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Abstract. This paper deals with circular surfaces joining two cylinders of revo-
lution with axes in a common plane and different radii. Two functions are used in
order to define the radii of the desired transition surface. One is polynomial and
the other is transcendental. There are two points of view on the problem. One is
the theoretical background, and the other relates to its technical use.
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1. Geometry of circular pipes

1.1. Transition surface

Let two pipes be given. We show how to connect both cylinders by a transition surface Γ
described in detail in Section 1.2. The transition surface is a cyclic surface formed by a system
of generating circles. The system of generating circles is defined by a set of centers, radii and
carrier planes. The choice of the centers is given in Section 1.3, the functions which define
the radii and the planes follow in Section 1.4.

Frequently canal surfaces serve as transition surfaces. We address this at the end of the
paper.

1.2. Properties of the transition surface

Let k0 and k1 denote the circles of contact between the transition surface Γ and the given
surfaces γ0, γ1, respectively. Henceforth, the following properties of the transition surface Γ
are required:

i) Γ is C1 smooth.

(ii) Its transition to both surfaces γ0 and γ1 is also C1 smooth; thus the surfaces γ0 and
γ1 and the transition surface Γ are in first-order contact along the circles k0 and k1 ,
respectively.

(iii) Γ is free of selfintersections.
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1.3. Centers of the generating circles

Let S be the locus of centers for the generating circles, i.e., the spine curve of the cyclic
surface. Then S is a curve connecting both cylinder axes. Let S0, S1 denote the centers of
the circles k0, k1 and o0, o1 the axes of the surfaces γ0, γ1, respectively. For a C1 transition it
is necessary that the lines o0 and o1 are tangent to S at the points S0, S1.

1.4. Radii of the generating circles and their carrier planes

Let r0, r1 denote the radii of the circles k0, k1 and of the cylinders γ0 and γ1. The radii of
the circles sweeping the surface Γ are determined by values of a function R. This function
R assigns a positive real number to each point of the curve S. The function R must be
continuously differentiable in order to make sure that the surface Γ has the property (i). The
function R must have values r0, r1 at the points S0, S1, resp., and the first derivatives at these
terminating points must be zero in order to make sure that the surface Γ has the property
(ii).

We choose the normal planes of the curve S as planes of the generating circles. Then
the surface Γ has the property (iii) — at least locally — if the values of the function R are
smaller than the corresponding radii of the osculating circles of S.

For generic cyclic surfaces the planes of the circles are not the normal planes of the curve
S (compare, e.g., generic canal surfaces).

2. Mathematical description of the transition surface

The transition surface can be parameterized by the vector function

x(t, u) = y(t) + R(t) (b1(t) cos u + b2(t) sin u) , t ∈ I, I ⊂ R, u ∈ [0, 2π]. (1)

The vector function y = y(t) in (1) is a parameterization of S, which is the set of centers
of the generating circles. The values of a real function R = R(t) in (1) are the radii of the
generating circles. For each t ∈ I the vectors b1 = b1(t) and b2 = b2(t) form an orthonormal
basis in the normal plane of S .

In Section 2.1 we will design a curve S. In Section 2.2 we give two functions R with the
properties of Section 1.4. In Section 2.3 we will demonstrate how to choose vectors b1 and b2

so that the vector function (1) is a parametric representation of the surface Γ. We will finally
sum up the results of the previous sections in Section 2.4.

2.1. Parametric representation of the curve S
As the curve S we choose a cubic with its Hermite representation (see, e.g., [11])

y(t) =
3
∑

i=0

Fi(t) si, t ∈ [0, 1], (2)

where

F0(t) = 2t3 − 2t2 + 1, F1(t) = −2t3 + 3t2, F2(t) = t3 − 2t2 + t, F3(t) = t3 − t2.

We set s0 =
−−→
OS0 and s1 =

−−→
OS1 where O denotes the origin of the coordinate system.
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The vectors s2 and s3 are direction vectors of the cylinder axes o0 and o1. The choice of
the tangent vector at S0 defines an orientation of the spine curve of Γ. The tangent vector at
the endpoint S1 of the intermediate spine curve has to be chosen according to this.

