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Abstract. Using a construction scheme originally devised by M.C. Escher, one
can generate doubly-periodic patterns of the xy-plane with the operations of ro-
tation, reflection and translation acting on an asymmetric square motif. Rotating
and/or reflecting the original motif yields eight distinct aspects. By selecting m2

(not necessarily distinct) motif aspects and arranging them in an m × m Escher

tile, one can then tile the xy-plane by translating the Escher tile by integer mul-
tiples of m in the x and/or y direction to create wallpaper patterns.

Two wallpaper patterns are considered equivalent if there is some isometry
between the two. Previously, the general formula was given by the second au-
thor (Gethner) in [6] for the number of inequivalent patterns generated by m×m
Escher tiles composed of the four rotated aspects of a single asymmetric motif
by applying Burnside’s Lemma. Here we extend that formula to include the four
additional reflected aspects when composing m×m Escher tiles with which to tile
the plane.

Key Words: motif, wallpaper pattern, Escher tile, symmetry, group action, geo-
metric structure
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1. Introduction

By carving an asymmetric motif into a square block of wood and its mirror image into a
second block (Fig. 1(a) and (b)), the Dutch graphic artist Maurits Cornelis Escher created
wallpaper patterns generated by the two blocks acting as stamps with which to fill the plane.
Since each block could be rotated one of four ways (by 0◦, 90◦, 180◦ or 270◦), the two blocks
together yielded a total of eight distinct aspects of the original motif (Fig. 2). To create a
repeating wallpaper pattern in the xy-plane with period 2 in each direction, Escher first
constructed a 2 × 2 square tile filled with four copies of (not necessarily distinct) aspects
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Figure 1: (a) and (b): Escher’s original motif and its mirror image that he
carved into two square blocks. (c) and (d): Escher later carved blocks

that showed only the outlines of the bands

of the original motif (see Fig. 3). Translating the tile vertically and horizontally produced
doubly-periodic patterns in the xy-plane.

Escher found that if he populated a 2 × 2 tile with one of the four rotated aspects
(Fig. 2(a)–(d)), that of the 44 = 256 tiles, only 23 of the tiles generated visually distinct
wallpaper patterns. Any of the other 256 − 23 = 233 patterns produced in this manner
could be translated and/or rotated so as to exactly match one of the 23 patterns he had
sketched (or stamped) in his workbooks. In [10], Doris Schattschneider mathematically
verified Escher’s result by applying Burnside’s Lemma to show that there are 23 inequivalent
patterns generated from this set of 2 × 2 tiles, where two patterns are considered to be
equivalent if there is some isometry between the two. Escher performed a similar analysis
using all eight aspects from Fig. 2 when composing his 2×2 tiles, but restricted which aspects
could be placed in relation to each other as he considered two different cases. Here he included
reflection as an operation to transform one wallpaper pattern into another. Escher correctly
determined the number of inequivalent tiles for the first case, but did not complete the second
case. Further details regarding Escher’s work with illustrations of his sketches can be found
in [9] and [10].

In the m×m case, there are am2

different tiles that can be created using a distinct aspects
of a single asymmetric motif, where it will be understood that if a = 4, then the set of allowed
aspects are the four rotated aspects in Fig. 2(a)–(d), and if a = 8, then the set of aspects
include all those in Fig. 2. Let Na(m) denote the number of inequivalent wallpaper patterns
generated by these am2

distinct tiles. An outgrowth of Escher’s work is determining Na(m)
for arbitrary m and the appropriate set of a aspects. In [1], Dan Davis determined that
N8(2) = 154 by using a computer search. The second author (Gethner) gave the formula
for N4(m) for an arbitrary m by applying Burnside’s Lemma in [6]. In this paper we extend
those results to provide the general formula for N8(m).

Figure 2: The 8 aspects of Escher’s ribbon motif. (a)–(d) are counterclockwise
rotations of 0◦, 90◦, 180◦ or 270◦ of Fig. 1(c) with the bands partially shaded.

