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1. Introduction

In a three-dimensional Euclidean space E3, we consider an oriented line congruence S whose
middle surface and middle envelope are the surfaces OP = P (u, v) and OM = M(u, v),
respectively. Then we construct a line congruence S ′ with the same spherical image and with
the surface of reference OQ = Q(u, v), defined by the relation OQ = MP . Some results
concerning S ′, firstly, as a special case of an image congruence and secondly, in the case S is
isotropic, were proved by L. Vermeire [8] and G. Stamou [3], respectively. In the present
paper we find the middle surface, the middle envelope and elements of S ′ in terms of elements
of S and study extensively their properties (Section 2). Moreover, we search for relations
among certain ruled surfaces in S, S ′ and special nets on M(u, v) (Section 3). Finally, we
make some remarks on S ′, when its middle envelope is a part of a sphere (Section 4).

Let S be an oriented line congruence in E3, represented by the vector equation

x (u, v, t) = OP + t e3, −∞ < t < +∞, (1.1)

where OP = P (u, v) is the position vector for the surface of reference and e3(u, v) is the
unit vector in the direction of the straight lines of S. Suppose D = {ei(u, v) | i = 1, 2, 3} is
an orthonormal, positively oriented moving frame of S and OM = M(u, v) is the middle
envelope of S.

We assume that S satisfies the following conditions:
(a) The vector functions P (u, v), M(u, v) and ei(u, v), i = 1, 2, 3, are defined on a simply

connected domain G in the (u, v)-plane and are of class C4.

(b) The spherical representation of S is one-to-one.
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(c) The middle envelope M(u, v) is a regular surface having no parabolic or umbilical points.

(d) There is a one-to-one mapping between the points of the middle surface and the points
of the middle envelope.

Referring to the moving frame D, we may write

dP =
3∑

i=1

σi ei, (1.2)

d ej =
3∑

i=1

ωji ei, ωij + ωji = 0, i, j = 1, 2, 3, (1.3)

where σi, ωij are linear differential forms for i, j = 1, 2, 3. We denote by dω the exterior
derivative of a linear differential form ω and by ”∧” the wedge product of two differential
forms. According to condition (b) the differential forms ω31, ω32 are linearly independent,
i.e.,

ω31 ∧ ω32 6= 0. (1.4)

Thus, we may put
dω31 = q ω31 ∧ ω32, dω32 = q̃ ω32 ∧ ω31, (1.5)

where q, q̃ are functions of u and v defined on G. Then it is known [6, p. 268] that

ω12 = q ω31 − q̃ ω32 . (1.6)

Moreover, the surface of reference OP = P (u, v) is the middle surface of S if and only if [6,
p. 268]

ω31 ∧ σ2 + σ1 ∧ ω32 = 0. (1.7)

From now on, we assume that OP = P (u, v) is the middle surface of S. Then there exist
functions l, m, n of u and v defined on G such that

σ1 = −mω31 − nω32, σ2 = lω31 + mω32. (1.8)

The curvature k, the mean curvature h and the limit distance 2z of S are given by the formulae

k = l n − m2, 2h = l + n, (1.9)

2z =
√

(l − n)2 + 4m2 = 2
√

h2 − k. (1.10)

Next, since the normal lines to the middle envelope M(u, v) are parallel to the corresponding
lines of the congruence, we may consider e3(u, v) as the unit normal vector of M(u, v) and
D as the moving frame on M(u, v). Therefore, there exist linear differential forms ρ, σ and
functions α, β, δ of u and v defined on G, such that

dM = ρ e1 + σ e2 , (1.11)

ρ = αω31 + βω32, σ = βω31 + δω32 . (1.12)

Again, for the Gaussian curvature K and the mean curvature H of M(u, v) we have

K =
1

r1r2

=
1

αδ − β2
, 2H =

1

r1

+
1

r2

= − α + δ

αδ − β2
(1.13)
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and
2H

K
= r1 + r2 = − (α + δ) , (1.14)

where r1, r2 are the principal radii of curvature of M(u, v).
A tangent plane of the middle envelope is a middle plane of the congruence. Hence there

are functions a(u, v), b(u, v) for (u, v) ∈ G such that

OP − OM = a e1 + b e2 . (1.15)

