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Abstract. In this contribution we show generalizations of the well known Simson-
Wallace Theorem into the space. We use methods of commutative algebra which
are based on Gröbner basis computations (see [3]). This method enables to find
and to prove such statements which are often very difficult to prove by techniques
of synthetic geometry. In order to display geometric objects we use the dynamic
geometry software Cabri and the mathematical software Maple. All computations
were done by the computer algebra system CoCoA.
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basis, automatic theorem proving, cubic surface

MSC 2000: 51N20, 51M04, 13P10

1. Introduction

There is a nice property of the circumcircle of a triangle, which is often ascribed to R. Simson

(1687-1768), but it was really discovered by W. Wallace in 1799 (see [4]). Therefore it is
quite common to call the following statement the Simson-Wallace Theorem:

Let ABC be a triangle and P a point of the circumcircle of ABC. Then the feet of perpen-
diculars from P onto the sides of ABC lie on a straight line (see Fig. 1).

The properties of the Simson-Wallace line and generalizations of this theorem have been
investigated very often. A survey of results is given in [4, 9, 14]. For the latest references see
[5, 13].

In this paper we will present two generalizations of the Simson-Wallace Theorem into the
Euclidean space E3. First we generalize the theorem on an arbitrary tetrahedron ABCD and
investigate points P whose orthogonal projections K,L,M,N on the faces of ABCD form a
tetrahedron of fixed volume (cf. [11]), where the same problem is solved for a special class of
tetrahedra. We will show that these points P lie on a cubic surface. Some properties of this
cubic surface are given. In the second generalization we take a skew quadrilateral instead of a
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Figure 1: The “classical”
Simson-Wallace Theorem

Figure 2: Gergonne’s generalization —
the triangle KLM has fixed area

tetrahedron and explore points, whose orthogonal projections on the sides of a quadrilateral
are coplanar. In both cases we use the methods of commutative algebra based on Gröbner
basis computations and automatic theorem proving (see [3]). Also a synthetic way of solving
the above problems is shown.

The paper is organized as follows. At the beginning the basic algebraic tools of the
theory of automatic theorem proving are introduced. Then some known generalizations of
the Simson-Wallace Theorem in the plane are given ([6, 5]. Finally the two generalizations of
the Simson-Wallace Theorem into the space are described.

All the computations were done on Intel Pentium 2.00GHz/1572MB RAM using the
computer algebra system CoCoA 4.31 and Maple 8 and 9.5. The figures were produced with
the aid of Maple and the dynamic geometry software Cabri II.

2. Basic algebraic tools in automatic theorem proving

One of the most useful applications of Gröbner bases is automated theorem proving. Many
non trivial theorems have been proved and even discovered by this theory. In the last 20
years of the last century efficient methods were developed for automatic theorem proving of
theorems from elementary geometry. In this section we will give a brief overview of the theory
of automatic theorem proving (see [2, 16, 8, 3, 15, 12]).

Automated theorem proving treats statements of the kind H ⇒ T, where H is the set
hypotheses and T the set of theses or conclusions. We are to decide whether the statement
is true or not.

• In the first step of automatic proving theorems we algebraize the geometric problem.
To do this we have to specify a coordinate system and by means of variables to express
the relations between geometric objects and geometric magnitudes like areas, squares
of distances (to avoid radicals) etc. This stage is characterized by establishing the set
of hypotheses in the form of polynomial equations

h1(x1, x2, . . . , xn) = 0, h2(x1, x2, . . . , xn) = 0, . . . , hr(x1, x2, . . . , xn) = 0

1The software CoCoA is freely distributed at http://cocoa.dima.unige.it .
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and the thesis, which is expressed by the polynomial equation

t(x1, x2, . . . , xn) = 0.

After the first step the statement has the form

∀x ∈ Cn, h1(x) = 0, h2(x) = 0, . . . , hr(x) = 0 =⇒ t(x) = 0, (1)

where h1, h2, . . . , hr ∈ Q[x1, x2, . . . , xn], C is the field of complex numbers, and Q[x1, x2, . . . , xn]
is the ring of polynomials with rational coefficients. If the thesis consists of more poly-
nomial equations we will solve each of them separately.

It can happen that such a statement is not true because of the absence of so called non
degeneracy conditions.