Let [O, x, y, z] be a right-handed Cartesian coordinate system such that the parameteri-
zation of S becomes most simple. Hence we specify O = S0, thus s0 = o; the x-axis is the
line o0 and the vector s2 is a positive multiple of the vector a2 = (1, 0, 0). The xy-plane is
placed such that it includes the point S1, which gives s1 = (s11, s12, 0).

The use of (2) in the stated coordinate system implies that the curve S is parameterized
by the vector function

y(t) =
3
∑

i=1

Fi(t) si, t ∈ [0, 1]. (3)

We set
s2 = k a2, s3 = l a3 , (4)

where k and l are positive real constants and a2, a3 are unit vectors. Otherwise we set
a3 =

s3

‖s3‖
. The choice of the constants k and l forms the shape of S, which will be used as

spine curve of Γ.

2.2. Radii of the generating circles

Let R1 and R2 be two functions given by

R1(t) = −2(r1 − r0)t
3 + 3(r1 − r0)t

2 + r0, t ∈ [0, 1], (5)

R2(t) =
1

2

(

√

(r1 + r0)2 − (r1 − r0)2 sin2 πt − (r1 − r0) cos πt

)

, t ∈ [0, 1]. (6)

We may assume r0 < r1 because otherwise we can interchange the notation of the radii. These
specifications imply:

a) R1(0) = R2(0) = r0 and R1(1) = R2(1) = r1.

b) Both functions are continuously differentiable on ] −∞, +∞[.

c) The first derivatives of both functions at the boundary of the interval [0, 1] are equal 0.

d) Both functions are monotonically increasing on the interval [0, 1].

We prove item a) by substituting t = 0 and t = 1. The first derivatives are used to confirm
the next properties of the functions R1 and R2. We obtain

R′

1
(t) = 6(r1 − r0) t (1 − t),

and it is clear that R1 has the properties b) and c). Since the derivative R′

1
(t) is positive on

the interval ]0, 1[, the function R1 has the property d). On the other hand

R′

2(t) =
π(r1 − r0) sin πt

2
√

(r1 + r0)2 − (r1 − r0)2 sin2 πt

(

−(r1 − r0) cos πt +

√

(r1 + r0)2 − (r1 − r0)2 sin2 πt

)

,

and it is evident that the function R2 has the properties b) and c). The function R2 is
increasing on the interval [0, 1] provided

√

(r1 + r0)2 − (r1 − r0)2 sin2 πt > (r1 − r0) cos πt.
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The inequality holds for t ∈ [0.5, 1]. After squaring and some simplifications for t ∈ [0, 0.5[
we have

(r1 + r0)
2 − (r1 − r0)

2 sin2 πt > (r1 − r0)
2 sin2 πt =⇒ (r1 + r0)

2 > (r1 − r0)
2.

Therefore the derivative R′

2
(t) is positive on the interval ]0, 1[. Hence the function R2 is

increasing on this interval.

The functions R1 and R2 have all properties required in Section 1.4 and we use them as
radius functions of the generating circles. Graphs of these functions R1 and R2 are displayed
in Figs. 1 and 2. In Fig. 1 we have r0 = 1 and r1 = 4, in Fig. 2 r0 = 1 and r1 = 9.
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Figure 1: Graph of R1(t)
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Figure 2: Graph of R2(t)

The choice of a cubic function R1 is natural as S is a cubic. The function R2 is a
modification of the radius function of the generating circles of a Dupin cyclides. Of course,
there are many possible functions R with the required properties in general. We chose the
functions R1 and R2 also for the reason given below in the remark.

