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Abstract. The investigated milling robot with an axial spindle as platform is a
parallel manipulator. Five legs carry and control the spindle. An algebraic solu-
tion of the direct kinematic problem is given by the help of vector calculus. The
solutions are determined by the roots of 5 polynomials of degree 4. Therefore,
together with a quadratic normalizing condition the number of solutions is not
greater than 2048. Compared to our first result this number is strongly reduced
but still large. However, numerical solutions of the polynomial equation system
show a stable and fast convergence using Newton methods.
Then, the inverse kinematic problem is solved. Four of the five leg lengths are
determined by solutions of two quadratic equations. Some geometrical considera-
tions and additionally technical restrictions allow to prove that a unique solution
exists.
Furthermore, the velocity and shakyness is studied. Using Ball’s screw we show
how for a given rate of change of the leg lengths the velocities are determined.
The special design of the spindle causes that the Pentapod robot is architecturally
shaky with respect to a revolution about the spindle axis. This fact is no tech-
nological lack because the spindle axis is identical with the actuated milling axis.
Finally, all singular positions are characterized.
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1. Introduction

The investigated parallel manipulator (milling robot) [1] is depicted in Fig. 1. The frame is
shaped like an icosahedron. There, five active joints are adjusted which drive five legs. The
legs carry and control the cutter spindle which is the platform or end effector of this constraint
robot. A work can be adjusted at the round table below the cutter spindle and processed by a
cutter which is rotating about the spindle axis. In [9] we solved the direct kinematic problem
by the help of the Study parameterisation of a displacement. Here, a numerically advanced
solution is shown by the help of vector calculus. Furthermore, the inverse kinematic problem
is solved.
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Figure 1: The milling robot P800

2. Direct and inverse kinematics

2.1. Kinematic design of the milling robot

The mechanical design of the cutter spindle is displayed in Fig. 2. The first leg and the
spindle are directly connected by a revolute joint with centre Q1. The other legs end also
with a revolute joint with centre Qi , i = 2, . . . , 5. These joints are mounted on rings that
can rotate about the spindle axis s. By this design, all joint axes at Qi , i = 1, . . . , 5, are
perpendicular to s. When the robot moves by altering the lengths of its legs then each joint
centre Qi describes a circle about the spindle axis with fixed radius ρ. The anchor point Mi

of a leg is the centre of a universal pair (see Fig. 3). Consequently, the centre lines MiQi of
the legs meet the axis s at all positions of the robot. This very important geometric property
is called the spindle condition.
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Figure 2: Cutter spindle
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Figure 3: Kinematic structure
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Figure 4: Dimensions of the milling robot

With reference to the introduced coordinate systems as shown in Fig. 4, the coordinates
of the points Mi = (Ai, Bi, Ci) and Pi = (0, 0, ci) are given in Table 1.

Table 1: Coordinates of joint points

i A B C c

1 k1 k2 k3 0

2 0 k2 k3 k7

3 0 0 0 k6 + 3 ∗ k7

4 k1 0 0 k6 + 2 ∗ k7

5 k4 k5 0 k6 + 1 ∗ k7

k1 = 1569, 62 k2 = 1263, 07 k3 = −482, 41 k4 = 784, 81

k5 = 1359, 33 k6 = 220 k7 = 42, 5

2.2. Algebraic solution by vector calculus

We chose the moving spindle frame (end effector frame) in such a way that P1 is the origin
and w1,w2,w3 denote the base vectors with

‖w1‖ = 1 (1)

‖w3‖ = 1 (2)

w1 · w3 = 0 (3)



176 G. F. Bär, G. Weiß: Kinematic Analysis of a Pentapod Robot

w2 = w3 × w1.

Furthermore, with respect to an arbitrary coordinate system we designate by

mi the position vector of the anchor point Mi

p1 the position vector of the origin P1

vi the unit direction vector of the straight line MiQi = `i which is called leg axis

si the position vector of the intersection point Si between the leg axis `i and the
spindle axis

ri the leg length, i.e., the distance MiQi, i = 1, . . . , 5.