(e)–(h) are reflections of each of these in a horizontal line
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Figure 3: Construction of a 2 × 2 Escher tile T consisting of the four rotated aspects
of the motif shown in Fig. 2(a)–(d). For clarity, (a) outlines the four aspects

to illustrate their placement in T , and (b) depicts the final Escher tile T

2. Preliminaries

Let A4 denote the set of four rotated aspects of an asymmetric motif under 0◦, 90◦, 180◦,
and 270◦ rotations; let A8 = A4 ∪ R(A4) where R(A4) is the reflection of the aspects of
A4 along a horizontal line; and let A denote the set of aspects with which we are working.
Unless otherwise stated, A = A8, and a = |A| = 8. Let E denote the set of m × m Escher
tiles composed of a (not necessarily distinct) aspects chosen from A; let S denote the set of
wallpaper patterns of the xy-plane generated by an Escher tile from E.

We establish a 1-1 correspondence between the m×m Escher tiles of E and the wallpaper
patterns of S by embedding the tiles from E in standard position in the xy-plane. We do
this by first labeling the centers of the subsquares of the m × m Escher tile T ∈ E with the
ordered pairs (i, j) for i, j ∈ [m], where [m] = {0, . . . ,m − 1}, such that the center of the
lower-left subsquare is labeled (0, 0) (see Fig. 4). Each of the other subsquares are labeled
by their relative distance (in terms of subsquares) from the (0, 0) subsquare where the first
coordinate is the number of columns to the right, and the second coordinate is the number of
rows above.

(0,0)

(0,1)

(1,0)

(1,1)

Figure 4: Assigning coordinates for the four subsquares of a 2 × 2 Escher tile

Using these labels as x, y coordinates, we can then embed the tile T in the xy-plane by
placing the centers of its subsquares at the points corresponding to the labels. Each of the m2

subsquares then becomes a unit square. Translating T repeatedly by m units in the x and y
directions generates the corresponding wallpaper pattern W ∈ S. This embedding of T and
W in the xy-plane establishes a 1-1 correspondence ϕ where W = ϕ(T ). Fig. 5 illustrates
the placement of T from Fig. 3(b) in standard position. For clarity, the subsquares of T are
outlined, and the x and y axes are overlaid as dashed lines. Henceforth, we will assume that
an Escher tile T ∈ E is in standard position, and the wallpaper pattern it generates ϕ(T ) ∈ S
is embedded in the xy-plane.

Let G signify the group generated by the following transformations of the xy-plane:

1. Translation by 1 unit in either the x or y direction, denoted as S1,0 and S0,1, respectively.
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Figure 5: The wallpaper ϕ(T ) generated by the embedded 2 × 2 Escher tile T in Fig. 3

2. Rotation (counterclockwise) by 90◦ about the origin, denoted by R90.

3. Reflection through the x-axis, denoted by R.

We will say that two wallpaper patterns W,W ′ ∈ S are equivalent with respect to G, or
simply equivalent, if there exists some element g ∈ G that transforms one of the patterns into
the other, i.e. g◦W = W ′ where ◦ denotes the natural action of g on the xy-plane. We define
the action of g ∈ G on the Escher tile T ∈ E to produce another (not necessarily distinct)
tile T ′ ∈ E using the 1-1 correspondence ϕ between E and S, i.e. g◦T = T ′ if and only if
g◦ϕ(T ) = ϕ(T ′). Hence, we can say two Escher tiles T and T ′ are equivalent, denoted as
T ∼ T ′, if and only if there exists some g ∈ G such that g◦T = T ′.

2.1. Actions on the coordinates and the aspects of the subsquares

Each element g of G maps the coordinates (x, y) of each subsquare of an Escher tile T to some
new set of coordinates modulo m. This rearrangement of coordinates induces a permutation
ĝ on the set of ordered pairs C = {(i, j) : 0 ≤ i, j ≤ m− 1} corresponding to the locations of
the centers of the subsquares. In fact, the action of G on C forms a natural homomorphism
from G onto Ĝ = {ĝ|g ∈ G}. As such, Ĝ forms its own group, which is a subgroup of Sm2 ,
the symmetric group of degree m2. Hence, by mapping the coordinates modulo m, the action
of each element of g ∈ G on the coordinates of the subsquares of an m × m Escher tile can
be described by a permutation ĝ ∈ Ĝ.