• The second step is characterized by finding conditions under which the statement be-
comes meaningless, e.g., a triangle collapses to the segment, the segment to the point
etc., i.e.,

g1(x1, x2, . . . , xn) 6= 0, g2(x1, x2, . . . , xn) 6= 0, . . . , gs(x1, x2, . . . , xn) 6= 0.

Then the geometric statement can be translated into the form

∀x ∈ Cn, h1(x) = 0, . . . , hr(x) = 0, g1(x) 6= 0, . . . , gs(x) 6= 0 =⇒ t(x) = 0. (2)

• The third step involves the verification of (2). The hypothesis variety H is the set of all
solutions of the system

h1 = 0, . . . , hr = 0, g1 6= 0, . . . , gs 6= 0. (3)

The thesis variety T is the set of all solutions of t = 0. The statement (2) is true if H
is contained in T . By Hilbert’s Nullstellensatz the statement (2) is true iff 1 belongs
to the ideal

J(h1, . . . , hr, g1t1 − 1, . . . , gsts − 1, ct − 1),

where t1, t2, . . . , ts, t are slack variables. In practice it usually suffices to show that t
belongs to the ideal

I(h1, . . . , hr, g1t1 − 1, . . . , gsts − 1).

With automatic deriving we mean finding geometric formulas holding among prescribed
geometric magnitudes which follow from given assumptions.

On the other hand, automatic discovery stands for searching complementary assumptions
which are necessary to add to the geometric statement (which is in general not valid), so that
it becomes true. The discovery of loci belongs to automatic discovery; here we search for the
“unknown” locus of points. This method will be demonstrated at Guzman’s generalization
of the Simson-Wallace Theorem in the plane and then by generalizations in the space.

3. Generalizations of the Simson-Wallace Theorem in the plane

Let K,L,M be the feet of perpendiculars dropped from a point P to the sides AB,BC,CA
of the triangle ABC, respectively. Instead of demanding K,L,M being collinear we look for
points P leading to a pedal triangle KLM of fixed area. The locus of such points P is a
circle, due to J. D. Gergonne (see [2]). His theorem reads as follows:
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Let ABC be a triangle and P a point of a circle which is concentric with the circumcircle of
ABC. Then the feet of perpendiculars from P onto the sides of ABC form a triangle of the
constant area f (Fig. 2).

In the previous cases we projected a point P orthogonally to each side of a triangle ABC
to obtain the points K,L,M . Now we will project a point P onto the sides BC, AC, AB of
a triangle ABC in three arbitrary directions u, v, w given by vectors u, v, w to obtain the
points K,L,M , respectively. We exclude the case when all the three directions u, v, w are
parallel (in this case points P fill the whole plane) and the case that the directions u, v, w are
parallel to the sides BC,AC,AB, respectively. We will investigate the locus of points P such
that the triangle KLM has a fixed area s (see [6], where the problem is solved in a synthetic
way).

Let us choose the Cartesian system of coordinates so that

A = [a, 0], B = [b, c], C = [0, 0], P = [p, q],
K = [k1, k2], L = [l1, l2], M = [m1,m2],
u = (u1, u2), v = (v1, v2), w = (w1, w2).

From K = P + t1u, L = P + t2v, M = P + t3w, K = C + s1(B − C), L = C + s2(A − C),
M = A + s3(B − A), where t1, t2, t3, s1, s2, s3 are real parameters, we get the system of
equations

h1 : k1 = p + t1u1, h2 : k2 = q + t1u2, h3 : l1 = p + t2v1, h4 : l2 = q + t2v2,
h5 : m1 = p + t3w1, h6 : m2 = q + t3w2, h7 : k1 = s1b, h8 : k2 = s1c,
h9 : l1 = s2a, h10 : l2 = 0, h11 : m1 = a + s3(b − a), h12 : m2 = s3c.

The conclusion h13 is given by

area of KLM = s ⇐⇒ h13 : 2s = k1l2 + l1m2 + m1k2 − m1l2 − k1m2 − l1k2.