For convenience we use ti := rivi =
−−−→
MiQi and ui :=

−−→
PiQi. Then we have

−−→
SiQi = λiti with λi < 0, (4)

because point Qi lies between Si and Mi on the leg axis `i.
In the following an algebraic solution for the direct kinematic problem is shown. For given

design parameters of the robot and for adjusted leg lenghts the position and orientation of
the spindle frame are to determine. So, let us determine p1, w1 and w3. By the design of the
Pentapod, each leg allows to establish two vector loop conditions

mi + ti = p1 + ciw3 + ui (5)

mi + ti = p1 + siw3 + λirivi. (6)

The first loop runs over Pi with ci := P1Pi. The second loop runs over Si with si := P1Si.
The following design conditions hold:

ti · ti = r2

i (7)

ui · ui = ρ2 (8)

ui · w3 = 0. (9)

The special design of the first leg yields

v1 · w2 = v1 · (w3 × w1) = 0 (10)

and by (5) we get
(p1 − m1 + ρw1) · (w3 × w1) = 0 (11)

We rearrange eqs. (5) and (6) into

ti = p1 + ciw3 + ui − mi (12)

(1 − λi)ti = p1 + siw3 − mi. (13)

By elimination of vector ti it follows

(1 − λi)ui = λi(p1 − mi) + (si − ci(1 − λi))w3. (14)

Considering (9), we multiply eq. (14) with w3 and get

si = ci(1 − λi) − λi(p1 − mi) · w3. (15)
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Considering (8), we multiply eq. (14) with (1 − λi)ui and get

(γ2

i − β2

i − ρ2)λ2

i + 2λiρ
2 − ρ2 = 0 (16)

where
βi := (p1 − mi) · w3

γ2

i := (p1 − mi) · (p1 − mi).

Inserting the solution (15) into the squared vector equation (13) and then using design con-
dition (9) we obtain

(
(βi + ci)

2 − r2

i

)
λ2

i − 2λi

(
(βi + ci)

2 − r2

i

)
+ γ2

i + 2βici + c2

i − r2

i = 0. (17)

We choose the coordinates of joint points according to Table 1 and eliminate the unknown
λi from the two quadratic polynomials (16) and (17) and find the resultant

Si(p1,w3)Ri(p1,w3) = 0 (18)

where

Si(p1,w3) = (β2

i − γ2

i )
2

Ri(p1,w3) := (2βici + c2

i + γ2

i − r2

i )
2 + 2 (2βi(βi + ci) + c2

i − γ2

i − r2

i ) ρ2 + ρ4,

i = 1, . . . , 5 .

Amazingly, the resultant is factorized. We note that

Si(p1,w3) = 0 (19)

holds iff ((p1 − mi) · w3)
2 = (p1−mi)

2, i.e., the vectors p1−mi and w3 are linear dependent.
Geometrically spoken, it holds Si(p1,w3) = 0 iff the spindle axis is parallel to the straight
line P1Mi. In order to find a solution (p1,w3) of the direct kinematics of the Pentapod
Si(p1,w3) = 0 must hold for i = 1, . . ., 5, but that is impossible by the Pentapod design.

Therefore, the problem reduces to find all solutions of the polynomials

Ri(p1,w3) = 0, i = 1, . . . , 5. (20)

The 6 unknowns are designated by p1 = (x1, x2, x3)
T and w3 = (x4, x5, x6)

T. The computa-
tion of R1 yields

R1(x1, . . ., x6) = (−r2

1
+ (−k1 + x1)

2 + (−k2 + x2)
2 + (−k3 + x3)

2)
2

+2 (−r2

1
− (−k1 + x1)

2 − (−k2 + x2)
2 − (−k3 + x3)

2

+2 ((−k1 + x1)x4+ (−k2 + x2)x5 + (−k3 + x3)
2 x6)

2) ρ2 + ρ4.