Throughout, we will use the notation x to denote the congruence classes of x modulo m.
For a given ĝ ∈ Ĝ, we define ĝ((x, y)) as the action of the permutation ĝ (corresponding to

the transformation g ∈ G) on the individual element (x, y) ∈ C. The following list indicates
how the fundamental transformations in G act on C.

1. Ŝ1,0((x, y)) = (x + 1, y) (translation by 1 unit in the x-direction).

Ŝ0,1((x, y)) = (x, y + 1) (translation by a 1 unit in the y-direction).

2. R̂90((x, y)) = (−y, x) (90◦ counterclockwise rotation about (0, 0)).

R̂180((x, y)) = (−x,−y) (180◦ counterclockwise rotation about (0, 0)).



J.J. Fowler, E. Gethner: Counting Escher’s m × m Ribbon Patterns 5

R̂270((x, y)) = (y,−x) (270◦ counterclockwise rotation about (0, 0)).

3. R̂((x, y)) = (−x, y) (reflection through the x-axis).

Let H denote the group of translations generated by S1,0 and S0,1. Since H ∼= Zm × Zm,
the direct product of two cyclic groups of order m, we can write an arbitrary element of H in
the form Si,j , which is equivalent to (S1,0)

i(S0,1)
j. A translation in H acts on the coordinates

of the subsquares as follows:

((Ŝ1,0)
i(Ŝ0,1)

j)((x, y)) = Ŝi,j((x, y)) = (x + i, y + j) (1)

Let K be a subgroup of G not containing the translations in H, i.e. H∩K = {e}. The largest
such group K is generated by R90 and R, in which K ∼= D4, the dihedral group of order 8.
The elements of K then act on the coordinates of the subsquares as follows:

((R̂)s(R̂90)
k)((x, y)) =



















((−1)s x, y) if k ≡ 0 mod 4

((−1)s+1 y, x) if k ≡ 1 mod 4

((−1)s+1 x, −y) if k ≡ 2 mod 4

((−1)s y, −x) if k ≡ 3 mod 4

(2)

In order to combine (1) and (2) we need the following Lemma.

Lemma 1 Let G be the group generated by S1,0, S0,1 and a subgroup K of the dihedral
group generated by R90 and R. Then G = HK where each element k ∈ K forms a distinct
coset Hk in G/H. In particular, any element of G can be written uniquely as a composition
of a translation of H with an element of K, and |G| = m2|K|.

Proof: We first consider the action of G on C, the coordinates of the subsquares. Let Ĥ and
K̂ denote the homomorphic image of H and K in Ĝ. We need to show that the generators
of K̂ normalize the generators of Ĥ, i.e. for generators k̂ ∈ K̂ and ĥ ∈ Ĥ, k̂−1ĥk̂ ∈ Ĥ, or
equivalently, ĥk̂ = k̂ĥ′ for some permutation ĥ′ ∈ H. Since Ĥ has two generators Ŝ1,0 and

Ŝ0,1, and K̂ can have up to two generators R̂90 and R̂, there are four combinations to consider

with regard to the permutations in Ĝ:

(Ŝ1,0R90)((x, y)) = Ŝ1,0((−y, x)) = (−y + 1, x)

= R̂90((x, y − 1)) = (R̂90Ŝ0,−1)((x, y))

(Ŝ0,1R̂90)((x, y)) = Ŝ0,1((−y, x)) = (−y, x + 1)

= R̂90((x + 1, y)) = (R̂90Ŝ1,0)((x, y))

(Ŝ1,0R̂)((x, y)) = Ŝ1,0((−x, y)) = (−x + 1, y)