It is obvious that in general h13 doesn’t follow from the assumptions h1, h2, . . . , h12 .Hence
we will add the conclusion polynomial h13 to h1, h2, . . . , h12 and eliminate the dependent
variables k1, k2, l1, l2, m1,m2, t1, t2, t3, s1, s2, s3 from the ideal I = (h1, h2, . . . , h13). We enter
(in CoCoA)

UseR::=Q[abcpqfu[1..2]v[1..2]w[1..2]k[1..2]l[1..2]m[1..2]t[1..3]s[1..3]];

I:=Ideal(k[1]-p-t[1]u[1],k[2]-q-t[1]u[2],l[1]-p-t[2]v[1],l[2]-q-t[2]v[2],m[1]

-p-t[3]w[1],m[2]-q-t[3]w[2],k[1]-s[1]b,k[2]-s[1]c,l[1]-s[2]a,l[2],m[1]-a-s[3]

(b-a),m[2]-s[3]c,k[1]l[2]+l[1]m[2]+m[1]k[2]-m[1]l[2]-k[1]m[2]-l[1]k[2]-2s);

Elim(k[1]..s[3],I);

and get a single algebraic equation of second degree in p, q

C(s) = 0, (4)

where

C(s) = c2v2p
2(u1w2 − u2w1) + cpq(cu2v1w1 − au2v2w1 + bu2v2w1 − cu1v1w2 +

+ au2v1w2 − bu1v2w2) + cq2(−bu2v1w1 + au1v2w1 − au1v1w2 + bu1v1w2) +
+ ac2v2p(u2w1 − u1w2) + acq(−cu1v2w1 + cu1v1w2 − bu2v1w2 + bu1v2w2) +
+ 2v2s(cu1 − bu2)(cw1 + aw2 − bw2).
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As the constant s occurs only in the last term of (4) we can write

C(s) = C(0) + s · Q, (5)

where Q = 2v2(cu1 − bu2)(cw1 + w2(a− b)). We have proved that (4) is a necessary condition
for the area of KLM being s.

Now we shall prove that the condition (4) is also sufficient:
By the Hilbert’s Nullstellensatz we are to prove that the polynomial h13 belongs to the
radical ideal of (h1, h2, . . . , h12, C(s)) or — which is equivalent — that 1 belongs to the ideal
J = (h1, h2, . . . , h12, C(s), h13t−1) where t is a slack variable. We compute the normal form NF

of 1 with respect to the ideal J and get NF(1, J) = 1, so it not known whether the condition
(4) is sufficient for the area of KLM being s or not. The reason is that most geometric
theorems are generically true.

We shall search for non-degeneracy conditions: Eliminating all dependent variables k1, k2,
l1, l2, m1,m2, t1, t2, t3, s1, s2, s3 plus a slack variable t in the ideal J we get the condition

d : v2(cu1 − bu2)(cw1 + w2(a − b)) = 0,

which means that at least one of directions u, v, w is parallel to the sides BC,AC,AB, re-
spectively. In order to avoid this, we add the polynomial dr − 1 to the ideal J and compute
the normal form of 1 w.r.t. the ideal J ′ = J ∪ {dr− 1}, where r is another slack variable. We
obtain NF(1, J ′) = 0, i.e., the condition (4) is sufficient for the area of KLM being s .

We thus arrived at the theorem which is due to M. de Guzmán [6]

Project P onto the sides BC,AC,AB of a triangle ABC in given directions u, v, w, which are
not parallel to the sides BC,AC,AB, onto the points K,L,M , respectively. Then the locus
of points P such that the area of the triangle KLM equals s is a conic C(s) given by (4).

We see that this generalization confines the previous cases. A demonstration of this
generalization is carried out with the dynamic geometry software Cabri II (see Fig. 3).

Suppose that c 6= 0 and a 6= 0, i.e., A,B,C are not collinear and A 6= B. The family
of conics C(s) for a given s and arbitrary directions u, v, w has interesting properties, which
follow from (5). Let us recall some of them [6, 5]:

a) C(0) passes through the vertices A,B,C, i.e., C(0) is a circumconic of ABC.

b) Varying the area s the curves C(s) to given directions u, v, w form a pencil of homoth-
etic central conics (ellipses or hyperbolas with common axes) or a pencil of congruent
parabolas with common axis.

c) C(0) is singular if and only if two of the directions u, v, w are parallel.

d) If all the directions u, v, w are pairwise different then C(s) is a regular conic.

e) C(0) passes through the points A′, B′, C ′, where A′ = A′B ∩ A′C, B′ = B′A ∩ B′C and
C ′ = C ′A ∩ C ′B, where A′B ‖ B′A ‖ w, A′C ‖ C ′A ‖ v and B′C ‖ C ′B ‖ u.