(21)

Analogously we obtain Ri(x1, . . ., x6) for i = 2, . . . , 5, which are polynomials of degree 4 in the
unknowns x1, . . . , x6. Therefore, the total degree of the system (20) and (2) and the Bezout’s
count of the number of solutions is 45 · 21 . For each solution we have to find vector w1 in
order to solve the task completely. By a solution (x1, . . . , x6) the coefficients of the quadratic
eq. (16) are determined. Generally, (16) has two solutions λi1 and λi2. If λi1 is a negative
(real) solution then λi1 and λi2 is a positive solution and is dropped due to (4). This assertion
can be proved by Vieta’s Theorem stating that in our case

λi1λi2 =
−ρ2

γ2

i − β2

i − ρ2
.



178 G. F. Bär, G. Weiß: Kinematic Analysis of a Pentapod Robot

The right hand side of this equation is always negative because the robot design fulfills
γ2

i > β2

i + ρ2. Thus, by (13) ti is uniquely determined. Inserting ti into (12) we find ui.
Because of w1 = 1

ρ
u1 and w2 = w3 ×w1, finally all base vectors and the origin P1 of the

spindle frame are determined. Thus we have shown

Proposition 1 For given leg lengths r1, . . ., r5 of the Pentapod the number of solutions of
the direct kinematic problem is not greater than 45 · 21 = 2048.

Remark: Compared to our first result in [9] this number is strongly reduced but still large.
Therefore, we performed numerical solutions of the polynomial equation system (20) using
the FindRoot function of Mathematicar and the dimensions of the Pentapod given in Ta-
ble 1. We specified only one starting value for each variable x1, . . . , x6. In this case FindRoot
searches for a solution using Newton methods.
This numerical simulation of the direct kinematic problem showed a stable and fast conver-
gence for a wide range of starting values.

2.3. Inverse kinematics

The following computations are a consequence of a planar figure in quadrangle P1PiQiMi.
Therefore, the computation of the leg lengths is straightforward.The inverse kinematics deals
with the problem to determine the leg length ri if the end effector position is given by
p1,w1,w2, and w3. For the first leg the problem is easily solved by

r1 = ‖q1 − m1‖ = ‖p1 − m1 + ρw1‖ . (22)

For the other legs we have to consider that each joint centre Qi can move on the circle about
the spindle axis with centre Pi and radius ρ. This consideration means

ui = qi − pi = µiw1 + νiw2, i = 2, . . ., 5, (23)

where
µi = ρ cos ϕi νi = ρ sin ϕi , µ2

i + ν2

i = ρ2.

The spindle design causes that each two of the vectors w3, qi − pi, and qi − mi span the
plane Mis which includes the point Mi and the spindle axis s . Therefore,

det(w3, qi − pi, qi − mi) = 0.

With (5) and (23) we calculate this determinant and obtain

di1µi + di2νi + 2µiνi = 0 (24)

where
dij = det(w3,wj, p1 − mi), j = 1, 2.

The unknowns µi and νi are determined by the solution of two quadratic equations (23) and
(24). So we algebraically expect 4 solutions (µi, νi). From the geometric point of view only
two solutions are real because the plane Mis generally meets the above mentioned circle in
two points Qik. With the two solutions (µik, νik), k = 1, 2, we obtain two leg vectors

qik − mik = p1 − mi + ciw3 + µikw1 + νikw2,
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and therefore two solutions for each leg length:

rik = ‖qik − mik‖ , k = 1, 2. (25)

The spindle axis is intended to go approximately through the centre of gravity of the an-
chor points M1, . . .,M5 whereas all joint centres Qi lie belowM1, . . .,M5. As a result of this
geometric consideration we choose the numerically smallest rik to be the solution:

ri = min{ri1, ri2}, i = 2, . . . , 5. (26)

So we have proved:

Theorem 1 The inverse kinematic problem of the Pentapod has a unique solution according
to eqs. (22) – (26).