= R̂((x − 1, y)) = (R̂Ŝ−1,0)((x, y))

(Ŝ0,1R̂)((x, y)) = Ŝ0,1((−x, y)) = (−x, y + 1)

= R̂((x, y + 1)) = (R̂Ŝ0,1)((x, y))

Furthermore, since the translations of H do not affect the aspects of the motif, our argument
above extends to show that for any generators h of H and k of K, hk = kh′ for some translation
h′ ∈ H. As such, any element of g ∈ G can be written as an alternating sequence of the
generators and identity elements of H and K, i.e. g = h1k1 · · ·hrkr, for some h1, . . . , hr ∈
{e, S1,0, S0,1} and k1, . . . , kr ∈ {e, R90, R}. Reordering by swapping adjacent elements gives
g = h′

1 · · ·h
′
rk1 · · · kr where h′

1, . . . , h
′
r ∈ H. Hence, g = hk for some unique h ∈ H and k ∈ K.

Since |H| = m2, |G| = m2|K|.
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Hence, the action of any element of G on the coordinates of the subsquares is as follows:

(Ŝi,j(R̂)s(R̂90)
k)((x, y)) =



























((−1)sx + i, y + j) if k ≡ 0 mod 4

((−1)s+1y + i, x + j) if k ≡ 1 mod 4

((−1)s+1x + i, −y + j) if k ≡ 2 mod 4

((−1)sy + i, −x + j) if k ≡ 3 mod 4

(3)

When necessary, we denote K{R90} as the subgroup generated by R90, and K{R90,R} as the full
dihedral subgroup to disambiguate to which K we are referring.

Additionally, elements of K act naturally on the set A of the aspects of the motif. We
denote the natural action of k ∈ K on an aspect A ∈ A as k◦A. For a set of aspects A to be
complete, it must be the case that for any aspect A ∈ A, the transformed aspect k◦A ∈ A
for all k ∈ K. Clearly this is the case for K{R90} acting on either A4 and A8, and for K{R90,R}

acting on A8. We will refer to such a set of aspects A as a complete set of aspects under the

action of K.

2.2. Burnside’s Lemma

Burnside’s Lemma1 can be used to count the number of inequivalent tiles under the transfor-
mations of G. Proofs of Burnside’s Lemma can be found in [7] and [11].

Burnside’s Lemma For a finite set S of objects, let G be the group of operations acting on

S and fix(x) be the set of objects in S fixed by a given operation x ∈ G. Then s, the number

of inequivalent classes of S under G, is given by

s =
1

|G|

∑

x∈G

|fix(x)| (4)

Here S is the set of wallpaper patterns for which we have established a 1-1 correspondence
with the set of m × m Escher tiles. If K = K{R90}, then the set of aspects A = A4 or A8.
Otherwise, if K = K{R90,R}, then A = A8. Regardless, |G| = |K|m2 = |A|m2 = am2.

2.3. Key observation

Lemma 1 allows us to make a crucial observation that will be used to eliminate several cases
when applying Burnside’s Lemma in the next section.

Lemma 2 Let g = hk where h ∈ H and k ∈ K \ {e}. Let A be a complete set of aspects
under the action of K. Then g fixes no Escher tile composed of motifs with aspects from A
if and only if ĝ((x, y)) = (x, y) for some subsquare coordinate (x, y) ∈ C. Furthermore, if

ĝ((x, y)) 6= (x, y) for any (x, y) ∈ C, then g fixes exactly am2/|g| tiles where a = |A| and m2/|g|
is the number of orbits of ĝ acting on C.

Proof: We show sufficiency by simply noting that since k 6= e, g = hk will change the aspects
of motifs in every subsquare. However, if the location of a subsquare remains fixed but its

1Also known as the Cauchy-Frobenius Lemma [2] was originally proved by Frobenius (1887).
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aspect changes, it is impossible for g to fix the whole Escher tile. This is immediate from the
fact that the motif is assumed to be totally asymmetric.

