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Abstract. This article investigates mathematical properties of three-dimensional
generalizations of an ellipse (called string surfaces) and a lemniscate (called prod-
uct surfaces) with more than two foci. They are defined by implicit functions.
The singular points of both kinds of surfaces with three foci are calculated analyt-
ically. It is explained how the string surfaces can easily be constructed by use of
a string. In addition some special cases of surfaces with more than three foci are
studied and the transition is made to a continuous distribution of foci. 3D-views
of the surfaces with equilateral, linear or isosceles arrangement of the three foci are
presented. In Section 4 “axial surfaces” of the form f(x, y) = c(z) are discussed,
where the constant c of the 2D-string surfaces f(x, y) is varying with z. Finally a
simplification of the polygonization used in the known algorithms for displaying
implicit surfaces is described and a new method of radial projection is presented.
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1. Introduction

Let us call a sphere |x − x1| = R a monofocal surface.1 All waves starting from the focus
x1 are reflected by the surface back to the focus. It can be approximated by the use of a
stretched string, whose first end is fixed at the focus x1 and whose second end moves along
the surface. In the same way a gardener constructs an ellipse |x − x1| + |x − x2| = a by
fixing the ends of a string of length a at the foci x1 and x2 and stretching the string to the
point x . It’s a bifocal curve. The rotation of this curve about the axis x1 ∨ x2 creates the

1Vectors are written by bold face letters in this paper, e.g., x or n .
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bifocal surface of an ellipsoid. Its equation reads

f(x, y, z) =
√

(x − x1)2 + (y − y1)2 + (z − z1)2

+
√

(x − x2)2 + (y − y2)2 + (z − z2)2 = a .
(1)

One can interpret this formula as an additive blend of two spheres |x − xi| = Ri with a =
R1 + R2 . Waves starting from one focus are reflected to the other focus, because the normal
of the surface

n = grad f =
x − x1

|x − x1|
+

x − x2

|x − x2|
= u1 + u2 (2)

is the sum of two unit vectors u1 and u2, i.e., n is the bisector between the two vectors x−x1

and x−x2 . The normal is needed to calculate the visibility and the illumination of the point
x . When the positions xi of the two foci are given, then the shortest length a of the large
axis of an ellipsoid is amin = |x1 −x2|. In this case the ellipsoid degenerates to a line segment
from x1 to x2 and all points x of this line segment have the same sum amin of their distances
to the foci.

This article investigates string surfaces like

f(x, y, z) = |x − x1| + |x − x2| + |x − x3| = c , (3)

where the arithmetical mean value of the distances between a point x of the surface and the
foci xi is constant as well as product surfaces like

f(x, y, z) = |x − x1| · |x − x2| · |x − x3| = c3, (4)

where the corresponding geometrical mean value is constant. The product surfaces are mul-
tiplicative blends of three spheres written as |x− xi| = Ri with c3 = R1R2R3 (see Section 3),
while multiplicative blends of the equation |x − xi| − Ri = 0 represent just three spheres.
Both can be called “multifocal surfaces”, because the distances |x−xi| from the surface point
x to the foci xi are either summed up or multiplied. The string surfaces are also called “iso-

surfaces”, “iso-potential surfaces” [7] or “ellipsoids of order n” [1], while surfaces where only
the distance to the closest focus is taken into account, i.e., mini=1,..,n |x − xi| = c , are called
“distance surfaces” and the triangle of the foci is called a skeleton.

2. String surfaces

If one transforms the “simple” implicit equation (3) into an explicit form, the program
“Mathematica” delivers a degree eight expression z(x, y) of the twelve coordinates of the
vectors x,x1,x2,x3 with approx. 3500 terms, which is difficult to handle. Therefore the
implicit form is used for calculations and rendering.

One can approximate the surface again by the use of a string, if the point x and the three
foci xi are represented by small rings. One end of the string is fixed to the ring at x. Then
the string passes through the rings at x1,x2 and x and the other end is finally fixed to the
ring at x3 . This path of the string can be described by the notation

x ⇒ x1 → x2 ⇒ x ⇒ x3 .

Here the arrows ⇒ describe distances which sum up to the length of the constant c in (3),
while the arrow → marks a distance which is a constant part of the string that does not
contribute to c . In this case the total length of the string has to be c + |x1 − x2|. The ring
at x can be moved around in space to reach all the points of the surface. During this motion
the string glides through the rings.
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2.1. Trifocal string surfaces

The form of the trifocal surface of (3) depends on the positions xi of the three foci and on
the constant c . For large values of c and finite |xi| it becomes a sphere with R = |x| → c/3
because lim|x|→∞

∑3
i=1 |x − xi| = 3 lim|x|→∞ |x|. Reducing the length of the string makes the

surface smaller and smaller until only a singular point x0 is left, described by its definition:
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Figure 1: Definition of Fermat’s point Figure 2: Cuts of a string surface where
the three foci form an equilateral triangle

n = grad f =
x − x1

|x − x1|
+

x − x2

|x − x2|
+

x − x3

|x − x3|
= u1 + u2 + u3 = 0. (5)

E. Weiszfeld [1, 2] has proved that functions f(x, y, z) =
∑n

i=1 |x−xi| = c with n > 2 foci
have only one minimum x0, but he did neither study nor display the surfaces f(x, y, z) = const.
Because of the vector character of the variables Eq. (5) represents three degree twelve equa-
tions, whose solutions are called x0 = (x0, y0, z0). The sum of three unit vectors ui can be
zero only if they are coplanar and if the angles between two of them are 120◦. Elementary
analytical geometry tells us that x0 can be found as the point of intersection of three circles
in Fig. 1 whose centers are defined by the angles β = 30◦. The angles at the three centers
are 120◦ as well as the three angles in x0 between the vectors xi − x0 . It turns out that x0 is
Fermat’s point of that triangle. This has to be proved:

Proof: We choose a coordinate system in such a way that

x1 = (0, 0, 0), x2 = (a, 0, 0), x3 = (b, d, 0),

i.e., the line x1 ∨ x2 is used as the x-axis. Since cos(30◦) =

√
3

2
and |x1 − x2| = a = p (see

Figs. 1 and 17), the radius of the (p, p, p)-circle is Rp =
a√
3

=
p√
3

and its center has the
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coordinates

(

a

2
, − a

2
√

3
, 0

)

. Therefore the equation of this (p, p, p)-circle is

(

x − a

2

)2

+

(

y +
a

2
√

3

)2

=
a2

3
, i.e., x2 + y2 − ax +

ay√
3

= 0 . (6)

The origin x1 and x2 are points of the circle. In a similar way one can derive the equation of
the (r, r, r)-circle through the points x1 and x3 :

x2 + y2 +
xd − yb√

3
− bx − dy = 0 . (7)

These circles intersect at the points x1 and x0 which solve the two quadratic equations (6)
and (7):

x0 =

(

d +
a + b√

3

)

· P, y0 =

(

a − b +
d√
3

)

· P, (8)

P =
a · (d + b

√
3)

2((a − b)2 + d2 + a(b + d
√

3))
. (9)

The (q, q, q)-circle through the points x2 and x3 with the radius

Rq =
q√
3

=
|x2 − x3|√

3
=

√

d2 + (a − b)2

3

has the equation

(

x − a + b

2
− d

2
√

3

)2

+

(

y − d

2
+

b − a

2
√

3

)2

− d2 + (b − a)2

3
= 0 . (10)

The point x0 is a solution of this equation, too. So any combination of two of the three
quadratic equations (6), (7) and (10) delivers the solution (x0, y0): the three circles intersect
at one point.