Fig. 3 shows an ellipse and a hyperbola as the locus of points P such that 4KLM has
the area s for different choices of directions u, v, w.

Remarks: 1) In [5] affine and projective generalization of the Simson-Wallace Theorem have
been introduced. If the affine feet K,L,M lie on the affine Wallace line of P with respect to a
center Z or if the projective feet K,L,M lie on the projective Wallace line of P with respect
to a center Z and an axis z then P lies on a conic, which depends on two parameters given
be coordinates of the center Z.
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Figure 3: Ellipse and hyperbola for various kinds of u, v, w

2) By a given triangle ABC the conic (4) is defined by seven parameters u1, u2, v1, v2, w1, w2

and by s, but in fact four parameters are enough setting u2 = v2 = w2 = 1. Briefly we could
write C(u, v, w, s). 3) In the classical Simson-Wallace Theorem the directions u, v, w and the
directions of the sides of the given triangle form three pairs of an involutoric projectivity, which
includes the so called ‘absolute involution’ ι on the ideal line of the plane. Like any circle
in plane, the circles of Gergonne’s extension of the Simson-Wallace Theorem pass through
the imaginary fixed points of ι. Choosing u, v, w arbitrarily, the above mentioned pairs of
directions define an elliptic or hyperbolic or parabolic projectivity π on the ideal line of the
plane and the solution conics C(s) of Guzmán’s generalization pass through the fixed points
points of this projectivity π. As a consequence, triplets (ui, vi, wi) defining projectivities πi

with common fixed points lead to identical sets of conics {Ci(s)}.

4. Generalization to three dimensions

In this part we generalize the Simson-Wallace Theorem to the space. We will show two
generalizations. First we extend the Simson-Wallace Theorem to the space considering a
tetrahedron ABCD instead of a triangle and arbitrary projections K,L,M,N of a point P
onto the faces of ABCD such that vol(KLMN) = s. Then we will replace a tetrahedron by
a skew quadrilateral and investigate the same problem.

4.1. Generalization of the Simson-Wallace Theorem on a tetrahedron

Consider a tetrahedron ABCD in a Euclidean space E3. Let P be an arbitrary point and
K,L,M,N the feet of perpendiculars dropped from P onto the faces BCD, ACD, ABD,
and ABC of the tetrahedron ABCD, respectively. We are looking for the locus of points P
such that vol(KLMN) = s (cf. [11]), where the same problem is solved for a special class of
tetrahedra (in our notation) A = [0, 0, 0], B = [1, 0, 0], C = [0, c, 0], D = [1, e, f ].

Choose the Cartesian system of coordinates such that

A = [0, 0, 0], B = [a, 0, 0], C = [b, c, 0], D = [d, e, f ], P = [p, q, r],
K = [k1, k2, k3], L = [l1, l2, l3], M = [m1,m2,m3], N = [n1, n2, n3].
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Then the following relations hold:

PK⊥BCD ⇐⇒ h1 : (b − a)(p − k1) + c(q − k2) = 0 ∧
h2 : (d − a)(p − k1) + e(q − k2) + f(r − k3) = 0,

k ∈ BCD ⇐⇒ h3 : −acf − aek3 + afk2 + ack3 + cfk1 + bek3 + cdk3 − bfk2 = 0,
PL⊥ACD ⇐⇒ h4 : b(p − l1) + c(q − l2) = 0 ∧ h5 : d(p − l1) + e(q − l2) + f(r − l3) = 0,
L ∈ ACD ⇐⇒ h6 : cfl1 + bel3 − cdl3 − bfl2 = 0,
PM⊥ABD ⇐⇒ h7 : a(p − m1) = 0 ∧ h8 : d(p − m1) + e(q − m2) + f(r − m3) = 0,
M ∈ ABD ⇐⇒ h9 : aem3 − afm2 = 0,
PH⊥ABC ⇐⇒ h10 : a(p − n1) = 0 ∧ h11 : b(p − n1) + c(q − n2) = 0,
N ∈ ABC ⇐⇒ h12 : acn3 = 0.