3. Velocity and shakyness

3.1. Velocity and Ball’s screw

Let us assume that the lengths r1, . . . , r5 of the five legs are given by functions of a time
parameter t. Then an instantaneous change of these lengths is described by a joint velocity
vector

ṙ = (ṙ1, . . . , ṙ5)
T

and causes Ball’s screw (ω, ω̂) of the end effector. This instantaneous screw determines the
velocity

v(X) = ω × x + ω̂ (27)

of each point X of the end effector described by coordinates x with respect to the basic frame.
This screw is given by the rotation matrix w = (w1 w2w3) and the velocity ṗ1 of the origin
in the following way. The velocity matrix

Ω = ẆWT =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 (28)

determines the Darboux-vector ω of the screw. The second part is

ω̂ = ṗ1 + ω × p1. (29)

These formulae practically do not allow to compute a screw because the joint velocities ṙi are
indistinctly involved.

Looking for a different way to determine (ω, ω̂) we differentiate eq. (7) and obtain

2ṫi · ti = 2riṙi. (30)

The position vector of a joint point Qi is

qi = mi + ti. (31)

Hence, we have ti = qi − mi and

ṫi = q̇i − ṁi = q̇i.
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Using the screw this velocity is now expressed by

ṫi = q̇i = ω × qi + ω̂. (32)

Due to eqs. (30) – (32) we get

(ω × q̇i + ω̂) · (qi − mi) = riṙi,

and therefore
(mi × qi) · ω + (qi − mi) · ω̂ = riṙi.

Now, the unit direction vector vi = 1

ri

ti of the leg axis is introduced and by the help of
eq. (31) we obtain a system of five linear equations for the six unknown coordinates of a
screw:

(mi × vi) · ω + vi · ω̂ = ṙi i = 1, . . . , 5. (33)

Rearranging the system we get
Qσ = ṙ (34)

where

Q =




v̂T

1
vT

1

...
...

v̂T

5
vT

5


 , v̂i = mi × vi, i = 1, . . . , 5

σ =

(
ω

ω̂

)
.

The corresponding homogenous system Qσ = o is equivalent to

(mi × vi) · ω + vi · ω̂ = 0. (35)

Due to 1 ≤ rankQ ≤ 5 it is always solved by

σh =
n∑

k=1

αkσk (36)

where αk ∈ R, n = 6− rankQ, 1 ≤ n ≤ 5. The fundamental solutions σ1, . . .,σn are linearly
independent.

Proposition 2 The homogeneous system Qσ = o is solved by

σ1 =

(
ω1

ω̂1

)
=

(
w3

p1 × w3

)
. (37)

Proof: Inserting eq. (37) into (35) we get (mi × vi) · ω1 + vi · ω̂ = det(mi − p1,vi, w3) = 0
for i = 1, . . ., 5. The determinant vanishes because the vector arguments mi − p1, vi and w3

are parallel to the plane Mis for i = 1, . . ., 5, due to the spindle condition.

Note that this solution σ1 satisfies the Plücker condition

ω1 · ω̂1 = w3 · (p1 × w3) = 0. (38)

Therefore, σ1 are normed Plücker coordinates of the spindle axis s. Eq. (38) describes the
fact that all leg axes meet the spindle axis in line geometric notation. (Fundamentals of line
geometry are given in [8].)