Let us now denote the Pfaffian derivatives with respect to the forms ω31, ω32 by ∇i, i = 1, 2.
The functions a, b satisfy the condition [4, p. 14]

∇1 a + ∇2 b − q̃a − qb = r1 + r2 , (1.16)

and the relations [5, p. 159]

σ3 = −aω31 − b ω32, (1.17)

l = ∇1b + qa + β, (1.18)

m = − (∇1a − qb + α) = ∇2b − q̃a + δ, (1.19)

n = − (∇2a + q̃b + β) (1.20)

are valid.
It is well-known that two fundamental invariant quadratic forms

I := (d e3)
2 = ω2

31
+ ω2

32
(1.21)

and

II := (e3, d e3, dP ) = lω2

31
+ 2mω31ω32 + nω2

32
(1.22)

are assigned to the line congruence S. Furthermore, N.K. Stephanidis [6, p. 271] introduced
the third quadratic form of S

III := (dP, dM, e3) = Aω2

31
+ 2Bω31ω32 + Γω2

32
, (1.23)

where

A = − (αl + βm) , 2B = −2βh + m (r1 + r2) , Γ = − (βm + δn) , (1.24)

as well as the mixed curvature K∗

K∗ = AΓ − B2 (1.25)

and the mixed mean curvature H∗ of S

2H∗ = A + Γ . (1.26)

Note that whenever we use K∗, H∗, we consider that there are no isotropic lines in S, i.e.,

(l − n)2 + 4m2 6= 0 ∀(u, v) ∈ G. (1.27)
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2. Middle surface and middle envelope

Suppose S is a line congruence defined on G by (1.1) and OP = P (u, v) is its middle surface.
We assume that the middle envelope OM = M(u, v) of S is different from its middle surface,
that is, we exclude the case that S is the normal congruence of a minimal middle envelope.

Consider the oriented segment MP joining the corresponding points of the surfaces
M(u, v) and P (u, v). Via the relation

OQ = MP (2.1)

a point Q is assigned to every pair of points M , P . Thus, in general, we get a surface
OQ = Q(u, v) with position vector (2.1).

Let us now introduce the line congruence S ′, which is represented by the vector equation

y(u, v, t′) = OQ + t′e3, −∞ < t′ < +∞, (2.2)

where OQ = Q(u, v) stands for a surface of reference.
Obviously S, S ′ have the same spherical representation, i.e., they are parallel congruences.

We denote by OP ′ = P ′(u, v) the middle surface of S
′

and consider D as the moving frame of
S ′. Then, there exist a function w(u, v) and linear differential forms σ ′

i, i = 1, 2, 3, such that

OP ′ = OQ + w e3 , (2.3)

dP ′ =
3∑

i=1

σ′

iei . (2.4)

After differentiating both sides of (2.3) and using (2.1), (1.3), (1.15), we get

dP ′ = (da − bω12 + wω31) e1 + (db + aω12 + wω32) e2 + (dw − aω31 − bω32) e3. (2.5)

Then, since
dϕ = ∇1ϕω31 + ∇2ϕω32 (2.6)

holds for every differentiable function ϕ(u, v), combining (2.4) with (2.5) we find

σ′

1
= (∇1a − qb + w) ω31 + (∇2a + q̃ b) ω32 , (2.7)

σ′

2
= (∇1b + qa) ω31 + (∇2b − q̃ a + w) ω32 , (2.8)

σ′

3
= (∇1w − a) ω31 + (∇2w − b) ω32 . (2.9)

Moreover, in view of (1.7), P ′(u, v) is the middle surface of S ′ iff

ω31 ∧ σ′

2
+ σ′

1
∧ ω32 = 0 ∀(u, v) ∈ G, (2.10)

or equivalently, by virtue of (2.7) and (2.8), iff

∇1a + ∇2b − q̃a − qb + 2w = 0. (2.11)

Taking into account both relations (1.14) and (1.16), we derive from (2.11)

w = −H

K
. (2.12)

Then, we apply (2.12) to (2.3) and, by means of (2.1) and (1.15), we obtain the following
results:
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Proposition 2.1 The middle surface of the congruence S ′ is defined by the vector equation

OP ′ = a e1 + b e2 −
H

K
e3 . (2.13)

Corollary 2.1 The surface OQ = Q(u, v) is the middle surface of the congruence S ′ if and
only if the middle envelope of S is a minimal surface.