For necessity, we assume the contrapositive that ĝ((x, y)) 6= (x, y) for every (x, y) ∈ C.
We then show how to construct an Escher tile T fixed by g. For each orbit of ĝ, pick a
subsquare (x, y), freely choosing its aspect A ∈ A. Then set the aspect of ĝi((x, y)) to the
aspect ki◦A for i = 1, . . . , |g| − 1. Clearly, any Escher tile T fixed by g must adhere to this
method of construction. However, for this construction to work it must be the case that the
orbit of ĝ acting on an ordered pair (x, y) ∈ C yields |g| distinct elements. If this is not the

case, then there exists an α ∈ {1, . . . , |g| − 1} where ĝα((x, y)) = (x, y) for some (x, y) ∈ C.
By the Orbit-Stabilizer theorem, all the orbits of ĝ acting on C have the same cardinality.
Hence, ĝα((x, y)) = (x, y) for all (x, y) ∈ C, i.e. ĝα = ê. However, for gα 6= e, gα must alter
the aspect of every subsquare without changing its location. If m > 2, then clearly no such
element of G exists by examination of (3). If m = 2, we can apply the technique used in
Lemma 1, to see that (hk)β = (h′)βkβ for some translation h′ ∈ H, so that |g| = lcm(|h′|, |k|).
Hence, |g| = 2 or 4. If |g| = 2, then α = 1 < |g| is dispatched by our assumption on ĝ. If
|g| = 4, then |k| = 4, implying k = R90 or k = R270. However, (3) cannot be solved for an
Ŝi,jR̂90 = ê or an Ŝi′,j′R̂270 = ê.

Knowing that |ĝ| = |g| and |C| = m2, we can apply the Orbit-Stabilizer Theorem to
determine that ĝ has a total of m2/|g| orbits when acting on C. Since each orbit had a freely
chosen aspect, this gives the am2/|g| tiles that are fixed by g.

3. Counting Fixed Tiles

In this section we determine the number of m × m Escher tiles fixed by each element of our
group of transformations G that acts on S. Summing over these and dividing by the order of
G, gives the number of inequivalent tilings as dictated by Burnside’s Lemma. We partition
the elements of G into right cosets of H. By Lemma 1, the elements of K form a complete
set of the coset representatives. We denote the elements of K{R90} as {e, R90, R180, R270}, and
the coset RK{R90} as {H,D,V ,D′}, where H = Re, D = RR90, etc. If for a k ∈ K the total
number of tiles fixed by the elements of the coset Hk is n, then we will say that Hk fixes n
tiles. Similarly, if the total number of tiles fixed by HL is n where L ⊆ K, we will say that
HL fixes n tiles.

In [6], the first author (Gethner) determined the number of tiles fixed by HK{90} in which
A = A4. If instead we use the set of aspects A = A8, we can extend the formulas provided
in [6] by simply replacing the fixed number of 4 aspects with the variable a = |A|. We see
that this holds by noting that A8 is composed of two distinct orbits from the action of K{R90}

on A8, namely A4 and R(A4). Combining Propositions 4.1 and 5.1 of [6] gives us our first
proposition.

Proposition 3 The subgroup HK{R90} fixes

∑

d|m

(

2dφ(d) − φ(d)2
)

am2/d +
∑

d|m

(

2rd − 2
)

am2/d + σ(m)

(

m2

(

am2/4 +
3

4
am2/2

))

tiles where rd is the number of (not necessarily distinct) prime divisors of d and

σ(m) =

{

1 if m is even
0 if m is odd.
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Next we determine the number of elements fixed by the cosets HH and HV .

Proposition 4 If m is even, then the cosets HH and HV together fix

mam2/2 + 2m
∑

d|m
2|d

φ(d)am2/d

tiles. Otherwise, for odd m they fix no tiles.