We have to proof now, that this point is a point of the line from x1 to the opposite corner
of the (q, q, q)-triangle. The corner

(

xc =
a + b + d

√
3

2
, yc =

d + (a − b)
√

3

2

)

is a solution of the intersection of two circles with the same radius q = |x3 − x2| =
√

d2 + (b − a)2 around the centers x2 and x3 :

(x − a)2 + y2 = d2 + (b − a)2 (circle centered at x2 = (a, 0, 0))

(x − b)2 + (y − d)2 = d2 + (b − a)2 (circle centered at x3 = (b, d, 0)).

The point (x0, y0) is a point of the line from the origin to this corner since

yc

xc

=
d + (a − b)

√
3

a + b + d
√

3
=

y0

x0

. (11)

A cyclic renaming of the points xi and their coordinates proves that (x0, y0) is also a point of
the lines from x2 to the corner of the (r, r, r)-triangle and of the line from x3 to the corner of
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the (p, p, p)-triangle. So it is proved that the function f of Eq. (3) has a minimum in Fermat’s
point.

If one of the three angles of the given triangle x1,x2,x3 is equal or larger than 120◦

then x0 is identical with the vertex of this obtuse angle, i.e., x0 coincides with a focus. For
d = (b − a)

√
3 the angle at x2 is 120◦ (see Fig. 17), because tan(60◦) =

√
3 and Eqs. (8)

give the point x0 = (a, 0) = x2 as the point of the minimum. If the angle becomes still
larger (d < (b − a)

√
3), the point x0 of intersection of the three circles is outside the triangle

x1,x2,x3 and is not a solution of Eq. (5) anymore, because the angles between the ui are 60◦,
60◦, and 120◦, respectively.

For example, if d = a and b = 2a, the angle at x2 is 90◦ + 45◦ = 135◦(> 120◦) and we
find: x0 = (0.9058 a, −0.1401 a) which is outside the xi-triangle since y0 < 0 . It is obvious
that

f(x0) = |x0 − x1| + |x0 − x2| + |x0 − x3| > f(x2) = |x2 − x1| + 0 + |x2 − x3|.

This is true for all points x0 outside the triangle. Therefore one can say that the point of the
minimum of f is given by Eqs. (8) if every angle αi of the triangle is smaller than or equal to
120◦ and that the minimum is in xi if αi > 120◦.

Fig. 2 shows the curves of the intersections of the planes z = const. with a trifocal surface,
in which the foci

x1 =

(

−a, − a√
3
, 0

)

, x2 =

(

a, − a√
3
, 0

)

, x3 =

(

0,
2a√

3
, 0

)

form an equilateral triangle with sides of length s = 2a and the string has the length f(xi) =
c = s + 0 + s = 4a (see Eq. (3)) to make sure that the foci are points of the surface. In
this symmetric surface Fermat’s point is the center of the triangle x0 = (0, 0, 0). The top and
bottom of it are the points (0, 0,± s

3
). The curves of Fig. 2 are the intersections with the planes

z1 = 0, z2 = 0.285 a and z3 = 0.571 a . The z1-intersection looks like a Releaux-triangle, but
is different.

Figure 3: 3D-view of the surface
of Fig. 2

Figure 4: (z=0)-cuts of string surfaces
defined by (12), (26) and (29)
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A 3D-view of the surface is shown in Fig. 3. The foci can be recognised in the silhouette.
The string construction of this surface may have a technical application, because the ring of
point x moves to the point x0 from every point in the space, if one pulls at the end of the
string in the remote point x3 .

Another trifocal surface was studied with a linear arrangement of the foci on the x-axis:
x1 = (−a, 0, 0), x2 = (0, 0, 0), x3 = (a, 0, 0) (see Fig. 4):

√

(x + a)2 + y2 + z2 +
√

x2 + y2 + z2 +
√

(x − a)2 + y2 + z2 − c = 0 . (12)

The surface is symmetrical with the x-axis as the axis of rotation. Since the second focus is
a point of the line x1 ∨ x3, the shortest string length is c = |x1 − x3| = 2a . With this c-value
the surface degenerates to a point: x0 = x2 . Squaring (12) several times leads to a degree
eight equation for z = 0 :

16c2 ((x + a)2 + y2) (c2 + 4ax − x2 − y2)
2 − ((c2 + x2 + y2 + 2a2)2 + 4c2 ((x + a)2 + y2)

−4 ((x − a)2 + y2) (c2 + (x + a)2 + y2))
2

= 0 ,

which can be solved by “Mathematica”, but the explicit function of the curve y(x) contains
approx. 1500 terms. Therefore another approach was used. In (12) the variables y and z occur
only in a combination of the form x2 + y2 + z2 = r2 :

r +
√

r2 + a2 − 2ax +
√

r2 + a2 + 2ax − c = 0 . (13)

Figure 5: (z=0)-cuts of string surfaces
where the three foci form a

rectangular triangle

Figure 6: Quadrifocal string surface
where the foci form a square

This leads to the parameter representation:

x = ±c − r

4a

√

4(r2 + a2) − (r − c)2 ; y =
√

r2 − x2 cos φ ; z =
√

r2 − x2 sin φ (14)

within the region

− c

3
+

2

3

√
c2 − 3a2 ≤ r ≤ c − 2a and 0 ≤ φ ≤ 2π .
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For c0 6= 3a the curves have ellipsoidal shape, but for c0 = 3a the curve intersects the x-axis
at the foci x = ±a with the slope

β = arctan

(

∂y

∂x

)

= arctan

(

∂y

∂r
/
∂x

∂r

)

= arctan

(

√

21

8
/1

)

= 58.316◦.

Therefore the c0-surface can be approximated in the neighbourhood of the two foci by cones
with a 2β-angle at their apex. Fig. 4 shows the (z = 0)-intersections of different surfaces:
c = 2.5 a, 2.75 a and 3.0 a . The three lines x∨xi are drawn for one point x of the (c = 3.0 a)-
surface.