It is clear from the figures that the functions have indeed properties a) – d) stated above.
Further it is evident that in case of a big difference r1 − r0 the values of R1 are fairly bigger
than that of R2 mainly around the point t = 1

2
. For the transition surface this means that

if R1 is used, the transition surface has a greater area and a greater volume of the enclosed
solid than in case of using R2. From the practical point of view it means that using R2 saves
material. It is evident that the shape of the pipe, the area of its surface and its volume have
influence on liquid flow in the pipe. However, the problem of liquid flow will not be addressed
here.

Remark: It is interesting that

R1

(

1

2

)

=
r0 + r1

2
and R2

(

1

2

)

=
√

r0r1 .

The function R1 evaluates to the arithmetic mean of numbers r0 and r1 at the point t = 1

2
, and R2

evaluates to the geometric mean of r0 and r1 at this point. Between both means the inequality

r0 + r1

2
≥ √

r0r1

holds which is an equality if and only if r0 = r1. In this case the transition surface becomes a pipe

surface.
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2.3. Planes of the generating circles

According to Section 1.4 the generating circles lie in the normal planes of the curve S. An
orthonormal frame is needed for the parameterization of all generating circles. The first
derivative

dy(t)

dt
= y′(t)

determines the direction vectors of tangent lines of S. Let b1 = b1(t) and b2 = b2(t) denote
vector functions which form an orthonormal basis of the normal plane for each t ∈ [0, 1].
Then the characteristic circles of the surface Γ are parameterized by

R(t)(b1(t) cos u + b2(t) sin u), t ∈ [0, 1], u ∈ [0, 2π].

Let (b11(t), b12(t), b13(t)) be coordinate functions of the vector function y′(t). The vectors b1

and b2 are not uniquely determined in the normal planes. We can rotate them about the
tangent line. Hence we may choose the function as follows:

b1(t) =
1

√

b2

11
(t) + b2

12
(t)

(−b12(t), b11(t), 0) (7)

and

b2(t) =
y′(t) × b1(t)

‖y′(t) × b1(t)‖|
. (8)

It corresponds to the case when both axes o0 and o1 lie in a plane which is then determined
as the xy-plane. In this case S is a plane curve in the xy-plane and we have b2(t) = (0, 0, 1)
for each t ∈ [0, 1] (e.g., [8]). When the axes o0 and o1 are supposed to be skew, S is a space
curve and the vector function b2 cannot be constant (e.g., [10]).

2.4. Parameterization of the transition surface

A transition surface is parameterized by

x(t, u) = y(t) + R(t) (b1(t) cos u + b2(t) sin u) , t ∈ [0, 1], u ∈ [0, 2π], (9)

where y is the vector function (3) with the notations given in (4). The real function R

equals either R1 from (5) or R2 from (6) (or eventually another function R with the required
properties). And b1, b2 are the vector functions (7) and (8).

In the first part of this paper we stated that the surface does not intersect itself if at
every point of the curve S the radius of the osculating circle is greater than the radius of the
generating circle. The radii of the osculating circles are defined by the real function

%(t) =
‖y′(t)‖3

‖y′(t) × y′′(t)‖ , t ∈ [0, 1] (10)

(e.g., [9, 12, 15]). In order to guarantee that the surface is free of selfintersections — at least
locally — the following inequality must hold for each t ∈ [0, 1]:

%(t) ≥ Ri(t), i = 1, 2 (see (5) and (6)). (11)

Eq. (11) does not only depend on t, it is also a condition for k and l. We must set the numbers
k and l such that the condition (11) holds for each t ∈ [0, 1]. After substitution from (10)
and (5) or (6) in (11) we have greatly complicated the inequality. Hence a more feasible way
of k and l setting is a computer-aided modeling.
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3. Examples

In order to get an idea of the shape of the transition surface we model the surface on a
computer. This affords us the possibility to change easily its shape by modification of the
optional parameters according to our needs.

Data which define the transition surface and which cannot be influenced by the designer
are

1) the radius vectors s0 and s1 of the centers of the circles k0 and k1 which inosculate the
transition surface to the given pipes,

2) the unit direction vectors a2 and a3 of the axes of the given pipes,

3) the radii r0 and r1 of the circles k0 and k1.