The conclusion h13 : vol(KLMN) = s ⇐⇒

h13 :

∣

∣

∣

∣

∣

∣

∣

∣

k1 k2 k3 1
l1 l2 l3 1
m1 m2 m3 1
n1 n2 n3 1

∣

∣

∣

∣

∣

∣

∣

∣

= 6s. (6)

A direct elimination of the dependent variables k1, k2, k3, l1, l2, l3, m1, m2, m3, n1, n2, n3 from
the ideal I = (h1, h2, . . . , h12, h13) fails. Hence we use the following successive elimination.
First eliminate m1,m2,m3, n1, n2, n3 in the ideal (h7, . . . , h13) to obtain the elimination ideal
generated by the only polynomial p1. Then eliminate l1, l2, l3 in the ideal (h4, h5, h6, p1). We
get the elimination ideal with one generator p2. In the end we eliminate k1, k2, k3 in the ideal
(h1, h2, h3, p2) to obtain the single condition

F (s) = ac2f 3G + s · Q, (7)

where

G = bf 2q3(b − a) + fr3(abe − acd + cd2 − b2e − c2e + ce2) + c2f 2p2q+
+ cfp2r(e2 − ce + f 2) + cf 2q2p(a − 2b) + fq2r(abe − acd + cd2 − b2e + cf 2)+
+ cf 2r2p(a − 2d) + f 2r2q(b2 − ab + c2 − 2ce) + 2cefpqr(b − d) + abcf 2q2+
+ r2(abce2 − ac2de + c2d2e + acde2 − 2bcde2 − abe3 + b2e3 + acdf 2 − abef 2+
+ b2ef 2 + c2ef 2) − ac2f 2pq + acfpr(ce − e2 − f 2)+
+ fqr(ac2d − 2abce − c2d2 + 2bcde − b2e2 + abe2 + abf 2 − b2f 2 − c2f 2)

and

Q = −6(e2 + f 2) ((cd − be)2 + b2f 2 + c2f 2) (a2c2 − 2ac2d + c2d2 − 2a2ce + 2abce +
+ 2acde − 2bcde + a2e2 − 2abe2 + b2e2 + a2f 2 − 2abf 2 + b2f 2 + c2f 2),

which is a constant which doesn’t depend on p, q, r, s.

We established the following

Theorem 1 Let P be an arbitrary point and K,L,M,N the feet of perpendiculars dropped
from P onto the faces BCD, ACD, ABD, ABC of a tetrahedron ABCD, respectively. Then
the locus of points P such that the tetrahedron KLMN has constant volume s belong to the
surface F (s) = 0 from (7).
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Remarks: 1) Q can be written in the form

Q = −6 · 1

a2
· |(B − A) × (D − A)|2 · |(D − A) × (C − A)|2 · |(D − B) × (C − B)|2. (8)

2) Note that (7) is the necessary condition for the tetrahedron KLMN having constant
volume. We didn’t succeed to show that (7) is (in this general form) also sufficient for the
moment. Hence we do not know whether every point of the surface F (s) = 0 obeys the
conditions of the theorem. In [11] a similar problem for a non general tetrahedron is solved
by Wu’s method [16], which is based on pseudodivision. In this way a necessary and sufficient
condition was found in accordance with our results. We will show that for concrete values
a, b, c, d, e, f we are able to verify sufficiency as well.

Now we list some properties of a surface F (s) = 0 for s being zero, i.e., when K,L,M,N
are coplanar. From (7) follows F (0) = 0 ⇐⇒ G = 0.

Theorem 2 The surface G has the following properties:
a) G contains the edges AB,AC,AD,BC,BD,CD of ABCD, i.e., G is a circumsurface

of ABCD.

b) G is a cubic surface.

c) G has 4 singular points — the vertices A,B,C,D of the tetrahedron.

d) The point of intersection between three planes which contain, e.g., the edges AB, BD,
DA and which are perpendicular to the planes ABC, BDC, DAC, respectively, belongs
to the surface G. Similarly we will proceed for other triples of edges.

e) The lines AB,AC,AD,BC,BD,CD are torsal lines of the cubic G, i.e., the tangent
plane at an arbitrary point of the line contains the whole line. The tangent planes at
three pairs of opposite edges intersect at three other straight lines which are coplanar.
Each of these three lines intersects the pair of corresponding skew torsal lines.

f) There exists a simple rational parametrization of G.