The last result has been found in [3, p. 10] too.
Suppose now, S is a hyperbolic congruence (k < 0). It is well-known [1, p. 16] that its

focal surfaces OFi = Fi(u, v), i = 1, 2, are represented by

OFi = OP ± ρ e3, i = 1, 2, (2.14)

where 2ρ is the focal distance of S and

ρ =
√
−k. (2.15)

Consider as reference surface of S ′ one of the surfaces OF ∗

i = F ∗

i (u, v), i = 1, 2, where

OF ∗

i = MFi, i = 1, 2. (2.16)

Evidently

MFi = MP + PFi = a e1 + b e2 ± ρ e3, i = 1, 2, (2.17)

hold true. Then, by virtue of (2.15)–(2.17), the relation (2.13) leads to the ensuing

Proposition 2.2 The middle surface P ′(u, v) of the congruence S ′ coincides with one of the
surfaces F ∗

i (u, v), i = 1, 2, iff

k = −H2

K2
. (2.18)

Similarly, we may consider the surfaces OG∗

i = G∗

i (u, v), i = 1, 2, defined by

OG∗

i = MGi, i = 1, 2,

where OGi = Gi(u, v), stand for the limit surfaces of S [1, p. 10], i.e.,

OGi = OP ± z e3 .

From this, we can get further the following:

Proposition 2.3 The middle surface P ′(u, v) of the congruence S ′ coincides with one of the
surfaces G∗

i (u, v), i = 1, 2, if and only if

z = ±H

K
. (2.19)

Now we denote the elements of S ′ with accentuated symbols of the corresponding elements
of S. Thus, there exist functions l′, m′, n′, a′, b′ of u and v, such that

σ′

1
= −m′ω31 − n′ω32, σ′

2
= l′ω31 + m′ω32, σ′

3
= −a′ω31 − b′ω32 (2.20)
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and, according to (2.7)–(2.9) and (2.12), it follows that

l′ = ∇1b + qa, (2.21)

m′ = −∇1a + qb +
H

K
= ∇2b − q̃a − H

K
, (2.22)

n′ = −∇2a − q̃b, (2.23)

a′ = a + ∇1

(
H

K

)
, (2.24)

b′ = b + ∇2

(
H

K

)
. (2.25)

Moreover, on account of (1.18)–(1.20), the relations (2.21)–(2.23) become

l′ = l − β, (2.26)

m′ = m + α +
H

K
= m +

α − δ

2
, (2.27)

n′ = n + β. (2.28)

Hence, in view of (1.9), for the curvature k′ and the mean curvature h′ of S ′ we have

k′ = l′n′ − m
′
2 = k + β(l − n) − β2 − m(α − δ) − (α − δ)2

4
, (2.29)

h′ =
l′ + n′

2
= h. (2.30)

The relation (2.30) verifies the proposition:

The mean curvatures h, h′ of the congruences S, S ′ respectively are equal [8, p. 18].

Furthermore, let A (resp. A′) be the pitch of an arbitrary closed ruled surface of S (resp.
S ′) defined on the boundary ∂G∗ of a simply connected domain G∗ ⊂ G. We know [4, p. 18]
that

A = −2
∫∫
G∗

hω31 ∧ ω32 (resp. A′ = −2
∫∫
G∗

h′ω31 ∧ ω32 .

Therefore, we get immediately:

The pitches A of a closed ruled surface of S and A′ of the corresponding surface of S ′ are
equal (A = A′).

Assume now that the vectors e1(u, v), e2(u, v) are tangent to the lines of curvature on
M(u, v), i.e., the lines of curvature are the parameter curves ω31 = 0, ω32 = 0. Then

β = 0, α = −r1, δ = −r2 (2.31)

are valid, and (2.29) takes the form

k′ = k − m (r2 − r1) −
(r2 − r1)

2

4
. (2.32)

In addition, the S-principal ruled surfaces of the congruence S
′

are the parameter surfaces
ω31 = 0, ω32 = 0 iff

m = 0 ∀(u, v) ∈ G. (2.33)
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Also, by virtue of (1.13),
(r2 − r1)

2

4
=

H2 − K

K2
(2.34)

holds true. Then, (2.32)–(2.34) lead to

Proposition 2.4 Suppose the S-principal ruled surfaces of S correspond to the lines of cur-
vature of M(u, v). Then

k′ = k − H2 − K

K2
. (2.35)

An immediate consequence of (2.35) is

k′ < k. (2.36)

So if S is hyperbolic, then S ′ is also a hyperbolic congruence.