Parameters which can be set by the designer are
a) the radius function R of Γ, and

b) the positive numbers k and l which describe the lengths of the direction vectors of the
pipe axes.
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Figure 3: Surface Γ with a
linear spine curve and R = R1
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Figure 4: Surface Γ with a
linear spine curve and R = R2

The choice of the function R and the constants k and l depends on the designer and his
practical needs. We demonstrate the influence of the specifications of R, k and l on the shape
of Γ in several examples.

In Figs. 3 and 4 we display a transition surface to the following data:

s0 = (0, 0, 0), s1 = (6, 0, 0), a2 = a3 = (1, 0, 0), r0 = 1, r1 = 9.

It is evident that the curve S is a line segment and the choice of k and l does not influence
its shape. However, we see the influence of the choice of R on the shape of the transition
surface. We use the function R1 in Fig. 3 and R2 in Fig. 4.

Fig. 5 shows the transition surface for

s0 = (0, 0, 0), s1 = (10, 4, 0), a2 = (1, 0, 0), a3 =
(1, 2, 10)√

105
, r0 = 1, r1 = 2.

We use the function R1 to parameterize the generating circles and we set k = 18 and l = 25.
However, this option of k and l is not appropriate because the transition surface intersects
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Figure 5: A transition surface
with selfintersections

Figure 6: By modification of k and l

we avoid selfintersections of Γ

itself. We eliminate this intersection by modifying k from 18 to 10 and l from 25 to 20, as we
see in Fig. 6.

If planes and centers of the outer circles of a transition surface are “sufficiently close”
to each other, then the transition surface can intersect itself. We eliminate this undesirable
event by an appropriately selected composition of several mentioned transition surfaces, e.g.,
by use of a spline function.

Figure 7: A Dupin cyclide is used
for blending

Figure 8: A cyclic blending surface Γ
in comparison with Fig. 7

4. Comparison with canal surfaces

One can also use canal surfaces as blending surfaces. A canal surface is the envelope of one-
parameter family of spheres with a varying radius (e.g., [7, 13, 14]). The generating circles
— characteristic lines of the canal surface — are located in planes which in general are not
normal planes of the determining curve. So the generating circles are not major circles on the
spheres. This happens when the radius of the spheres is constant, i.e., for tubular surfaces.
For a blending surface Γ this needs the condition r1 = r0 .

If we use a canal surface for blending between two cylinders γ0 and γ1, the connections at
the circles k0 and k1 need not be of C1. We should choose the radii of the spheres such that
the characteristics at the terminating points S0 and S1 are major circles of the corresponding
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spheres. Hence, the radius function of the sphere surface should have the same properties as
the function R which have been listed above.

The derivation of a parametric representation for a general canal surface is not complicated
as long as the arc length parametrization of the determining curve is given. However, most of
the curves (e.g., cubics S) do not have an elementary arc length parametrization. From this
point of view the determination of a parametric representation of a blending cyclic surface Γ
is simpler than that of a canal surface.

Dupin cyclides are special canal surfaces and also used as blending surfaces. We can find
a number of parametric representations of Dupin cyclides, e.g., [1] – [6]. A Dupin cyclide
as a blending surface is displayed in Fig. 7, where the axes of the cylinders are in a special
position. For comparison, we show the blending surface Γ in Fig. 8 where we choose k = 30
and l = 30. In this case the cyclide is uniquely determined. The advantage of a blending
cyclic surfaces Γ is its variability as it has been described above.
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Vieweg, Braunschweig 1975.

[11] J. Hoschek, D. Lasser: Fundamentals of Computer Aided Geometric Design. A.K.
Peters, 1993.

[12] E. Kruppa: Analytische und konstruktive Differentialgeometrie. Springer Verlag, Wien
1957.

[13] M. Peternell, H. Pottmann: Computing rational parametrizations of canal surfaces.
J. Symbolic Computation 23, 255–266 (1997).
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