Proof: a) Note that an arbitrary point P of an edge coincides with two points from the
feet of perpendiculars K,L,M,N, which are then coplanar. The other way to verify this is a
direct computation.
b) This statement follows from the fact, that the cubic surface contains all the six edges of a
tetrahedron ABCD (see [1]).
c) If all the cubic terms in the equation G = 0 vanish, then the surface is a quadric, which is
not possible, because the surface contains all six edges of ABCD.
d) This follows from the fact that in this case all the feet K,L,M,N lie in the plane ABD.
e) For the proof see [1, pp. 567–568].
f) Let X = A + tu be a straight line with u = (u, v, 1). Then, because of A being a double
point, it intersects the cubic surface G at most at one point X(u, v, 1) (see Example 1).

Remarks: 1) It is well known that every cubic surface (in the complex projective space)
contains 27 lines. In this case we have 6× 4 + 3 = 27 lines, because each edge is counted four
times (see [1, 7, 10].
2) To prove Theorem 1 we could also proceed in the more synthetic way as Guzmán did in
plane [6]. The feet K,L,M,N form a tetrahedron of fixed volume s. Hence K,L,M,N fulfil



P. Pech: On the Simson-Wallace Theorem and its Generalizations 149

the formula (6). The coordinates of points K,L,M,N being intersections of perpendiculars
from P = [p, q, r] with the faces of ABCD are linear in p, q, r. Thus (6) is a cubic algebraic
equation in p, q, r, which has in general 20 real coefficients. To determine these coefficients
we need at least 19 points of the surface. We know that each edge of ABCD contains two
double points, which makes together 4 + 6 × 2 = 16 points. It remains to determine the last
3 points. A construction of such points follows from d) in Theorem 2.

Figure 4: Cubic surface p2q + pq2 + p2r + q2r + pr2 + qr2 − pq − pr − qr = 0
as the locus of points P with coplanar feet in planes of a (special) tetrahedron

Example 1: For special values a = 1, b = 0, c = 1, d = 0, e = 0, f = 1, s = 0 we get from (7)

p2q + pq2 + p2r + q2r + pr2 + qr2 − pq − pr − qr = 0, (9)

see Fig. 4.
First we will prove that (9) is also a sufficient condition for K,L,M,N being coplanar (see
Example 3), where a detailed computation is carried out.
This surface can be easily parametrized taking into account that the surface has 4 double
points. Putting p = ur, q = vr, r = r and setting this into (9) we get

p =
u(u + uv + v)

u2v + u2 + uv2 + v2 + u + v
, q =

v(u + uv + v)

u2v + u2 + uv2 + v2 + u + v

r =
u + uv + v

u2v + u2 + uv2 + v2 + u + v

(10)

for real u, v.

Example 2: The choice a = 2, b = 1, c =
√

3, d = 1, e = 1/
√

3, f =
√

8/3 with the centroid
of ABCD in the origin gives for an arbitrary s a one-parametric system of surfaces which are
associated with a regular tertrahedron (writing x, y, z instead of p, q, r):

24
√

6x2y + 24
√

3x2z + 24
√

3y2z − 8
√

6y3 − 16
√

3z3 +

+ 36
√

2x2 + 36
√

2y2 + 36
√

2z2 − 18
√

2 − 729s = 0.
(11)
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For s = 0 we obtain the locus of points P such that the feet K,L,M,N are coplanar. This
cubic surface has the vertices A,B,C,D as the only singular points.
For s 6= 0 all the cubic surfaces associated with a regular tetrahedron ABCD don’t contain
singular points unless the value s = −18

√
2/729. This leads to the cubic surface

6
√

6x2y + 6
√

3x2z + 6
√

3y2z − 2
√

6y3 − 4
√

3z3 + 9
√

2x2 + 9
√

2y2 + 9
√

2z2 = 0, (12)

with one singular point — an isolated point placed in the centroid of ABCD.
In Fig. 5 we see the cubic surface (11) associated with a regular tetrahedron ABCD for
s = 10

√
2/729.