Besides, it is known [6, p. 277] that the S-principal ruled surfaces of S correspond to the
lines of curvature on M(u, v) iff

K∗ =
k

K
. (2.37)

Thus, (2.35) may be rewritten as

k′ = KK∗ − H2 − K

K2
. (2.38)

Similarly, using (2.30) and (2.35), we obtain from (1.10):

Proposition 2.5 If the S-principal ruled surfaces of S correspond to the lines of curvature
on M(u, v), then for the limit distance 2z ′ of S ′

z′2 = z2 +
H2 − K

K2
(2.39)

holds true.

Note that, according to (2.39) and (2.35), we deduce: The formulae

z′2 > z2, (2.40)

z′2 − z2 = k − k′ =
H2 − K

K2
(2.41)

are valid.
Furthermore, in the case that K < 0, we may express (2.35) in terms of the angle ϕ

between the asymptotic curves on M(u, v). Since

cos ϕ =
H√

H2 − K
, 0 < ϕ < π, (2.42)

we easily find

k′ = k +
1

K sin2 ϕ
. (2.43)

We focus now on the middle envelope M ′(u, v) of the congruence S ′. The position vector
OM ′ of M ′(u, v) satisfies the equation

OM ′ = OP ′ − a′(u, v)e1 − b′(u, v)e2 , (u, v) ∈ G. (2.44)

Therefore, taking equations (2.13), (2.24) and (2.25) into account, we find
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Proposition 2.6 The middle envelope M ′(u, v) of the congruence S ′ is given by

OM ′ = −∇1

(
H

K

)
e1 −∇2

(
H

K

)
e2 − H

K
e3 . (2.45)

From (2.45) the already known results [8, p. 19] follow at once:

Corollary 2.2 The congruence S is an M -congruence, i.e., the middle envelope M(u, v) of
S is minimal, iff the middle envelope M ′(u, v) of S ′ degenerates into the point O.

Corollary 2.3 If
H

K
= c with c ∈ R\{0}, then the middle envelope of S ′ is part of a sphere

centered at O and with radius c.

Again, there exist linear differential forms ρ′, σ′ and functions α′, β′, δ′, such that

dM ′ = ρ′e1 + σ′e2, (2.46)

ρ′ = α′ω31 + β′ω32 , σ′ = β′ω31 + δ′ω32 . (2.47)

Therefore, differentiating both sides of (2.45) and using (1.3), (1.6), (2.6), (2.46), (2.47), we
obtain

α′ = −∇1∇1

(
H

K

)
+ q∇2

(
H

K

)
− H

K
, (2.48)

β′ = −∇2∇1

(
H

K

)
− q̃ ∇2

(
H

K

)
= −∇1∇2

(
H

K

)
− q∇1

(
H

K

)
, (2.49)

δ′ = −∇2∇2

(
H

K

)
+ q̃ ∇1

(
H

K

)
− H

K
. (2.50)

Let us now denote by K ′ and H ′ the curvature and the mean curvature of M ′(u, v) respectively.
A relation similar to (1.14) holds true:

2H ′

K ′
= − (α′ + δ′) . (2.51)

We replace α′, δ′ by the right-hand side of (2.48), (2.50) and we infer

Proposition 2.7 The formula
2H ′

K ′
= ∆

(
H

K

)
+

2H

K
(2.52)

is valid, where ∆ stands for the second differential operator of Beltrami with respect to the
first fundamental form of S.

Direct consequences of Proposition 2.7 are

Corollary 2.4 The following properties are equivalent:

(a)
H

K
is a harmonic function,

(b)
H

K
=

H ′

K ′
.