In Fig. 5 the three foci form an isosceles rectangular triangle

x1 = (−a, 0, 0), x2 = (a, 0, 0), x3 = (0, a, 0).

For x = x1 the sum of the three distances |x − xi| is

0 + 2a + a
√

2 = a
(

2 +
√

2
)

= 3.414214 a = c1 .

The same is true for x = x2, but not for x = x3 . Therefore the foci x1 and x2 lie on the
c1-surface but x3 does not. The surface on which x3 is lying has the string length 0 + a

√
2 +

a
√

2 = 2.828428 a = c2 . According to Eqs. (8) Fermat’s point is x0 =

(

0,
a√
3
, 0

)

and it is

independent of the position b of x3 = (0, b, 0) on the y-axis, since a motion of x3 along the
y-axis does not change the three 120◦-angles between the vectors x1 − x0, x2 − x0, x3 − x0

at x0, by which x0 is defined in Eq. (5). The curve z(y) of the intersection of the (x = 0)-
plane with a trifocal surface can be solved explicitly if the foci represent an isosceles triangle
(xi = (±a, 0, 0), (0, b, 0)) because in this case two of the three square roots in (3) are equal
for x = 0 :

2
√

a2 + y2 + z2 +
√

(y − b)2 + z2 = c . (15)

This is a biquadratic equation for z with the solution

z(y) = ±
√

c2 + 4(b2 + c2 − 3a2) − (b + 3y)2 − 4c
√

b2 + c2 − 3a2 + 2b(b − 3y). (16)

It has a vertex in x3 as shown in Fig. 5 if x3 is a point of the surface, i.e., if c = 2
√

a2 + b2.

2.2. Multifocal string surfaces

In this subsection two special surfaces with four foci are studied. Fig. 6 shows the horizontal
(z=0)-intersections of surfaces with a quadratic arrangement of the four foci

xi = (0,−a, 0), (a, 0, 0), (0, a, 0), (−a, 0, 0)

where one string is chosen so long that the four foci lie on the surface c4 = 0 + 2a + 2
√

2 a =
4.828428 a. The intrinsic curves correspond to (z = 0)-cuts of surfaces with smaller strings
c = 4.2071 a, 4.4142 a, 4.6213 a . For c = 4a these surfaces shrink to a point x0 . It is the
origin of the coordinate system for which the sum of the distances to the four foci is minimal:
cmin = 4a , because (18) gives grad f = 0 for x = 0 and x1 = −x3 and x2 = −x4 . It
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corresponds to Fermat’s point of a triangle. If the ends of the string are fixed to the points
x1 and x4 — as shown in Fig. 6 — the string notation is

x1 ⇒ x ⇒ x2 → x3 ⇒ x ⇒ x4 .

For a point x in the plane y = x the four distances in f(x) are equal two by two:

|x − x1| = |x − x4| and |x − x2| = |x − x3|,

i.e.,
f = 2|x − x1| + 2|x − x2| = c4 .

This is an equation of an ellipsoid |x − x1| + |x − x2| = c4/2 = a(1 +
√

2) with the foci
x1 and x2 . The same is true for the ellipsoid on the other side of the of the (y = x)-plane:
|x − x4| + |x − x3| = a(1 +

√
2). The cut of both ellipsoids by the plane y = x creates

an ellipse. One of its semiaxes z̄ =
a

2

√

2
√

2 − 1 = 0.6761 a is the solution of the equation

f(0, 0, z̄) = 0. The cartesian coordinate x̄ of the second maximum of the ellipse is calculated

from f(x̄, x̄, 0) = 0: x̄ = a
3 +

√
2√

28
. The corresponding semiaxis in the line (z = 0, y = x)

has the length x̄
√

2 = 0.8342 a. During the motion of the ring x along the surface in the
(x=y)-plane the constant part x2 → x3 of the string does not move for the simple reason of
symmetry. It seems to be fixed at the foci x2 and x3 . The symmetry of the surface is also
the reason why we find the same ellipse in the (y=−x)-plane. The segments of the c4-curve
can again be approximated by segments of circles. The c4-surface looks like a pillow and has
the height ±z̄ (see Fig. 7).

In Fig. 20 the term |x − x5| of a fifth focus with x5 = (0, 0, a/4) is subtracted from the
f -function of the “pillow” of Fig. 7:

f0 =
4
∑

i=1

|x − xi| − |x − x5| = c5 with c5 = c4 − |x1 − x5| = c4 −
√

a2 +
(

a

4

)2

= 3.7976 a ,

to make sure that the xi are points of f0 . It creates a “dip” in the “pillow”.

In Fig. 8 the four foci are not coplanar anymore as in Figs. 6 and 7 but form a symmetrical
tetrahedron

x1 =
(

−a

2

√
3, −a

2
, 0
)

, x2 =
(

a

2

√
3, −a

2
, 0
)

, x3 = (0, a, 0), x4 = (0, 0, b).

Its base is a regular triangle. Here the point x0 of minimal string length c can be calculated
analytically, because for reasons of symmetry it has to be a point of the z-axis:

f(0, 0, z) =
∑

|x − xi| = b − z + 3

√

(

a

2

√
3
)2

+
(

a

2

)2

+ z2 = b − z + 3
√

a2 + z2

and the condition grad f = 0 is reduced to
∂f

∂z
= 0 = −1 +

3z√
a2 + z2

. The solution z0 =
a

2
√

2
is independent of the height b of the tetrahedron, because for x = x0 the unit vector u4 in
(19) is independent of b. The f -values grow with increasing b, but their minimum stays in
place x0 = (0, 0, z0). Fig. 8 shows the string surface of a regular tetrahedron

b = a
√

2, c = 0 + 3|x3 − x4| = 0 + 3
√

a2 + b2 = 3a
√

3 .
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Figure 7: A string surface with a
quadratic arrangement of the four foci

Figure 8: A string surface with a tetra-
hedral arrangement of the four foci

The camera was put in a position from where three of its four vertices were visible. If the
tetrahedron degenerates to a plane, i.e., if the four foci form an (irregular) quadrilateral, then
the point x0 of minimal string length c is the point of intersection of the two diagonals.

Proof: Let us assume that the irregular quadrilateral is convex and that the numeration of
the points is clockwise or anticlockwise with the diagonals x1 ∨x3 and x2 ∨x4. Then the sum
|x− x1|+ |x− x3| is minimal for points x of the first diagonal and its value is |x1 − x3|. The
same is true for points of the other diagonal with the value |x2−x4|. Therefore the only point
where both sums are minimal is the point x0 of the intersection of the two diagonals with the
minimum fmin = |x1 − x3| + |x2 − x4| (see (17)). It is a solution of (19) with grad f = 0.