Proof: Let us begin by determining for which, if any, coordinates ĝ((x, y)) = (x, y) for
ĝ ∈ {Ĥ, V̂}. From (3) we extract the actions of HĤ and HV̂ (i.e. k = 0 and k = 2 for s = 1)
on the set of coordinates, C, to give us the following two sets of congruences:

x ≡ −x + i, y ≡ y + j for k = H

x ≡ x + i, y ≡ −y + j for k = V .

We can reduce these sets of simultaneous congruences to obtain

2x ≡ i, 0 ≡ j for k = H

0 ≡ i, 2y ≡ j for k = V .
(5)

Let g = hk where h ∈ H and k ∈ {〈,V}. For h = Si,j, we consider two cases based on whether

j = 0 for k = H and i = 0 for k = V .

Case 1 : Assume that g ∈ Si,0H ∪ S0,jV , i.e. j = 0 for k = H and i = 0 for k = V . There
are the two cases of m being odd or even. If m is odd, then 2−1 exists modulo m, namely
m+1

2
, since 2(m+1

2
) ≡ m + 1 ≡ 1modm. Hence, the congruences of (5) can be solved for odd

m, which means some subsquare is fixed, so none of these elements fix any Escher tiles by
Lemma 2. However, if m is even, then we get the two sets of congruences

x ≡ i
2

mod m
2
, j ≡ 0 for k = H

y ≡ j
2

mod m
2
, i ≡ 0 for k = V .

(6)

These two congruences can only be solved for an x if j is even, or for a y or i is even,

respectively. Specifically the solutions will be x ≡ i
2

and x ≡ i
2

+ m
2

for k = H, and y ≡ j
2

and y ≡ j
2

+ m
2

for k = V .

Thus, for k = H, no subsquares are fixed for odd i and j = 0, and for k = V , no subsquares
are fixed for i = 0 and odd j. Between these two k there are a total of m such pairs of i and
j. For those g, we can directly calculate the order of the orbits of ĝ acting on C.

(Ŝi,0Ĥ)2((x, y)) = (Ŝi,0Ĥ)((−x + i, y)) = Ŝi,0((x − i, y)) = (x, y)

(Ŝ0,jV̂)2((x, y)) = (Ŝ0,jV̂)((x,−y + j)) = Ŝ0,j((x, y − j)) = (x, y)
(7)

Hence, |ĝ| = 2 (where |g| = |ĝ| by Lemma 2). Given that there are m elements of Ŝi,0Ĥ∪Ŝ0,jV̂
that fix no subsquare coordinate, we apply Lemma 2 to determine that these elements fix
mam2/|g| = mam2/2 tiles in all.
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Case 2 : Assume that for g = hk for h = Si,j where j 6= 0 for k = H, and i 6= 0 for k = V .
We begin by determining the order of the orbits corresponding to g.

(Ŝi,jĤ)1((x, y)) = (−x + i, y + j)

(Ŝi,jĤ)2((x, y)) = (x − i + i, y + j + j) = (x, y + 2j)
...

(Ŝi,jĤ)d((x, y)) =

{

(x, y + dj) if d is even

(−x + i, y + dj) if d is odd

(Si,jV)1((x, y)) = (x + i,−y + j)

(Si,jV)2((x, y)) = (x + i + i, y − j + j) = (x + 2i, y)
...

(Si,jV)d((x, y)) =

{

(x + di, y) if d is even

(x + di, −y + j) if d is odd

(8)

Using the technique in the proof of Lemma 1, the gd = (hk)d can be written as gd = h′kd for
some h′ ∈ H. Since k is a reflection, kd = k if d is odd. As such, the order of g cannot be d
for odd d, since gd = h′k 6= e for any h′ ∈ H and k ∈ {Ĥ,V}. Hence, d must be even in (8),
which gives the following two congruences to solve:

y ≡ y + dj for k = H

x ≡ x + di for k = V

which simplify to

0 ≡ dj =⇒ m|dj =⇒ d = m
(m,j)

for k = H

0 ≡ di =⇒ m|di =⇒ d = m
(m,i)

for k = V

There are φ(d) values of j ∈ [m] such that d = m
(m,j)

and φ(d) values of i ∈ [m] such that

d = m
(m,i)

, where φ(d) is Euler’s totient function. Please note that neither (m, j) 6≡ 0 or

(m, i) 6≡ 0 since i - m for k = H and j - m for k = V . Since d is even, we are only considering
even divisors of m, which forces m to be even.