Corollary 2.5 The middle envelope of S ′ is minimal or degenerates into a point if and only
if

∆
(

H

K

)
+

2H

K
= 0. (2.53)

When M(u, v) is a non-minimal surface of constant curvature K, then S ′ is an M -congruence
iff

∆H + 2H = 0.
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Moreover, taking into account Propositions 2.2 and 2.3:

Corollary 2.6 In the case one of the surfaces F ∗

i (u, v), i = 1, 2, (resp., G∗

i (u, v), i = 1, 2) is
the middle surface of S ′, a necessary and sufficient condition for the middle envelope M ′(u, v)
of S ′ to be minimal or to degenerate into a point is

∆ρ + 2ρ = 0 (resp. ∆z + 2z = 0),

where 2ρ and 2z are the focal and the limit distance of S, respectively.

3. Ruled surfaces

Some relations among certain ruled surfaces in S, S ′ and special nets on M(u, v) were estab-
lished by L. Vermeire [8] and G. Stamou [3] (in the case S is isotropic). Our aim is to
extend their investigation.

We recall the differential equations of special ruled surfaces in S [4, p. 10–12]:

lω2

31
+ 2mω31ω32 + nω2

32
= 0 (developable surfaces), (3.1)

m
(
ω2

31
− ω2

32

)
− (l − n)ω31ω32 = 0 (S-principal ruled surfaces), (3.2)

(l − n)
(
ω2

31
− ω2

32

)
+ 4mω31ω32 = 0 (K-principal ruled surfaces). (3.3)

The corresponding ones in S ′ are similar but l, m, n are replaced by l′, m′, n′. The latter, by
virtue of (2.26)–(2.28), become respectively

(l − β)ω2

31
+ 2

(
m +

α − δ

2

)
ω31ω32 + (n + β)ω2

32
= 0, (3.4)

(
m +

α − δ

2

) (
ω2

31
− ω2

32

)
− (l − n − 2β)ω31ω32 = 0, (3.5)

(l − n − 2β)
(
ω2

31
− ω2

32

)
+ 4

(
m +

α − δ

2

)
ω31ω32 = 0. (3.6)

In this section we assume that S is not isotropic,
H

K
6= c, c = const., and the moving frame

D, is such that e1(u, v), e2(u, v) are the principal directions on M(u, v). Thus, the relations
(2.31) are valid.

Proposition 3.1 Suppose S satisfies the conditions:
(i) 2z = |r1 − r2|,
(ii) The K-principal ruled surfaces of S correspond to the lines of curvature on M(u, v).

Then either S ′ is isotropic or z′ = 2z.

Proof: According to (2.31),
2z = |α − δ| (3.7)

and (2.26), (2.28) take the form
l′ = l, n′ = n, (3.8)

respectively. Moreover, since the lines of curvature on M(u, v) are defined by ω31 = 0, ω32 = 0,
due to (3.3), condition (ii) yields l = n. This means, by virtue of (3.8), that

l′ = n′ (3.9)
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and, by (3.7), (1.10), we have
2m = ± (α − δ) . (3.10)

Applying (3.10) to (2.27), it follows that

m′ = 0 or m′ = α − δ. (3.11)

Evidently, (3.9) and (3.11) lead to the required assertion.

Note that the K-principal ruled surfaces of S correspond to the lines of curvature on

M(u, v) iff H∗ =
H

K
h [2, p. 381]. Thus, condition (ii) in Proposition 3.1 can be replaced by

H∗ =
H

K
h .

Conversely:

Proposition 3.2 If S ′ is isotropic, then the conditions (i) and (ii) of Proposition 3.1 hold
true.

Proof: For S ′ isotropic
l′ = n′ and m′ = 0.

Hence, using (2.26)–(2.28) and (2.31), we find

l = n, 2m = δ − α. (3.12)

Inserting (3.12) into (1.10), we get (i). Since β = 0 and l = n, the K-principal surfaces of S
correspond to the lines of curvature on M(u, v), and consequently the equivalent condition
(ii) is valid.

From now on, S ′ is considered to be nonisotropic.

Proposition 3.3 Consider the congruences S, S ′. The following properties are equivalent:
(a) The K-principal ruled surfaces of S correspond to the lines of curvature on M(u, v).