In general the string surface of four foci

f(x) =
4
∑

i=1

|x − xi| = c (17)

has the normal

n = grad f =
4
∑

i=1

x − xi

|x − xi|
=

4
∑

i=1

ui , (18)

and the singular point x0 of the minimum of f is a solution of the three equations

n =
4
∑

i=1

x − xi

|x − xi|
=

4
∑

i=1

ui = 0 (19)

which are degree eight polynomials with approx. 2000 terms if one removes the square roots
of the denominators. Eq. (19) can be rewritten

u1 + u2 = −u3 − u4 (20)
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and squared
1 + 1 + 2u1 · u2 = 1 + 1 + 2u3 · u4 . (21)

This means for the angles between the ui-vectors that

∠(x0 − x1,x0 − x2) = ∠(x0 − x3,x0 − x4) (22)

or as an abbreviation
φ12 = φ34, φ13 = φ24, φ14 = φ23 . (23)

The last two equations are a consequence of permutations of (20). Eq. (23) says that opposite
edges of the tetrahedron appear to an observer in x0 under the same angle and (20) tells
in addition that the bisectors of these angles are collinear. It seems that (19) has to be
solved numerically for irregular tetrahedra. Its solution x0 can easily be found by a numerical
algorithm starting from an arbitrary point xj and running in small steps dx into the direction
of −n(x) : xj+1 = xj − n(xj) dx . E. Weiszfeld [1] has given a similar algorithm.

2.3. Convolution surfaces

Eqs. (17), (18) and (19) can be generalized to n foci and one can study the case n → ∞ :

g(x) =
1

V

∫

V

ρ(v)|x − v| dv = const. (24)

One can call the function ρ(v) a focal density and one can compare this integral with the
fundamental equation of the potential theory

Φ(x) =
1

V

∫

V

ρ(v)dv

|x − v| , (25)

where ρ(v) is either the charge- or the mass-distribution. The integral (24) can be solved for
a constant density ρ = 1 if the infinite number of foci forms a straight line −a ≤ x1 ≤ a in
x1-direction:

g(x, y) =
1

2a

a
∫

−a

|x − x1|dx1 =
1

2a

a
∫

−a

√

(x − x1)2 + y2 dx1

=
1

4a

(

(a − x)
√

(x − a)2 + y2 + (x + a)
√

(x + a)2 + y2

+ y2 ln

(

a − x +
√

(x − a)2 + y2

−x − a +
√

(x + a)2 + y2

))

for y 6= 0 ,

=
x2 + a2

2a
for y = 0 and |x| ≤ a ,

= |x| for y = 0 and |x| > a .

(26)

This leads to the trivial results that the center of the line has a mean distance of g(0, 0) = a/2
from the line and that the end of the line has a distance of g(a, 0) = a . To ask for other points
with this mean distance (a) means to demand g(x, y) = a = const. This curve is plotted in
Fig. 4. A rotation of g(x, y) about the x-axis generates a surface of constant mean distance
from the line x1 ∨ x3, while a cylinder is a surface with constant minimal distance from its
axis. The reader may replace y2 by y2 +z2 in (26) to get the function g(x, y, z) of this surface.
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Supposed it is asked for a surface, whose mean distance c to four lines should be constant,
which form a planar or skew quadrilateral. This can be done by demanding, that the sum

G(x, y, z) =
4
∑

i=1

gi(x, y, z) = c (27)

should be constant, which corresponds to the transition from Eq. (1) to (3). — The local
coordinates of (26) have to be transformed to common coordinates for every line in (27). —

In Computer Graphics the lines of (27) or the points xi in (17) are called “skeletons” [3, 4].
The name used in Constructive Solid Geometry (CSG) [5] for such surfaces is “offset solid”.
In these applications similar surfaces — called “distance surfaces” — are studied where the
condition

min(g1, g2, . . . , gn) = const. (28)

keeps the distance to the closest skeleton constant. Another possibility to emphasize the
distances |x − xi| to the closest skeleton was proposed by J.F. Blinn [6] for “iso-potential

surfaces”

f(x) =
n
∑

i=1

exp

(

− |x − xi|2
2

)

.

J. Bloomenthal and K. Shoemake [7] did the transition n → ∞ and analysed “con-

volution surfaces” by replacing the summation of the last equation by an integration. J.

Bloomenthal and B. Wyvill [15] used negative terms −|x − xi| to create surfaces with
dips, i.e., such foci are “repulsive” to the surface (see Fig. 20), while foci with positive terms
+|x − xi| are attractive and create apices (see Figs. 2 to 8).

Unfortunately the attempt to calculate a curve or a surface on which the mean distance
to a circle (r1 cos φ, 0, r1 sin φ) is constant leads to an elliptical integral

K(x, y, z) =
1

2π

2π
∫

0

|x − x1| dφ1 =
1

2π

2π
∫

0

√

(r1 cos φ1 − x)2 + y2 + (r1 sin φ1 − z)2 dφ1 . (29)

The function K has rotational symmetry with respect to the y-axis of the circle. Fig. 4 shows
the curve K(x, y, 0) = a obtained by numerical integration of (29) (cf. [8]). The (y=0)-plane
of the circle is perpendicular to the (z=0)-plane of this paper, and the circle penetrates it in
the points x = ±r1 = ±a . A rotation of the curve K(x, y, 0) = a about the y-axis A ∨ x2

generates a surface, whose points x have a constant arithmetical mean distance a from the
circle.

3. Product surfaces

Bifocal product curves

f = |x − x1| · |x − x2| = c2 or f 2 = (x − x1)
2 · (x − x2)

2 = c4 (30)

were studied in the seventeenth century by J.D. Cassini. If one reads the x-variables as
three-dimensional vectors then (30) represents a surface of revolution with the line x1 ∨x2 as
the axis of rotation and with the normal

n = 1
2
grad f 2 = f grad f = (x − x1)(x − x2)f

2 + (x − x2)(x − x1)f
2. (31)
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For c2 → 0 one of the two factors in (30) has to vanish: x → x1 or x → x2, i.e., the curves (or
surfaces) split into two parts — one around each focus. Both parts grow in volume with an
increasing value of c. There is a particular c-value c0 = |x1 −x2|/2, where both parts get into
contact at the point x0 = (x1 + x2)/2. This point is a singular point with n0 = grad f = 0 .
The c0-curve is called a lemniscate. It looks like the number “8”.

3.1. Trifocal product surfaces

A trifocal product surface

f(x, y, z) =
∏3

i=1

√

(x − xi)2 + (y − yi)2 + (z − zi)2 = c3 or

F (x, y, z) = f 2(x, y, z) =
∏3

i=1(x − xi)
2 = c6

(32)

splits into three parts for small values of c as shown in Fig. 9. In this case one of the square
roots has to be small: x → xi , i = 1 or 2 or 3 . The foci xi are the points of the absolute
minima of the function f(xi) = c3

min = 0 . With increasing c the different parts melt together
at one or two singular points x01 and/or x02, which are called “contact points” in this paper.
Their positions depend on the positions xi of the foci which influence the number of solutions
of their defining equation

n = 1
2
gradF = f grad f = (x − x1)(x − x2)

2(x − x3)
2

+ (x − x2)(x − x1)
2(x − x3)

2 + (x − x3)(x − x1)
2(x − x2)

2 = 0 .
(33)

This is a system of three degree five equations for the variables x, y and z .

