
Journal for Geometry and Graphics
Volume 10 (2006), No. 2, 125–132.

On Feuerbach’s Theorem and a Pencil of
Circles in the Isotropic Plane
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Abstract. After adapting the well-known Euler and Feuerbach theorems for the
isotropic plane, the connection among the circumcircle, Euler circle, tangential
circumcircle, and the polar circle of a given allowable triangle has been shown. It
has been proved that all four circles belong to the same pencil of circles. There
are two more interesting circles in this pencil.
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1. Preliminaries

It has been shown in [2] that any allowable triangle ABC in the isotropic plane I2 can be
moved in the so called standard position, having the circumcircle equation

Kc . . . y = x2, (1)

by choosing an appropriate affine coordinate system, while its vertices are of the form

A = (a, a2), B = (b, b2), C = (c, c2), (2)
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where along with
p = abc, q = bc + ca + ab (3)

the equality
a + b + c = 0 (4)

holds as well. As a consequence, other useful reletions hold too, for example,

a2 = bc − q, (5)

a2 + b2 + c2 = −2q, (6)

wherefrom it follows that q < 0. From (4) and (6) we get that the centroid G of the triangle
ABC is of the form

G =

(

0,−
2

3
q

)

. (7)

The triangle ABC given in its standard position (the expression standard triangle will further
on be in use) has, according to [2], the Euler line E , the inertial axis G, and the orthic axis

H given in the equations

E . . . x = 0 , (8)

G . . . y = −
2

3
q , (9)

H . . . y = −
q

3
. (10)

It has been shown in [2] that the midpoints of the sides BC, CA, AB of the standard triangle
are the points Am, Bm, Cm respectively where, for example,

Am =

(

−
a

2
,−

1

2
(q + bc)

)

, (11)

while the feet of the altitudes are the points Ah, Bh, Ch, being e.g.

Ah = (a, q − 2bc). (12)

In order to prove any statement on any allowable triangle it is sufficient to prove the considered
statement for the standard triangle.

2. Euler circle

We recall now the well-known theorem in Euclidean plane:

The Euler theorem or the nine-point circle theorem: In any triangle, the midpoints

of the sides, the feet of the altitudes, and the midpoints of the segments from the orthocenter

to the vertices lie on a circle.

In the isotropic plane we have the following:

Theorem 1 In the standard triangle the midpoints of the sides and the feet of the altitudes
lie on a circle Ke having the equation

Ke . . . y = −2x2 − q. (13)
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Proof: The points Am and Ah from (11) and (12) lie on the circle (13) since

−2
(a

2

)2

− q = −
1

2
(bc − q) − q = −

1

2
(q + bc)

and
−2a2 − q = −2(bc − q) − q = q − 2bc

due to (5). Analogous points Bm, Cm and Bh, Ch lie on the same circle.

Remark: The above theorem can be called Euler theorem or six-point circle theorem in I2.
The six-point circle theorem can be understood as the nine-point circle theorem as well, taking
in consideration that the three midpoints of the segments from the orthocenter (that is the
absolute point F ) coincide with F , and as such are incidental with Ke. The circle Ke will be
called Euler circle of the triangle ABC in I2.

3. Inscribed circle

Theorem 2 The inscribed circle (excircle) of the standard triangle ABC obeys the equation

Ki . . . y =
1

4
x2 − q , (14)

while the points of contact with the straight lines BC, CA, AB are

Ai = (−2a, bc − 2q), Bi = (−2b, ca − 2q), Ci = (−2c, ab − 2q). (15)

Proof: The straight line BC has an equation

y = (b + c)x − bc (16)

(see [2]). From (14) and (16) due to (4) and (5) we obtain an equation

1

4
x2 + ax + a2 = 0.

This equation has a double solution x = −2a, wherefrom it follows that circle (14) touches
the straight line BC at the point Ai with abscissa −2a and ordinate according to (16)

y = 2a2 − bc = 2(bc − q) − bc = bc − 2q .

By analogy with the above, the same properties for the straight lines CA and AB can be
derived.

4. Feuerbach theorem

Theorem 3 Circles Ke and Ki from Theorem 1 and 2 touch each other externally in the
point

Φ = (0,−q), (17)

while the common tangent F has the equation

F . . . y = −q . (18)
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Proof: From equations (13) and (14), using their combination Ke+8Ki, one gets the equation
(18) of a straight line passing through all common points of the circles Ke and Ki. Then,
using (13) and (18) for calculating these common points, we get the equation −q = −2x2 − q

with the double solution x = 0.

Remark: Theorem 3 will be called Feuerbach theorem in I2. Accordingly, the point Φ and the
straight line F will be the Feuerbach point and the Feuerbach line of the considered triangle
ABC. Let us point out that the statement of Theorem 3 has been proved in Yaglom [1,
121–129] in elementary way. The advantage of our method used here intending to prove the
same theorem, and other theorems as well, lies in the fact that the proof is condensed, simple
and short.