(b) The K-principal ruled surfaces of S correspond with those of S ′.

(c) H∗ =
H

K
h .

Proof: Assume property (a). Since β = 0, the relation l = n holds true. Thus, from (2.26)
and (2.28), it follows l′ = n′, i.e., the property (b). Conversely, if (b) is satisfied, then on
account of (3.3) and (3.6)

(l − n)(α − δ) = 0.

However, under condition (c) in Section 1, the surface M(u, v) has no umbilical points. So

α − δ 6= 0,

hence (a) is valid. Again, as we know, (c) is a necessary and sufficient condition for (a) to be
valid [2, p. 381]. Therefore (c) is equivalent to (b) too.

Note that further immediate consequences of (a) and (b) are the equivalent properties:

(d) The S-principal ruled surfaces of S correspond to the lines bisecting the lines of curvature
on M(u, v).

(e) The S-principal ruled surfaces of S correspond to those of S ′.
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Next, consider the differential equation

β′
(
ω2

31
− ω2

32

)
+ (α′ − δ′) ω31ω32 = 0 (3.13)

of the spherical image of the lines of curvature on M ′(u, v). The relation (3.13) reduces to
ω31 = 0, ω32 = 0 iff β ′ = 0, which, by means of (2.49), leads to

Proposition 3.4 A necessary and sufficient condition for the spherical image of the lines of
curvature on M(u, v) and M ′(u, v), respectively, to be the same is

∇1∇2

(
H

K

)
+ q∇1

(
H

K

)
= 0. (3.14)

Moreover the III -principal ruled surfaces of S ′ are defined by the differential equation [7,
p. 54]

B′
(
ω2

31
− ω2

32

)
− (A′ − Γ ′) ω31ω32 = 0, (3.15)

where

A′ = − (α′ l′ + β′ m′) , 2B′ = −2β ′ h′ − m′ (α′ + δ′) , Γ ′ = − (β ′ m′ + δ′ n′) . (3.16)

We shall prove the ensuing

Proposition 3.5 Let S, S ′ have the following properties:
(a) The K-principal ruled surfaces of S correspond to the lines of curvature on M(u, v),

(b) the S-principal ruled surfaces of S and the III -principal ruled surfaces of S ′ have the
same spherical image,

(c) ∇1∇2

(
H

K

)
+ q∇1

(
H

K

)
6= 0.

Then, either the S-principal ruled surfaces of S correspond to the lines of curvature on M ′(u, v)
or S is normal.

Proof: Since (a) holds true, we have β = 0, l = n and, by virtue of (2.26) and (2.28), l′ = n′.
Thus, the S-principal ruled surfaces of S are defined by the differential equation ω2

31
−ω2

32
= 0

and because of (b), (3.15), (3.16), it follows that

A′ − Γ ′ = l′δ′ − α′l′ = 0

or equivalently
l′ (δ′ − α′) = 0, (3.17)

i.e., l′ = 0 or δ′ − α′ = 0. On one hand, this means h′ = l′ = n′ = 0, hence S ′, as well as S, is
normal. On the other hand, since (c) is valid, i.e., β ′ 6= 0, (3.13) becomes ω2

31
− ω2

32
= 0.

Proposition 3.6 If the K-principal ruled surfaces of a congruence S correspond to the lines
of curvature on M(u, v), then the following properties are equivalent:

(a) The K-principal ruled surfaces of S ′ correspond to the lines of curvature on M ′(u, v).

(b) The corresponding lines of curvature on M(u, v) and M ′(u, v) have the same spherical
image.

(c) 2H∗′ = h
[
∆
(

H

K

)
+

2H

K

]
.



34 D. Papadopoulou, P. Koltsaki: On a Special Pair of Parallel Congruences

Proof: By assumption, β = 0 and l = n. Consequently, on account of (2.26) and (2.28), we
have l′ = n′. Thus, (a) leads to β ′ = 0. However, β = β ′ = 0 means (b) and vice versa. In
addition, (a) is equivalent to the relation [2, p. 381]

H∗′ =
H ′h′

K ′
. (3.18)

Using now (2.30) and (2.52), we find (c).

Furthermore, we shall show that

Proposition 3.7 If three of the following properties are valid, then all four are satisfied.
(a) The K-principal ruled surfaces of S correspond to the lines of curvature on M(u, v).