Figure 9: (z=0)-cuts of product surfaces
with an isosceles focal triangle

Figure 10: 3D-view of the c02-surface
of Fig. 9

The singular contact points x01 and x02 and — due to the factor f — the three foci are
solutions of these three equations. In an ε-neighbourhood of a contact point x0i there are
points with f(x) < f(x0i) belonging to different parts of the surface with c < c0i , other points
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of the contact surface f(x) = c0i and points with f(x) > c0i belonging to the joint surface with
c > c0i . Therefore the second order term of a Taylor expansion of f in x0i = (x1,0i, x2,0i, x3,0i)
is indefinite:

f(x) = f(x0i) + 1
2

3
∑

j,k=1

∂2f

∂xj∂xk

(xj − xj,0i)(xk − xk,0i)

= f(x0i) + 1
2

3
∑

j,k=1

fjk(xj − xj,0i)(xk − xk,0i),

(34)

i.e., its sign depends on the direction of x − x0i . The first order term vanishes in x0i with
grad f = 0 . — Here the variables x, y, z are replaced by x1, x2, x3 and fj,k are the second
derivatives, e.g., f23 is fyz .— In a contact point the surface resembles an apex of a cone or a
multi-cone (see Figs. 9, 10, 14 and 16).

For solving the Eqs. (33), the plane of the three foci is chosen as the (z = 0)-plane and
the coordinate system is placed in such a position that the foci have the coordinates

x1 = (0, 0, 0), x2 = (a, 0, 0), x3 = (b, d, 0)

(see Fig. 17). Then the contact points lie on the (z=0)-plane too: z01 = z02 = 0, because the
(z=0)-plane is a plane of symmetry: (32) does not depend on the sign of z for zi = 0 .

If one substitutes the coordinates of the xi into (33) and eliminates one of the three terms
by calculating the (weighted) differences of these equations one gets two cubic equations:

(dx − by)
(

(x − a)2 + y2
)

− ay
(

(x − b)2 + (y − d)2
)

= 0 (35)

(y(a − b) + d(x − a)) (x2 + y2) + ay
(

(x − b)2 + (y − d)2
)

= 0 , (36)

which can be solved under b 6= a/2 and d 6= 0 :

x01,02 =
d(a2 + 2ab − 8b2) ± q(3b2 − d2 + p)

3(a − 2b)(2d ∓ q)
(37)

y01,02 = (2d ∓ q)/6 with (38)

p =
√

(a2 − ab + b2 + d2)2 − 3a2d2 , q =
√

2(d2 − a2 + ab − b2 + p) . (39)

The c-values of (32) can be chosen in such a way that x01 or x02 are points of the surfaces

c6
01,02 =

3
∏

i=1

(x01,02 − xi)
2.

Let c01 be the smaller value. The surface splits into three different ovals around the three
foci for c < c01 . For c = c01 two ovals touch one another in x01 and this joint part grows
further with increasing c and touches the third oval in x02 for c = c02 . This situation is shown
in Fig. 9, 10, 13, and 14 for an isosceles triangle of the foci, and in Fig. 17 for an irregular
triangle.

If the three foci are collinear (d = 0 , a case not solved by (37) and (38)) then the contact
points are points of the line of the foci: y01 = y02 = z01 = z02 = 0 and the condition

grad f 2(x, y, z) = grad
(

(x2 + y2 + z2)
(

(x − a)2 + y2 + z2
) (

(x − b)2 + y2 + z2
)

− c6
)

= 0

is reduced to

df 2(x, 0, 0)

dx
= 2x(x − a)(x − b) ((x − a)(x − b) + x(x − b) + x(x − a)) = 0 .
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Figure 11: (z=0)-cuts of product surfaces
with three foci on a line

Figure 12: 3D-view of the c0-surface
of Fig. 11

Apart from the three foci (x1 = 0, x2 = a, x3 = b) the solutions of this equation are the
contact points

x01,02 = 1
3

(

a + b ±
√

a2 + b2 − ab
)

.

Figs. 11 and 12 show the surface for equidistant foci b = 2a with the contact points

x01,02 = a

(

1 ± 1√
3

)

and the common constant

c6
0 =

3
∏

i=1

(x01,02 − xi)
2 = 4

27
a6, i.e., c0 = 0.7274.. a .

The last symmetrical case (b = a
2
), which was not solved by Eqs. (37) and (38), represents

an isosceles triangle and splits into three subcases. If one chooses the axis of symmetry of the
triangle as the y-axis, i.e., x1 = (−a, 0, 0), x2 = (a, 0, 0) and x3 = (0, d, 0) (see Fig. 9), then
the solutions for the contact points are:

x01,02 = ±1
3

√
3a2 − d2, y01 = y02 = d

3
, for d < a

√
3 ,

x0 = 0, y0 = d
3
, for d = a

√
3 ,

x01 = x02 = 0, y01,02 = 1
3
(d ±

√
d2 − 3a2), for d > a

√
3 .

In the first subcase (d < a
√

3) the angle of the triangle at the focus x3 is larger than 60◦ ,
|x1 −x3| = |x2 −x3| < |x1 −x2| (see Fig. 13). The ovals around the foci x1 and x2 grow with
c and get in contact to the third oval simultaneously for

c6
01 = c6

02 = 4
27

a2(a2 + d2)2 .

Figs. 13 and 14 show this subcase for a rectangular triangle (d = a, c6
0 = 16

27
a6 , c0 =

0.9164.. a ). One can call the c0-curve a trifocal lemniscate.
In the second subcase (d = a

√
3) the three foci create an equilateral triangle with edges

of length 2a . The three ovals meet in the center x0 =
∑

xi/3 of the triangle for c6
0 = 64

27
a6 ,

c0 = 1.1547..a . The (z = 0)-intersection with the c0-surface is a lemniscate with three bows
(i.e., “lemnis”) (see Fig. 15 and 16). In Fig. 18 the same focal triangle is used, but the surface
is rendered for c = c1 .
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Figure 13: Trifocal lemniscate with a
rectangular arrangement of the foci

Figure 14: 3D-view of the
c0-lemniscate surface

of Fig. 13

Figure 15: (z=0)-cuts of product surfaces
with an equilateral focal triangle (32)

Figure 16: 3D-view of the c0-surface
of Fig. 15

In the last subcase d > a
√

3 the angle at x3 of the isosceles triangle is acute. Therefore
the ovals around x1 and x2 melt together on the y-axis in y01 for c = c01 and this joint part
of the surface grows further with c until it meets the third part in y02 for c = c02 (see Figs. 9
and 10). The c0-values are

c6
01,02 =

4

36

(

d3 + 9a2d ∓
√

d2 − 3a2
3
)2

.