Applying Lemma 2 we know that for each such orbit of even order d there are m2/d such
orbits. Further, since each value of i can range independently over [m] for Si,jH and each
value of j can range independently over [m] for Si,jV , there are a total of 2mφ(d) possible
pairs of i and j with orbits of length d between the two sets of transformations. Summing
over these terms gives us

2m
∑

d|m
2|d

φ(d)am2/d

tiles fixed by these g, which together with the mam2/2 tiles fixed by case 1, gives us the final
total we need.

Finally, we determine the number of elements fixed by the cosets HD and HD′.

Proposition 5 If m is even, then the cosets HD and HD′ together fix

2m
∑

d|m
d6=1

φ(d)am2/2d

tiles. Otherwise, for odd m they fix no tiles.
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Proof: First, we need to determine for which, if any, coordinates ĝ((x, y)) = (x, y) for
ĝ ∈ {D̂, D̂′}. From (3) we extract the actions of HD̂′ and HD̂′ (i.e. k = 1 and k = 3 for
s = 1) on the set of coordinates C to gives us the following two sets of congruences:

x ≡ y + i, y ≡ x + j for k = D

x ≡ −y + i, y ≡ −x + j for k = D′,
(9)

which reduce to

i ≡ −j, 2(x − y) ≡ i − j for k = D

i ≡ j, 2(x + y) ≡ i + j for k = D′.
(10)

Substituting −j for i for k = D, and i for j for k = D, gives

2(x − y) ≡ 2i =⇒ x − y ≡ i mod m
2

for k = D

2(x + y) ≡ 2j =⇒ x − y ≡ j mod m
2

for k = D′.
(11)

Clearly for one of m given pairs of i and j that satisfy (10) then there are multiple solutions
for x and y. Moreover, given that there are m pairs of x and y that satisfy (11) modulo m

2
,

there are 2m such pairs of x and y that satisfy the original congruence modulo m.

Thus by Lemma 2, given that 2m locations of subsquares are fixed for each of these m
pairs of i and j, the elements Ŝi,−iD and Si,iD

′ fix no Escher tiles for i ∈ [m].

Hence, there are only the remaining cases of −i 6= j for k = D, and i 6= j for k = D′ to
consider. Given that (10) cannot be solved for these cases, we need to determine the order of
g = hk where h 6= S−i,j and h 6= Si,j for k = D and k = D, respectively.

(Ŝi,jD̂)1((x, y)) = (y + i, x + j)

(Ŝi,jD̂)2((x, y)) = (x + i + j, y + i + j)
...

(Ŝi,jD̂)2d((x, y)) = (x + d(i + j), y + d(i + j))

(Ŝi,jD̂)2d+1((x, y)) = (y + d(i + j) + i, x + d(i + j) + j)

(Ŝi,jD̂
′)1((x, y)) = (−y + i,−x + j)

(Ŝi,jD̂
′)2((x, y)) = (x + i − j, y − i + j)

...

(Ŝi,jD̂
′)2d((x, y)) = (x + d(i − j), y + d(j − i))

(Ŝi,jD̂
′)2d+1((x, y)) = (−y + d(i − j) + i,−x + d(j − i) + j)

(12)

By applying the technique used in the proof of Lemma 1, we again see that g cannot have
odd order 2d+1, i.e. for some h′ ∈ H and k ∈ {D,D′}, g2d+1 = (hk)2d+1 = h′k2d+1 = h′k 6= e.
Hence, we only consider orbits of order 2d.