(b) The K-principal ruled surfaces of S ′ correspond to the lines of curvature on M ′(u, v).

(c)
H

K
is a harmonic function.

(d) H∗′ = H∗.

Proof: As mentioned above, (a) is equivalent to

H∗ =
H

K
h , (3.19)

(b) is equivalent to (3.18), and (c), in view of Corollary 2.4, is equivalent to

H

K
=

H ′

K ′
. (3.20)

Thus, when (a), (b), (c) are valid, by virtue of (2.30), we obtain (d). Similarly, in case (a),
(b), (d) hold true, we get (3.20) and on account of Corollary 2.4, property (c). Suppose now
the properties (a), (c), (d) are valid. Then from (3.19), (3.20) and (2.30), we get (3.18) and
consequently (b). Finally, let (b), (c), (d) hold true simultaneously. By means of (3.20) and
(3.18), there follows (3.19) or, equivalently, (a).

In view of Proposition 3.6 and Corollary 2.5 we derive:

Corollary 3.1 Suppose that the properties (a) and (b) of Proposition 3.7 hold true. Then
H∗′ = 0 if and only if one of the following conditions is valid:

(a) S is normal,

(b) M ′(u, v) is a minimal surface.

4. A special case

In this section we deal with the special case

H

K
= c, c = const. 6= 0. (4.1)

That is, according to Corollary 2.3, the case M ′(u, v) is a part of a sphere. Using (2.18) and
(2.19), we obtain easily:

(A) Let S be hyperbolic. If the middle surface of S ′ is one of the surfaces F ∗

i (u, v) (resp.,
G∗

i (u, v)), i = 1, 2, then the curvature k (resp., the limit distance 2z) of S is constant.
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Similarly, from (2.52) we arrive at

(B) The relation
H

K
=

H ′

K ′
is valid.

Besides, if we insert (2.26)–(2.28) and (2.48)–(2.50) into (3.16), we derive

A′ =
H

K
(l − β) , B′ =

H

K

(
m +

α − δ

2

)
, Γ ′ =

H

K
(n + β) . (4.2)

Thus, the third quadratic form of S ′ can be written

III ′ =
H

K

[
(l − β) ω2

31
+ 2

(
m +

α − δ

2

)
ω31ω32 + (n + β) ω2

32

]
(4.3)

and, by virtue of (3.15), the differential equation of the III -principal ruled surfaces of S ′ takes
the form (

m +
α − δ

2

)(
ω2

31
− ω2

32

)
− (l − n − 2β)ω31ω32 = 0. (4.4)

Immediate consequences of relations (4.1)–(4.4) are:

(C) Let II ′, III ′ be the second and third quadratic form of S ′, respectively. The following
formulae

(i) III ′ = cII ′, (ii) III ′ = c (II − IVM)
hold true, where IVM stands for the fourth quadratic form of M(u, v).

(D) The III -principal ruled surfaces and the S-principal ruled surfaces of S ′ coincide.

Additionally, for the mixed mean curvature H∗′ and the mixed curvature K∗′ of S ′, we have

2H∗′ = A′ + Γ ′, K∗′ = A′Γ ′ − B′2.

Thus, making use of (4.1), (4.2), (2.29), (2.30), and (2.48)–(2.50), we conclude that

(E) The formulae
H∗′ = c h′, K∗′ = c2k′ (4.5)

are valid.

Therefore

(F) H∗′ = 0 iff S (as well as S ′) is normal.

(G) K∗′ = 0 iff S ′ is parabolic.

Finally, we note that

(H) In case S ′ is a hyperbolic congruence (k′ < 0), we have

(i) K∗′ < 0,

(ii) the surfaces III ′ = 0 coincide with the developable surfaces of S ′ and

(iii) the spherical image of the surfaces III ′ = 0 is an orthogonal net iff S is a normal
congruence.

Indeed (i) is easily proved by using the second equation of (4.5). Similarly (ii) is a direct
consequence of (3.4) and (4.3). Finally, (iii) follows from (ii), since the angle ω of the spherical
image of the developable surfaces is π/2 iff S ′ (as well as S) is a normal congruence.
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