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Abstract. In this paper we give a new, synthetic condition under which a
central axonometric mapping is a central projection. This condition is applied for
controlling the change of unit points of a central axonometric reference system.
Correction of a central axonometric system to be of central projection type is also
discussed by the help of our condition.
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1. Introduction

Descriptive geometry and its applications widely use central axonometry and central pro-
jection to map the projective space P

3 onto the projective plane P
2. Given an orthonormal

Cartesian basis in P
3 with origin O, unit points of the axes E1, E2, E3 and points at infinity

of the axes U1, U2, U3, the central axonometry is a surjective collinear transformation onto
P

2 defined by a central axonometric reference system (Oc, Ec
1
, Ec

2
, Ec

3
, U c

1
, U c

2
, U c

3
) ⊂ P

2. The
central projection is a more specific mapping, where the Cartesian basis is projected from a
given spatial center onto the plane. Central projection mappings obviously form a subset of
the set of central axonometries and this fact leads to the classical problem of this field: how
can one characterize central projections among central axonometries. Early results include
the general synthetic condition of Kruppa [1] and an algebraic condition for a special case
by Stiefel [2]. In the last decade several papers dealt with this problem. General algebraic
conditions are given in [3], [4] and [5]. A specific case of the first condition is discussed in [6],
while geometric interpretation of the latter ones and generalizations for higher dimensions are
discussed in [7] and [8].
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Throughout this paper the Szabó-Stachel-Vogel condition [3] will frequently be re-
ferred: let us denote the distances OcEc

i by ei and the distances Ec
i U

c
i by fi, (i = 1, 2, 3).

Considering the three angles α1 = ∠(U c
3
U c

1
U c

2
), α2 = ∠(U c

1
U c

2
U c

3
) and α3 = ∠(U c

2
U c

3
U c

1
), the

condition can be stated as follows:
(

e1

f1

)2

:

(

e2

f2

)2

:

(

e3

f3

)2

= tan α1 : tan α2 : tan α3. (1)

In this paper, similarly to the Szabó-Stachel-Vogel condition, all points of the reference
system are supposed to be finite. Moreover, Euclidean metric will be used in the computations,
so the image plane can rather be considered as the projective closure of the Euclidean plane.
For the sake of simplicity the notation P

2 will be preserved for this closure as well. We will
also use spatial homogenous coordinates in the form (wx,wy, wz, w).

As we have seen, given a central axonometric reference system (O,E1, E2, E3, U1, U2, U3)
in P

2 we have several ways to characterize that system as a central projection (from now
on we will omit the upper index c, since only the planar points will be considered). If the
system fulfills these conditions we will call it central projection reference system (for the sake
of brevity we will denote these two systems by CA-system and CP-system, respectively). It
is an obvious fact, that if a general CA-system is defined, moving any of its base points while
preserving the 3-tuples (O,Ei, Ui) to be collinear, the new system will also remain a CA-
system. If, however, the original CA-system was a CP-system, after an arbitrary reposition
the new system will generally not hold this property, i.e., the new system will only be a general
CA-system. A simple example is the following: consider a system which fulfills the Szabó-

Stachel-Vogel condition. Moving E1 along the x-axis all the values remain unchanged
except the first ratio, thus eq. (1) will not hold any more.

Our final purpose is to describe some geometric and/or analytical conditions under which
moving one or more of its base points, a CP-system is transformed to a system of the same
kind. From another point of view, if only part of the reference system is given, how one
can choose the missing points in a way that the final system will be of central projection
type. Beyond its theoretical interest it may have some practical sense if we could replace
the computation of the movement of a spatial coordinate system and its projection by some
planar conditions. Interactive change of a central projection view by drag-and-drop technique
may also use this theoretical background. Here we describe only the movement of the unit
points with the help of some new conditions for a CA-system to be a CP-system.

2. A simple geometric condition

At first we describe a necessary and sufficient geometric condition under which a CA-system
is of central projection type. As we have mentioned, there are numerous conditions known for
this problem, but, apart from Kruppa’s work, all of them are analytical. This means that,
having an existing CA-system, we have to measure lengths and/or angles, compute matrices
etc. to decide if the system is a CP-system. Here we give a condition with the help of which
one can solve this problem by a simple construction. We will use the following property and
notion (cf. [9]).

