the center of the rhom-

bus. Finally, since the triangles HIJ , BEG and BDE have areas i

36
(f 12 + 3f 10 − 3f 4 − f 2),

i

4
(2f 10 + f 8 − f 6 − 2f 4), and i

4
(f 12 + f 10 − f 8 + f 6 − f 4 − f 2), respectively, it follows that

|HIJK|
|BDEG| =

2

9
.

Remark (Adrian Oldknow): The statement about
|HIJK|
|BDEG| =

2

9
has actually nothing to do

with heptagons — it is just a particular case of the very easily proved result that if M
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is any internal point of any convex quadrangle ABCD, then the centroids of the triangles
AMB, BMC, CMD and DMA form a parallelogram with sides 1

3
|AC| and 1

3
|BD| and area

2

9
|ABCD|.

Theorem 7 Let X, Y , Z be the centroids of the triangles BDE, BEG, ABG in the regular
heptagon Θ = ABCDEFG. Let S be the intersection of the lines joining E and G with the
midpoints H and K of the segments BD and AB. Let λ =

√

u/v where v = 9 − 18 cos 3π

7

and u = 2 cos 3π

7
− 2 cos 2π

7
+ 4 cos π

7
. Let P and Q be intersections of the lines EY and FZ

with the lines FX and GY .
(1) If h1 is the homothety h(S, λ), then XY Z = h1(EFG) (Fig. 8).

(2) If h2 and h3 are the homotheties h(P, −λ) and h(Q, −λ), then Θ2 = h2(Θ) and Θ3 = h3(Θ)
are regular heptagons built on segments XY and Y Z.

(3) If U , M and N are the centers of Θ1, Θ2 and Θ3 and Φ and Ψ denote the regular
heptagons built on the the segments MN and XZ and containing the vertex B, then
the center of Φ is U and Ψ is obtained from Φ by the translation for the vector

−→
Y U .

(4) The point S lies on the side of Ψ.

Proof: The centroids are

X =
f12 + f10 + f6

3
, Y =

f12 + f6 + f2

3
, Z =

f 6 + f 4 + f 2

3
.
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The lines EX, FY and GZ concur at the point S = EH ∩ GK with the affix
2f12 + 2f10 + f8 + f6 + 1

2f8 + f6 + f4 + f2 + 2
. The conditions for the corresponding sidelines of the triangles XY Z

and EFG to be parallel are satisfied because they are zero (as desired) or are zero because

they contain the polynomial p− as a factor. The quotient λ =
|EF |
|XY | is equal to the square root

of −2f12 + 2f10 + f8 + f6 + 1

9(f8 + f4 + 1)
. Let M =

f12 − f8 − f4

3
be the intersection of the perpendicular

bisector of XY with the parallel through X to the line FO. The point M + f 2(X − M)
lies on the line GP . Replacing f 2 with other even powers of f we check that Θ2 = h2(Θ) is

the regular heptagon built on the segment XY . Let U =
f12 + f10 + f8 + 2f6 + f4 + 1

3
be the

intersection of the perpendicular bisector of XZ with the parallel through M to the line BO.
Then U is the center of the regular heptagon built on MN which contains the point B. We
can now easily check that MX, NZ and Y U are parallel segments of the same length. For
the last claim, we translate points U + f 6(M − U) and U + f 8(M − U) for U − Y and check
that the point S lies on the segment joining these translated points.

Theorem 8 Let U , V , W be the orthocenters of the triangles BDE, BEG, ABG in the
regular heptagon Θ = ABCDEFG. Let T be the intersection of the perpendiculars at E and
G to the lines BD and AB. Let

µ =

√
u√
w

with u = 2 cos
3π

7
− 2 cos

2π

7
+ 4 cos

π

7
and w = 1 − 2 cos

3π

7
.

Let P be the intersection of the perpendicular bisectors p and q of UV and V W . Let M and
N be intersections of p and q with perpendiculars to UW at U and W . Let H and K be the
intersections of the lines FU and FW with the lines GO and EV .
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Figure 9: The triangle UV W on orthocenters of triangles BDE, BEG, ABG
is homothetic with the triangle EFG

(1) If h4 is the homothety h(T, µ), then UV W = h4(EFG) (Fig. 9).

(2) If h5 and h6 are the homotheties h(H, −µ) and h(K, −µ), then Θ5 = h5(Θ) and Θ6 = h6(Θ)
are regular heptagons built on segments UV and V W with centers M and N .

(3) If Φ denotes the regular heptagon built on the the segment MN containing the vertex
B and Ψ = h4(Θ), then P is a common center of Φ and Ψ.

Proof: The orthocenters are U = f 12 + f 10 + f 6, V = f 12 + f 6 + f 2, W = f 6 + f 4 + f 2.
The claims of the theorem are now easily verified in the same way as in the proof of the
previous theorem.

The triangles XY Z and UV W from the previous two theorems are themselves homothetic
as the following result shows.

Theorem 9 The line ST goes through the center O and the triangle UV W on orthocenters
is the image under the homothety h(O, 3) of the triangle XY Z on centroids (Fig. 10).

Proof: Since

S =
2f12 + f10 + f6 + 2f2 + 1

1 − f2 − f6 − f8 − f12
and T =

2f12 + 2f10 + f8 + f6 + 1

2f8 + f6 + f4 + f2 + 2

the free term of the equation of the line ST is zero so that the center O (the origin) lies on ST .
The second claim about the triangles UV W and XY Z is clearly true because the complex
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Figure 10: The triangles UV W on orthocenters and XY Z on centroids
of triangles BDE, BEG, ABG are homothetic
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Figure 11: The triangles UV W on the de Longchamps points and XY Z on the centers of
the nine-point circles of triangles BDE, BEG, ABG are related in homothety h(O, −2)
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coordinates of the vertices of the second triangle are one third of the complex coordinates of
the vertices of the first triangle.

There are analogous results for the centers of the nine-point circles and for the de
Longchamps points of the triangles BDE, BEG, ABG. We shall not give precise formula-
tions of these theorems leaving this task as an exercise to the reader. In Fig. 11 the isosceles
triangles on the de Longchamps points and on the centers of the nine-point circles are shown
together.
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