Fig. 9 displays (z=0)-intersections of the example d = a
√

7 with

y01 = a(
√

7 − 2)/3 = 0.2152504 a , y02 = a(
√

7 + 2)/3 = 1.5485838 a ,
c6
01 = 6.467 a6, c6

02 = 13.90 a6

and a wire frame model of the c02-surface is displayed in Fig. 10.
For large values of c and finite |xi| every trifocal product surface becomes a sphere with

a radius |x| → c according to (32).
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Figure 17: (z=0)-cuts of a product surface
where the foci form an irregular triangle

Figure 18: 3D-view of the c1-surface
of Fig. 15 [9]

3.2. Multifocal product surfaces

In this subsection three surfaces are studied. The foci are arranged like the vertices of a
tetrahedron, of an octahedron or simply of a square

x1,2 = (±a, 0, 0), x3,4 = (0, ±a, 0)

(see Fig. 19). The corresponding product surface

f =
√

(x − a)2 + y2 + z2 ·
√

(x + a)2 + y2 + z2·
·
√

x2 + (y − a)2 + z2 ·
√

x2 + (y + a)2 + z2 = c4.
(40)

is a biquartic

f 2 =
(

(x2 + y2 + z2 + a2)2 − 4x2a2
) (

(x2 + y2 + z2 + a2)2 − 4y2a2
)

= c8 (41)

which can be written in an explicit form:

z = ±
√

−x2 − y2 − a2 +

√

2(x2 + y2)a2 +
√

c8 + 4a4(x2 − y2)2 . (42)

The surface does not have four contact points at the middle of the sides of the square
(±a/2, ±a/2, 0), as it would be expected, but the origin is the only contact point with
c0 = a (see Fig. 19). The surface looks like Fig. 16, but with four instead of three “clubs”.

In general four foci form an irregular tetrahedron and the singular points of the corre-
sponding product surface have to be computed numerically. In the case of a symmetrical

tetrahedron (see Figs. 21 to 26) with an equilateral triangle as a base and with the top of the
tetrahedron on the axis of symmetry z :

xi =
(

−a
2

√
3, −a

2
, 0
)

,
(

a
2

√
3, −a

2
, 0
)

, (0, a, 0), (0, 0, b)

the singular points can be calculated analytically. In this case the function of (32) — with
four foci — has to be expanded:

F (x, y, z) = f 2(x, y, z) = ((x2 + y2 + z2 + a2 + ay)2 − 3x2a2) ·
· (x2 + (y − a)2 + z2) (x2 + y2 + (z − b)2) = c8.

(43)
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Figure 19: (z=0)-cuts of product surfaces
where four foci form a square

Figure 20: String surface of Fig. 7 with a
“repulsive” focus on the z-axis

Figure 21: A tetrahedral product surface in
the moment of contact of the oval of the
pseudofocus in the center with the ovals

of the four foci

Figure 22: Coastal tetrapod with
c8 = 2.5 a8 and b = a

√
2

The surface is shown in Fig. 21 for a regular tetrahedron (b = a
√

2 and c8
02 = 1.6875 a8).

For small c-values it splits into four parts, one oval around each focus. There is a c-value
where a fifth oval starts to grow around the center of the tetrahedron: x0 =

(

0, 0, b
4

)

. This
singular point x0 is called a pseudofocus in this paper, because it has the same characteristics
as a focus: gradF = 0 and F has according to the theorem of J.J. Sylvester [14] a local
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minimum in x0 because Hesse’s determinant and its subdeterminants are positiv:

D1 = det (F11) > 0 D2 = det

(

F11 F12

F21 F22

)

> 0 D3 = det





F11 F12 F13

F21 F22 F23

F31 F32 F33



 > 0 .

Hence the second order term of the Taylor expansion (see (34)) is positive definite. The foci
and the pseudofoci differ in their F -values. The F -function has an absolute minimum F = 0
in a focus according to Eq. (32) and a pseudofocus is defined as a point of a relative minimum
with a positive F -value.

Due to the symmetry of the surface the pseudofocus in the center and the contact point
where this fifth oval of the pseudofocus meets the fourth oval of x4 are singular points on the
z-axis:

∂F (0, 0, z)

∂z
=

∂

∂z

(

(a2 + z2)3(z − b)2
)

= 2(z − b)(a2 + z2)2
(

3z(z − b) + a2 + z2
)

= 0 . (44)

The fourth focus (z4 = b) is always a solution of this equation. The other two solutions
are z01,02 = (3b ±

√
9b2 − 16a2)/8 . For a regular tetrahedron (b = a

√
2) these values are

z01 = b/4 and z02 = b/2 the values of the pseudofocus and of the contact point. Eq. (43)
gives the c-values of product surfaces, which contain these points: c8

01 = 1.60180 a8 — the
F -value for which the oval of the pseudofocus starts to grow — and c8

02 = 1.6875 a8 for the
contact-surface.

Here some of the second partial derivatives are zero for points of the z-axis (0, 0, z) of
the symmetrical tetrahedron, F12 = F13 = F23 = 0, while the diagonal elements of Hesse’s
subdeterminants are simple polynomials

F11(0, 0, z) = F22(0, 0, z) = 2(a2 + z2) ((a2 + z2)2 + 3z2(b − z)2)

F33(0, 0, z) = 2(a2 + z2) (a4 + a2(3b2 − 18bz + 17z2) + z2(15b2 − 42bz + 28z2)) .
(45)

The numerical results for the singular points of the z-axis are listed in Table 1. One can
see that F has minima in the focus and the pseudofocus because the conditions of Sylvesters
theorem are fulfilled.

Table 1: Hesse’s determinants for x = y = 0

point z F11 = F22 = D1 F33 D2 D3

focus
√

2 54 54 542 543

contact point
√

2/2 9 −9/2 92 −36/2

pseudofocus
√

2/4 35/26 35/26 310/212 315/218

Because of the symmetry of the surface there are corresponding contact points on the
three lines from the center to the foci 1, 2 and 3. For larger c-values (e.g., c8 = 2.5 a8) the
surface resembles the concrete tetrapods used to reinforce coastlines (see Fig. 22).