Lemma 1 If ABC is an acute-angled triangle, consider an interior point P with traces

Ta, Tb, Tc. Find the point Ra on the side BC for which the signed distances satisfy

RaB

CRa

=

√

TaB

CTa

. (2)
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If we define Rb and Rc on the sides AC and AB in a similar way, then the lines ARa, BRb

and CRc are concurrent in a point RP .

Here the points Ra, Rb and Rc are supposed to be inner points of the sides of the triangle. Eq.
(2) obviously yields another solution for each of these points along the lines BC, AC and AB,
respectively. In this paper, however, we always consider the solutions for which the square
root in eq. (2) is positive. This is necessary for the uniqueness of the following definition.

Definition 1 The point of concurrency RP is called the square root of the point P .

Figure 1: The line OE12 is independent from the positions of E1 and E2, i.e.,
from the change of the unit-length

From now on the reference system is supposed to be a CP-system. The triangle U1U2U3 is
acute. Denote its orthocenter by H. Let us consider the triangle OU1U2. Due to equation (1)

(

e1

f1

)2

(

e2

f2

)2
=

tan α1

tan α2

holds. If we denote the trace of H on the side U1U2 by T12 then we can write the right side
of the equation as

tan α1

tan α2

=
T12U2

U1T12

.

Now consider the point R12 of U1U2 for which

R12U2

U1R12

=

√

tan α1

tan α2

.

If E12 is the point associated to the spatial point (1, 1, 0, 1), then one can observe, that the
position of the line OE12 is independent from the positions of E1 and E2 and this line intersects
the side U1U2 at R12 (cf. Fig. 1).

By similar arguments one can find the points R13 and R23 on the side U1U3 and U2U3,
respectively. The above mentioned definition immediately implies that the lines U1R23, U2R13

and U3R12 are concurrent and the point of concurrency R is nothing else but the square root
of the orthocenter H of the triangle U1U2U3. Moreover, if E123 is the point associated to the
spatial point (1, 1, 1, 1), then the line OE123 passes through the point R, which is the image
of the spatial point at infinity (1, 1, 1, 0). Finally we obtained the following condition (cf.
Fig. 2).
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Figure 2: A central projection system and its circles

Theorem 1 A general central axonometric reference system (O,E1, E2, E3, U1, U2, U3) in P
2

with unit point E123 is a central projection system iff the line OE123 passes through the square

root of the orthocenter of the triangle U1U2U3.

This condition can be reformulated by applying the following proposition.

Lemma 2 Let ABC be an acute-angled triangle and Ha, Hb, Hc the traces of its orthocentre

H. There is a unique circle through Ha, Hb which is tangent to the side AB, and the touching

point is an interior point of AB. Denote the touching point by Rc . Similarly finding Ra and

Rb the lines ARa, BRb, CRc are concurrent and the point of concurrency R is the square root

of H.

Proof: Consider the pencil of circles passing through Hb and Hc. These circles intersect the
line BC in pairs of an involution. One special circle of this pencil splits into the line HbHc

and the line at infinity, so the point H ′

a = HbHc

⋂

BC corresponds to the point at infinity
of BC in this involution. H ′

a is the harmonic conjugate of Ha with respect to B and C. The
involution also yields that the power of H ′

a with respect to all circles of the pencil is constant,
namely H ′

aHb · H
′

aHc. The power of H ′

a also equals H ′

aB · H ′

aC as the circle with diameter
BC passes through Ha and Hb as well. Consequently the touching point Ra has the distance
√

H ′

aB · H ′

aC from H ′

a which gives the proof.
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Remark: In the proof of Lemma 2 we refer to a pencil of circles. The Feuerbach circle of the
triangle ABC is also included in this pencil. The Feuerbach circle intersects the side BC at
the pedal point Ha and the midpoint of BC, which implies that the point Ra lies between
these two points.

This means that if we have a general CA-system we can try to find these circles. If they
exist then the system is a CP-system and vice versa. Thus we found the following consequence.