Figure 5: Cubic surface associated with a regular tetrahedron as the locus
of points P with constant volume s = 10

√
2/729 of the tetrahedron KLMN

4.2. Generalization of the Simson-Wallace Theorem on skew quadrilaterals

Another generalization of the Simson-Wallace Theorem consists in a consideration of a skew
quadrilateral ABCD in E3 instead of a tetrahedron. Denote by K,L,M,N the feet of perpen-
diculars which are dropped from a point P to the sides AB, BC, CD DA of a quadrilateral
ABCD, respectively. We are to find the locus of points P such that feet K,L,M,N are
coplanar.

Choose the Cartesian system of coordinates such that

A = [0, 0, 0], B = [a, 0, 0], C = [b, c, 0], D = [d, e, f ],
P = [p, q, r], K = [k1, 0, 0], L = [l1, l2, 0], M = [m1,m2,m3], N = [n1, n2, n3].
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The conditions are as follows:

PK⊥AB ⇐⇒ h1 : p − k1 = 0,
L ∈ BC ⇐⇒ h2 : l2(b − a) − c(l1 − a) = 0,
PL⊥BC ⇐⇒ h3 : (p − l1)(b − a) + c(q − l2) = 0,
M ∈ CD ⇐⇒ h4 . . . h6 : d − b)(m2 − c) − (e − c)(m1 − b) = 0 ∧

(e − c)m3 − (m2 − c)f = 0 ∧ (m1 − b)f − m3(d − b) = 0,
PM⊥CD ⇐⇒ h7 : (p − m1)(d − b) + (q − m2)(e − c) + (r − m3)f = 0,
N ∈ DA ⇐⇒ h8 . . . h10 : dn2 − en1 = 0 ∧ dn3 − fn1 = 0

∧ fn2 − en3 = 0,
PN⊥DA ⇐⇒ h11 : (p − n1)d + (q − n2)e + (r − n3)f = 0,

coplanar K,L,M,N ⇐⇒ h12 : k1l2m3 − l2m3n1 − k1m3n2 + l1m3n2−
− k1l2n3 + l2m1n3 + k1m2n3 − l1m2n3 = 0.

The successive elimination (eliminate n1, n2, n3 first and then m1,m2,m3 etc.) of the 9 vari-
ables k1, . . . , n3 from the ideal (h1, h2, . . . , h11, h12) gives the equation H = 0 of a cubic surface
H which involves 176 terms:

H := p3(cd(c(−a + d) + 2e(a − e)) − b(e2 + f2)(a − b)) + cp2q(ae(−c + e) − f2(a − 2b)) +
+ cfp2r(−c(a − 2d) + 2e(a − b)) + p2(a2c2d − c2d3 − 2a2cde + abcde + b2cde + c3de − acd2e+

+ bcd2e + a2be2 − b3e2 + ac2e2 − bc2e2 − c2de2 − ace3 + bce3 + a2bf2 − b3f2 + ac2f2 −
− bc2f2 − c2df2 − acef2 + bcef2) + pq2(−ac2d + c2d2 + 2acde − 2bcde − abe2 + b2e2+
+c2f2) + pq(c(d2 + e2 + f2)(ab − b2 − c2) + e(d2 + e2 + f2 − bd − ce)(ab − b2 − c2) +
+ ef2(−ab + b2 + c2) − a2bcd + ab2cd + ac3d + a2cd2 − abcd2 − acd3 + bcd3 + a2c2e−

− ac2de + c2d2e − a2ce2 − acde2 + bcde2 + c2e3 + a2cf2 + abef2 − 2abcf2 − acdf2 + cf2bd−
− ef2b2) + 2fpqr(cd − be)(a − b) + p(−a2c2d2 + ac2d3 + a2bcde − ab2cde − ac3de + a2cd2e−
− abcd2e − a2b2e2 + ab3e2 − a2c2e2 + abc2e2 + ac2de2 + a2ce3 − abce3 − a2b2f2 + ab3f2 −

− a2c2f2 + abc2f2 + ac2df2 + a2cef2 − abcef2) + f2pr2(−ab + b2 + c2) +
+fpr(ac(c(a − 2d) − 2e(a − b)) − (bd − d2 + ec − e2 − f2)(ab − b2 − c2))) + aceq3(−c + e)+