With b =
4

3
a the tetrahedron is not as high as the regular one and both singular points,

i.e., the pseudofocus and the contact point coincide:

z01 = z02 =
3

8
b , c8

01 = c8
02 =

55

2832
a8 = 1.3563 a8 .
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Figure 23: Oval with an apex with
b = 4

3
a, c8 = 1.3563 a8 in Eq. (43)

Figure 24: Product surface of
Fig. 23 with c8 = 1.485 a8

The oval of the fourth focus touches with an apex the “pseudofocus” (see Fig. 23).With
increasing c the surface gets the shape of a pacifier for babies until it has contact to the ovals
of the other foci simultaneously (see Fig. 24).

Figs. 25 and 26 show the situation when the tetrahedron is higher than a regular one:

b = 2a, z0i =
a

4
·
(

3 ±
√

5
)

, c8
01 = 3.64385 a8 , c8

02 = 9.53973 a8 .

The first three ovals meet in z01 (see Fig. 25) and this joint part meets the fourth oval in z02

(see Fig. 26).
In a last product surface which was studied the six foci

xi = (±a, 0, 0), (0,±a, 0), (0, 0,±a)

(see Figs. 27 and 28) are the vertices of a regular octahedron. Squaring its equation
∏6

i=1 |x − xi| = c6 leads to the formula

h(x, y, z) = [q4 − 4x2a2] · [q4 − 4y2a2] · [q4 − 4z2a2] = c12

with q4 = (x2 + y2 + z2 + a2)2.
(46)

It is symmetrical with respect to a permutation of the three axes. The plotting algorithms of
Section 5 shows that for small c-values there exist seven ovals, one around each focus and one
around the origin which acts again like a pseudofocus. Because of the symmetry the contact
points lie on the axes, e.g., on the x-axis and are determined by the equation

∂h(x, 0, 0)

∂x
=

∂

∂x

(

((x2 + a2)2 − 4x2a2)(x2 + a2)4
)

= 0 (47)

which corresponds to (33). The foci x = ±a and the contact points x01,02 = ±a/
√

3 are
solutions of this equation. The same points are found on the y- and z-axis (see Fig. 28).
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Figure 25: Product surface of a long
tetrahedron where three ovals get

contact: b = 2a, c8 = 3.678 a8

Figure 26: Focal arrangement as in
Fig. 25 but with c8 = 9.6 a8

Eq. (46) gives the c-values of the moment of contact: c0 = a 6

√

32
27

= 1.0287212 a. The oval

around the origin vanishes with decreasing c (before the ovals around the foci do so for c = 0)
because the origin is an isolated point of the (c=a)-surface (see (46)). Therefore the surface
has six parts only in the parameter interval 0 ≤ c < a and seven parts for a ≤ c < c0 which
melt together for c = c0.

A parameter representation of (46) is possible by the introduction of spherical polar
coordinates (x = r cos θ sin φ, y = r sin θ, z = r cos θ cos φ) :

φ = ± arcsin
√

A/B

A = c12 − (r2 + 1)6 + 4(r2 + 1)4r2 − 4r4(r2 + 1)2 sin2 2θ

B = 4r4 cos2 θ((r2 + 1)2 cos2 θ − r2 sin2 2θ).

(48)

One can prevent the ovals around the foci from getting direct contact to one another in the
center of the surface as shown in Fig. 16 and 19 or to a “pseudofocus” in the center (see Figs.
21, 28) by placing a focus with a negative exponent in the center x0:

F (x, y, z) = f 2(x, y, z) =
1

(x − x0)2k

n
∏

i=1

(x − xi)
2 = c2(n−k). (49)

If all the |xi| are finite and if xi 6= x0 for i = 1, 2, . . . , n then there are no points of a surface
with finite c in the neighbourhood of x0 because F becomes very large for x → x0.

In Fig. 29 the same six foci xi as in Fig. 28 and their function h of (46) are used and in
addition a focus x0 with a negative exponent is placed in the center (x0 = 0, k = 4, a = 1,
c4 = 13.0403):

h(x, y, z)/x8 = c4. (50)
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Figure 27: (z=0)-cuts of octahedral
product surfaces

Figure 28: 3D-view of the c0-surface
of Fig. 27

Figure 29: Hollow “octahedron”

This surface has “triangular” holes near the space diagonals, i.e., around the centers of
the eight triangles forming the octahedron of the foci. The six foci of the octahedron are
inside the six “bubbles”. The holes disappear with increasing c and the surface splits into
an exterior and an interior part. With (49) it is easy to construct the corresponding surfaces
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with holes for the other product surfaces.
One can blow up the oval of a focus xi at the expense of the size of the other ovals by

counting the focus twice, i.e., by doubling its positive exponent in (32).

4. Axial product surfaces

Fig. 15 shows (z =0)-cuts of surfaces which differ in their c-value. One can construct a new
surface out of these curves by putting one (z =0)-cut above the other in z-direction and by
changing the c-values with z :

f(x, y) =
n
∏

i=1

√

(x − xi)2 + (y − yi)2 = cn(z). (51)

By this procedure the foci xi move up in z-direction along “focal axes”(xi, yi, z). The product
of (51) is constant for constant z and the distances |x − xi| are “horizontal” lines parallel to
the (z = 0)-plane. Fig. 30 shows such a function for n = 3. It looks like a triple hammer.
With the foci of an equilateral triangle

x1 =

(

−a, − a√
3
, 0

)

, x2 =

(

a, − a√
3
, 0

)

, x3 =

(

0,
2a√

3
, 0

)

Eq. (51) yields

f 2(x, y) =
(

(x2 + y2 + a2 + ya)2 − 3x2a2
) (

x2 + (y − a)2
)

= c6(z). (52)

A “fourfold hammer” is created by:

(

(x2 + y2 + a2)2 − 4x2a2
) (

(x2 + y2 + a2)2 − 4y2a2
)

= c8(z). (53)

Figure 30: The “triple hammer” with
three focal axes

Figure 31: A circle of columns
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The parameter interval of cn(z) is chosen in such a way that it contains small c-values,
where the product curve of (51) splits into separate ovals, i.e., it should contain the (c=0)-
point. The c0-curve, where the different ovals get into contact, becomes the curve of the
saddle point of the new surface, and the region with c > c0 defines the radial size of the
central part (see Figs. 15 and 30).

A linear function cn(z) will produce a surface with sharp tips. The function displayed in
Fig. 30 has an elliptical cn(z)-function:

(

cn

1.1 an

)2

+
(

z

a

)2

= 1, cn = 1.1an

√

1 −
(

z

a

)2

(54)

with n = 3. A periodical cn(z)-function repeats the surface in z-direction.
In Fig. 31 the surface of an “eightfold hammer” with eight focal axes xi (n = 8 in Eq. (51))

F (x, y) = (w4 − 4x2a2)(w4 − 4y2a2)
(

(

w4 − 2a2(x2 + y2)
)2 − 16x2y2a4

)

= c16(z) (55)

with w4 = (x2 + y2 + a2)2 was changed by the introduction of a focus with a negative
exponent in the central axis (x0 = y0 = 0) as in Eqs. (49) and (50), which forces the eight
ovals to get contact to their neighbours (and not to the central axis as in Fig. 30):

F (x, y)/(x2 + y2)4 = c8(z) (56)

with

c8(z) =























0.6 ·
√

1 −
(

z − 0.7

0.1

)2

for 0.7 < z ≤ 0.8 (the caps of the columns),

0.6 + 3.6 · sin2
(

z − 0.2

15.7079

)

for 0.2 < z < 0.4 (the ring structure),

0.6 else (the columns).