Theorem 2 If a general central axonometric reference system (O,E1, E2, E3, U1, U2, U3) in

P
2 is given, denote the traces of the orthocentre of the triangle U1U2U3 by T12, T13, T23. Find

the intersection point R12 of U1U2 and OE12. Similarly find R13 and R23. The system is

a central projection system iff the following circles exist: one through T12, T13 and touching

U2U3 at R23, one through T12, T23 and touching U1U3 at R13 and one through T13, T23 and

touching U1U2 at R12.

Figure 3: Different positions of unit points in the same reference system.
All are of central projection type.
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The existence of these circles (cf. Fig. 2) can easily be controlled, so this latter theorem gives us
a simple Euclidean construction to verify if an existing drawing is a central projection system.
Note, that the existence of all three circles is necessary, because each circle is “responsible”
for the fulfillment of the equality of one ratio in eq. (1). For a Euclidean construction of the
square root of an interior point, see [9].

Here we have to remark, that allowing negative signs in eq. (2) we obtain alternative
solutions for R12, R13 and R23, which yield alternative circles and three more possibilities for
the point R as well. For example in Fig. 2 these new alternatives for R would be the images of
the spatial points at infinity (1, 1,−1, 0), (1,−1, 1, 0) and (1,−1,−1, 0), respectively. Similar
statements could also be formulated by these additional solutions.

3. Moving the unit points along the axes

A simple way to change a CP-system is to move one of the unit points, say E1, along its
axis. The points O,U1, U2, U3 remain unchanged which yields a constant right side of eq. (1).
To preserve the ratios of the left side of the equation as well (and thus preserve the central
projection type of the system) the other two unit points E2 and E3 will be forced to move
along their axes as well. This movement can easily be calculated analytically, but it can also
be constructed in a simple way: drawing OE12, OE13 and OE23 of the existing system, the
points E12, E13, E23 have to be moved along these lines. Fig. 3 shows different positions of E1

and the other two unit points preserving the system to be of central projection type. This
continuous change of the system can easily be constructed and calculated as well, and gives
the impression to be getting closer and closer to the object, more precisely, to the origin.
This is a similar effect to that one which can be achieved by decreasing the distance of the
spatial origin and the centre of the projection but preserving the distance of the centre and
the image plane.

On the other hand, our condition can also be applied in the correction of a CA-system.
Suppose we have a general CA-system which does not fulfill the requirements of being a CP-
system. If we would like to correct the system to satisfy the conditions, some of its base points
have to be moved. In our current case the modification of the CA-system will be performed
by modifying its unit points and preserving the position of the points O,U1, U2, U3. Once the
CA-system is given, by elementary methods one can draw the three circles in the triangle
U1U2U3 passing through two traces of the orthocentre and touching the third side each. Thus
we find the points R12, R13, R23 as touching points (cf. Theorem 2). In general none of the
points E12, E13, E23 will be on the lines OR12, OR13, OR23, hence at least two of them have
to be repositioned along their axis. If we decide to preserve the position of one unit point,
say E1, then the positions of the other two unit points E2 and E3 are uniquely determined
and can be found by a simple construction. In Fig. 4 three different cases of correction can
be seen by preserving O,U1, U2, U3, E1, then O,U1, U2, U3, E2 and finally O,U1, U2, U3, E3 of
the original system.

A further possibility could be the modification of all three unit points of the CA-system
to be a CP-system. Among the infinitely many possible positions one may use the one with
minimum distortion comparing with the original system. This problem can be solved by
calculating the movement of the unit points and find the minimum of the squared distances
between the new and the original unit points.
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Figure 4: a) the original CA-system and three different corrections
to be a CP-system, preserving O,U1, U2, U3 and b) E1, c) E2, d) E3

4. Future work

Applying the new synthetic condition for a CA-system to be of central projection type, modi-
fication of unit points of the reference system has been discussed. Further questions naturally
arise about changing the positions of other points of the system, effects of the alteration of
the origin and especially the points at infinity.

Here we applied the Szabó-Stachel-Vogel condition, which requires finite points in
the reference system. Other conditions — like the one by Dür [5] — do not assume finite base
points, thus the application of these theorems may lead more general description of moving
central axonometric reference systems.
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