To solve for an ordered pair (x, y) fixed by these g2d, we need to solve the congruences

x ≡ x + d(i + j)

y ≡ y + d(i + j)

}

for k = D

x ≡ x + d(i − j)

y ≡ y + d(j − i)

}

for k = D′,

(13)
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which simplify to

0 ≡ d(i + j) =⇒ m|d(i + j) =⇒ d = m
(m,(i+j))

for k = D

0 ≡ d(i − j) =⇒ m|d(i − j) =⇒ d = m
(m,(i−j))

for k = D′.
(14)

Let u = i + j and v = i − j such that 0 ≤ u, v < m. There are φ(d) distinct values of u ∈ [m]
such that d = m

(m,u)
, and φ(d) distinct values of v ∈ [m] such that d = m

(m,v)
, where again φ(d)

is Euler’s totient function.
Note that 0 < (m,u) < m and 0 < (m, v) < m since u = i + j 6= 0 for k = D, and

v = i − j 6= 0 for k = D′. Since orbits of length 2d are even, this again forces m to be even.
However, we are no longer restricted to even divisors of m as before with k = H and k = V .

By again applying Lemma 2, we know that for each such orbit of order 2d there are
m2/2d such orbits. Further, each distinct congruent value of u = i + j and v = i − j can
each range independently over [m] for Si,jD and Si,jD

′, respectively. Thus, there are a total
of 2mφ(d) possible pairs of i and j that have orbits of length 2d between the two sets of
elements. Summing over these terms gives us

2m
∑

d|m
d6=1

φ(d)am2/2d

tiles fixed by these g, which gives us the total we need.

Propositions 3, 4 and 5 together gives us our final proposition.

Proposition 6 The group HK{R90,R} fixes
∑

d|m

(

2dφ(d) − φ(d)2
)

am2/d +
∑

d|m

(

2rd − 2
)

am2/d+

σ(m)

(

m2
(

am2/4 + 3
4
am2/2

)

+ mam2/2 + 2m
(

∑

d|m
2|d

φ(d)am2/d +
∑

d|m
d6=1

φ(d)am2/2d
)

)

tiles where rd and σ(m) are as defined in Prop. 3.

4. Applying Burnside’s Lemma

We know the order of G from Lemma 1 and the number of Escher tiles fixed by each element
in g from Prop. 6, so that we can apply formula (4) of Burnside’s Lemma to give the main
theorem of this paper.

Theorem 7 Let K = K{R90,R} and let the group G = HK (where |G| = 8m2) act on the set
of m × m with aspects chosen from a complete set of aspects A under the action of K with
a = |A|. Let Na(m) denote the number of inequivalent tiles under the action of G. Burnside’s
Lemma gives the following:

N8(m) = 1
8m2

[

am2

+
∑

d|m
d6=1

(

2dφ(d) − φ(d)2)am2/d
)

+
∑

d|m

(2rd − 2) am2/d

+ σ(m)

(

m2
(

am2/4 + 3
4
am2/2

)

+ mam2/2 + 2m
(

∑

d|m
2|d

φ(d)am2/d +
∑

d|m
d6=1

φ(d)am2/2d
)

)]
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where rd is the number of (not necessarily distinct) prime divisors of d and

σ(m) =

{

1 if m is even
0 if m is odd.

In particular for m = 2 and a = 8,

N8(2) = 2−5(212 + 3 · 26 + 0 + 27 + 25 + 3 · 26 + 22(26 + 23))
= 128 + 6 + 4 + 1 + 6 + 8 + 1 = 154.

This confirms the result of Dan Davis in [1] that N8(2) = 154.

5. Future Work

There are many open problems including:

1. Generalize this formula for the case for a motif having rotation or reflection symmetry.
Lemma 2 would not hold in this case. Additional symmetry makes it more difficult to
determine which operations fix tiles.

2. Generalize the formula here to higher dimensions; in particular, consider the m×m×m
case.

3. Generalize the results here to regular triangular and hexagonal tilings of the xy-plane,
or investigate similar problems in the hyperbolic plane, which admits tiling by regular
n-gons for any n ≥ 3.
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