From the theory of linear equations systems it follows

Theorem 2 For given joint velocities (ṙ1, . . . , ṙ5) 6= (0, . . . , 0) at a position (r1, . . . , r5),
there is always a solution (ω0, ω̂0) of eq. (33), e.g., determined by Gaussian elimination.
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3.2. Shakyness and singular positions

The Pentapod is shaky for some position (r1, . . ., r5) iff an instantaneous displacement of the
end effector exists although the leg lengths are fixed. Therefore, the Pentapod is shaky iff a
non zero screw σ = (ω, ω̂) exists, corresponding to an instantaneous displacement, although
(ṙ1, . . ., ṙ5) = (0, . . ., 0). A shaky position is also called a singular position, c.f. [4]. Therefore,
the Pentapod is shaky for (r1, . . ., r5) iff the homogeneous system Qσ = o has a nontrivial
solution. By Proposition 2 we conclude

Theorem 3 The Pentapod is shaky in every position (i.e., architecturally shaky) with respect
to a revolution about the spindle axis s.

Remark: The architectural shakyness is no technological lack for the Pentapod because the
spindle axis is identical with the actuated milling axis.

In the following the Pentapod is said to be in a singular position iff a non zero screw
(ω, ω̂) exists which is different from (ω1, ω̂1). We want to characterize all singular positions.
Considering the (5,6)-coefficient matrix Q in eq. (34) we see that a row (v̂T

i ,vT

i ) of the matrix
is a normalized dual Plücker vector of the leg axis `i because vi is a unit direction vector
and v̂T

i = mi × vi is a moment vector of `i.

It follows: rankQ is the number of linearly independent Plücker vectors

`i =

(
vi

v̂i

)
∈ R

6, i = 1, . . . , 5 ,

which represent the leg axes `1, . . . , `5 .
In the case of rankQ = 5 five linearly independent leg axes belong to the singular linear

complex with axis σ1 at every position. In the case of rankQ = 4 at the considered position
the five leg axes belong to a congruence which is either hyperbolic or parabolic because the
spindle axis σ1 is one focal line of this congruence. Vice versa: If `1, . . . , `5 belong to a line
congruence, then rankQ = 4.

By eq. (36) we obtain

Proposition 3 If rankQ = 4, the Pentapod is in a singular position with respect to all
screws

σ = α1σ1 + α2σ2, α1, α2 ∈ R, α2 6= 0,

where σ2 = (ω2, ω̂2) is a second fundamental solution of (35).

In the special case ω2 · ω̂2 = 0, except for the spindle axis s , the legs `1, . . . , `5 meet the
straight line s2 (s2 6= s) with Plücker coordinates σ2. Then, s and s2 are the focal lines of
a hyperbolic congruence which includes the leg axes.

For the following we need a

Definition The work space of the Pentapod is the set of all inner points of the polyhedron sur-

rounded by the “ground”-plane εg, the “ceiling”-plane εs, the vertical “wall”-planes ε1, ε2, ε3,

and the inclined “wall”-plane ε = M1M2M5 as given in Fig. 4.

Proposition 4 The case of rankQ < 3 does nor occur in the work space. In the case of
rankQ = 3 the Pentapod is in a singular position and the five legs belong to a regulus.
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Proof: It was shown in [9] that for all positions rankQ < 3 can be excluded. From line
geometry it is known that in the case of rankQ = 3 the five legs belong to a regulus, a pair
of crossed pencils, or to a line bundle. In the following we show that the last two cases do
not occur because the dimensions of the Pentapod design prevent it. The bundle case was
already excluded in [9]. Now we consider the case of crossed pencils. In preparation for
our argumentation we consider three different anchor points Mi,Mj, and Mk. These points
determine the plane δijk in which they lie. It is easy to see that all such planes δijk do not
have inner points in common with the work space. Each anchor point Mi determines a plane
Mis in which Mi and s lie. The plane Mis contains the leg axis `i. If three different leg axes
`i, `j, `k lie in a plane, then this plane is δijk, and furthermore, δijk contains s. In the case of
crossed pencils, the set of five leg axes splits up into two subsets spanning a pencil each. So
we have to consider the pairings (4,1) or (3,2). The first one is not possible because four leg
axes in a plane demand four Mi in a plane. The second pairing demands three leg axes in a
plane. Hence, this plane is identical with some plane δijk which contains the spindle axis s.
This situation is not possible in the given work space.
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