+ acfq2r(−c + 2e) + aeq2((−c + e)(ab − b2 − c2) + c(bd − d2 + ce − e2 − f2))+
+ qr2(acf2) + afqr((−c + 2e)(ab − b2 − c2) + c(bd − d2 + ce − e2 − f2)) +

+ aeq(bd − d2 + ce − e2 − f2)(ab − b2 − c2) + afr2(ab − b2 − c2) +
+afr(bd − d2 + ce − e2 − f2)(ab − b2 − c2) = 0

The equation H = 0 gives a necessary condition for P = [p, q, r] such that feet K,L,M,N
are coplanar. We can state

Theorem 3 Let P be an arbitrary point and K,L,M,N the feet of perpendiculars dropped
from P onto the sides AB, BC, CD, DA of a skew quadrilateral ABCD, respectively. Then
points P = [p, q, r] such that K,L,M,N are coplanar obey the equation H = 0.

Remark: The author failed for the moment in proving that the condition H = 0 (in this
general form) is also sufficient for K,L,M,N being coplanar. In concrete cases (as in the
next example) this verification has been done.

Example 3: For the choice a = 1, b = 0, c = 1, d = 0, e = 0, f = 1 we get the cubic surface

−p2q + pq2 − p2r − q2r + pr2 + qr2 + p2 − r2 − p + r = 0, (13)

or after factorization

(p − r)(pq − q2 + pr + qr − p − r + 1) = 0.

Thus the cubic surface decomposes into the plane and one sheet hyperboloid (see Fig. 6).
The verification that (13) is also sufficent for K,L,M,N being coplanar is as follows:
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Figure 6: Plane and quadric (p − r)(pq − q2 + pr + qr − p − r + 1) = 0 as the
locus of points P with coplanar feet on the edges of a skew quadrilateral

Use R::=Q[abcdefpqrk[1..3]l[1..3]m[1..3]n[1..3]tuv];

I:=Ideal(p-k[1],l[2](b-a)-c(l[1]-a),(p-l[1])(b-a)+c(q-l[2]),(d-b)(m[2]-c)-(e-c)

(m[1]-b),(e-c)m[3]-(m[2]-c)f,(m[1]-b)f-m[3](d-b),(p-m[1])(d-b)+(q-m[2])(e-c)+

(r-m[3])f,dn[2]-en[1],dn[3]-fn[1],fn[2]-en[3],(p-n[1])d+(q-n[2])e+(r-n[3])f,a-1,

b,c-1,d,e,f-1,-p^2q+pq^2-p^2r-q^2r+pr^2+qr^2+p^2-r^2-p+r,(k[1]l[2]m[3]-l[2]m[3]

n[1]-k[1]m[3]n[2]+l[1]m[3]n[2]-k[1]l[2]n[3]+l[2]m[1]n[3]+k[1]m[2]n[3]-

l[1]m[2]n[3])t-1);

NF(1,I);

The answer NF= 0 follows immediately.

Remarks: 1) The generalization above stimulates immediately the following question: The 6
edges of a tetrahedron allow three possibilities of skew edge quadrilaterals. How are the three
solution surfaces (Fig. 6) of these three possibilities related?

2) For the construction of the generalization above it is not essential that the four edges form
a skew quadrilateral. One could equally treat the case of four skew given lines a, b, c, d and
ask for coplanar pedal points K,L,M,N of a point P . And now it would be interesting to
know if it makes a difference whether the given lines are generators of a regulus or not.

3) In Fig. 6 the respective cubic surface decomposes into a quadric and a plane. In another
case, e.g., a = 1, b = 1, c = 1, d = 0, e = 0, f = 1 we get an irreducible cubic. Why?

5. Final remarks

The Wallace-Simson Theorem has been generalized several times in the history. The two
generalizations to three dimensions presented in this paper are based on results of commu-
tative algebra in the last third of the last century. There are many questions arising from
this. Some of them were indicated in remarks. There are problems with computational com-
plexity. The equations of surfaces are too long in its general form, which prevents us from
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another generalizations (arbitrary directions u, v, w, investigation of vol(KLMN) in the sec-
ond generalization etc.) Projective extension as well as a synthetic attitude would also be
possible.
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