Of course, one can also use helical axes xi(φ(z)) or toroidal axes xi(θ, φ) (or both) with
periodical cn-functions to create nets.

5. Algorithms to display implicit surfaces

Many algorithms are known in Computer Graphics which allow the user to display surfaces
given as an explicit function z = f(x, y) or as a parameter representation x(u, v). During
the last two decades two main algorithms were developed to draw implicitly given surfaces
f(x, y, z) = 0 (see references [3] to [7] and [9] to [13]).

The first one called “tracked partitioning” starts with finding a single point x0 of the
surface (f(x0) = 0) which is chosen as a center of a small cube. Some of the corners of
this cube will be inside the surface (f < 0) and some of them will be outside (f > 0). The
continuous surface (f = 0) cuts some of the edges of the cube and the algorithm has to find
these zeros xk with f(xk) = 0 by recursive bisectioning of the edges. Assuming that the
cube is small enough there will be at most one point xk on an edge. The method to form
a 3D-polygon from these points xk is called polygonization and is described in the literature
[3, 12, 13]. Since a cube has 8 corners there are 28 = 256 possibilities to distribute the signs of
f over the corners. Lorensen and Cline [11] reduced all these cases to 14 cases to find the
3D-polygon around the cube. After the polygon is drawn the edges of all adjacent cubes of the
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same small size are scanned for zeros of f and care is taken that every cube is processed only
once. The algorithm stops if all cubes cutting the surface are found. A program published in
[10] is an implementation of this algorithm.

The second algorithm called “converged partitioning” is a recursive octree algorithm which
starts with a large root cube, checks the sign of f at the corners of its eight octants and calls
those octants recursively where corners with different polarities of f occur. Octants where the
sign of f does not change are neglected because they are all inside (f < 0) or outside (f > 0)
of the cube. The algorithm stops when the octants reach a minimal size. Then the zeros xk

of f on the edges of the octants are calculated by recursive bisectioning and a 3D-polygon is
constructed as within the “tracked partitioning”-algorithm.

A 2D-simplification of this polygonization process was used in the present paper to draw
the wire frame models (e.g. Figs. 10, 12 and 25). It could be used in the “tracked partitioning”
algorithm as well. The zeros xk which are visible are projected to the projection plane where
they represent a two-dimensional set (x′

k, y
′
k). The convex hull of this set is computed, sorted to

form a ring, closed (x′
n+1, y′

n+1) = (x′
1, y′

1), and plotted. It is this simple method of the convex
hull which solves all the possible cases of polygons discussed in [3], [11] and [12]. It works
even well if the surfaces have “bottle necks” as, e.g., in Figs. 10, 12 and 25. The wire frame
models of this paper are produced by this method of a 3D-octree with a 2D-polygonization.
The observer gets a good impression of the 3D-structure of the surfaces because the polygons
show the cuts x = const, y = const and z = const (see, e.g., Figs. 12 and 25) since the octree
algorithm starts with root cubes which are parallel to the axes. This feature is lost if the
polygons are triangulated as in [10]. It is also possible to triangulate the 2D-polygon of the
convex hull and to use its 3d-coordinates xk to draw Gouraud- or Phong-shaded models of
implicit surfaces.

There are surfaces where one visible part of the surface hides another visible part of it (see
Fig. 30). To produce good pictures of such surfaces too it is necessary to call those octants
first which are more remote from the observer and to erase the inside of the wireframe faces by
filling them with the background colour. If the octree-procedure has to be started separately
with different root cubes for isolated parts of the surface the remote root cubes have to be
called first (see Fig. 29 and 31).

For the shaded models of this paper a new method of “radial projection” was developed
to display the surfaces. Jackie Neider et. al. [16] described a method of approximating a
sphere by a set of triangles. They start with the triangles of an icosahedron considered as a
rough approximation of a sphere and subdivide them recursively into smaller triangles which
are shaded and displayed. We modified this method to draw an implicit surface f(x, y, z) = 0
and enclosed the surface in one or several projection spheres, for which the centers xci and the
radii Ri have to be defined. The surfaces of these spheres are approximated by an icosahedron
or an octahedron á la Jackie Neider and recursively split into smaller triangles. When the
triangulation is fine enough a radial search for the zeros xk with f(xk) = 0 starts from every
corner xt of a triangle. The zeros have to be found on the radial line from the center xci to
the corner xt . By this procedure the pattern of triangles of the spheres is projected onto the
implicit surface f = 0, shaded and displayed.

This method works well for the simple, convex string surfaces. Fermat’s point x0 is chosen
as the center xci of the projection sphere and the radius Ri has to be large enough that the
surface is enclosed in the sphere. Some of the product surfaces (see Figs. 18 and 22) could be
drawn in the same way by the use of one projection sphere only, but most of them needed
more than one.
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To draw the “ring of columns” (see Fig. 31) one needs one sphere per column with a
center on the axis of the column and a radius chosen so large that the next contact points
are points of the surface of the sphere. Every bubble of the “octahedron” (see Fig. 28) and
of the “hollow octahedron” (see Fig. 29) is enclosed in a separate projection sphere. For the
“triple hammer” (see Fig. 30) we used three spheres which overlapped one another in the
saddle point of the “hammer”. In such a case some of the triangles xt of the spheres, which
should be projected onto the surface, are inside the hammer (f(xt) < 0) and the radial search
does not find a root xk with f(xk) = 0 because the center of the spheres is always inside the
surface (f < 0) too. In this case the points xt of the projection sphere were used as roots
xk. These triangles are inside the “triple hammer” and are drawn in spite of being invisible.
They are hidden later on when OpenGL draws the other visible parts of the surface.

6. Conclusions

This article investigates higher order generalisations of the ellipse called “string surfaces” and
of the lemniscate called “product surfaces” with regard to their dependence on the arrange-
ment of the foci and on the values of their free constant c. The influence of factors with
negative exponents on the design of product surfaces is studied. Analytical and graphical
results show that some of these iso-surfaces have corners (see Figs. 2, 3 and 5). The poly-
gonization used in the algorithm simplifies the procedure to draw implicit surfaces and the
introduction of product surfaces offers new possibilities to work with skeletons and implicit
surfaces. A new method of radial projection is developed and applied to display them.
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