Corollary 1 The Feuerbach point of an allowable triangle is parallel to its centroid; i.e., it
lies on the Euler line of this triangle.

5. Tangential circumcircle

Let’s recall the Euclidean meaning of the tangential triangle: A tangential triangle of a given
triangle ABC is a triangle determined by the three tangents to its circumcircle at the vertices
A, B, and C, respectively.

In the known text book [3] some properties of the tangential triangle of an allowable
triangle in I2 have been discussed. More properties are given in:

Theorem 4 For the tangential triangle AtBtCt of the standard allowable triangle ABC we
have, successively, the equations of the sides given by

TA . . . y = 2ax − a2, TB . . . y = 2bx − b2, TC . . . y = 2cx − c2, (19)

the vertices

At =
(

−
a

2
, bc

)

, Bt =

(

−
b

2
, ca

)

, Ct =
(

−
c

2
, ab

)

, (20)

and the equation of the circumscribed circle (tangential circumcircle)

Kt . . . y = 4x2 + q. (21)

Proof: From (1) and for example the first equation in (19) one obtains x2 −2ax+a2 = 0 with
the double solution x = a which implies that (19)1 represents an equation of the tangent line
of the circle (1) at point A. Since for example

2a

(

−
b

2

)

− a2 = −ab − (bc − q) = ca,

we see that the point Bt from (20) lies on the discussed tangent. Analogously it can be shown
that Ct lies on that tangent as well. Following the above procedure it can be shown that the
straight lines given by (19)2,3 have analogous properties. For the circle (21) we see that for
example the point At lies on it, since

4
(

−
a

2

)2

+ q = a2 + q = bc.
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6. Polar circle

If the polar of a point A with respect to (w.r.t.) a conic passes through the point B, then
the polar of B w.r.t. the same conic passes through A. Such points are called conjugate w.r.t.
the conic. Also, if the polars of two points A and B w.r.t. a conic meet at the point C, then
the line AB is the polar of C. If such a triangle ABC exists, it is called autopolar w.r.t. the
conic, and the conic itself is called a polar conic of the triangle.

Theorem 5 The polar circle of the standard triangle has the equation

Kp . . . 2y = −x2 − q. (22)

Proof: The equation of a polar of any point (x0, y0) w.r.t. (22) is

y + y0 = −xx0 − q.

For the point A = (a, a2) we get y = −ax − (a2 + q), that is, according (5), the equation of
the straight line BC. Likewise, straight lines CA and AB are polars of the points B and C

w.r.t. circle (22).

7. Pencil of circles

Any two circles with the equations given in

y = uix
2 + vix + wi, ui 6= 0, i = 1, 2 , (23)

have two common chords, one being the absolute line, the other a straight line whose equation
is obtained by eliminating in (23) the terms with x2. The latter straight line is called the
potential axis of the circles (23). A certain family of circles is said to represent a pencil of

circles if any two of them have the same potential axis. For that to happen, it is sufficient
that one of the circles has the same potential axis with all other circles. That very potential
axis is called a potential axis of the observed pencil of circles.

Theorem 6 The circumcircle, the Euler circle, the tangential circumcircle, and the polar
circle of an allowable triangle belong to the same pencil of circles.

Proof: For the standard allowable triangle the equations of the observed circles are

Kc . . . y = x2, (1)

Ke . . . y = −2x2 − q , (13)

Kt . . . y = 4x2 + q , (21)

Kp . . . 2y = −x2 − q . (22)

It’s easy to check that combining 2Kc + Ke , 4Kc − Kt , or Kc + Kp always gives the same
straight line with the equation

H . . . y = −
q

3
. (24)

Therefore, the observed circles belong to the same pencil of circles with the straight line H

as its potential axis.

The straight line H from the latter proof is the orthic axis of the standard triangle ABC

(see [2]). From equations (18) and (24) it follows straight forward
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Corollary 2 The Feuerbach line and the orthic axis of an allowable triangle are two parallel
straight lines.

The inertial axis G of the standard triangle ABC, as obtained in [2], has the equation

G . . . y = −
2

3
q. (25)

From (18), (24) and (25) we have

Corollary 3 The orthic axis of an allowable triangle and its Feuerbach straight line are
symmetric with respect to the inertial axis of the same triangle.

8. Orthocentroidal circle

In Euclidean geometry a theorem holds that is analogous to Theorem 6, and in the same
time the considered pencil of circles contains the so-called orthocentroidal circle, having the
centroid and the orthocenter of the triangle as end-points on its diameter. In our case, in the
isotropic geometry, the orthocenter coincides with the point at infinity, so we’ll have to modify
slightly the definition of the orthocentroidal circle. For a given triangle in the isotropic plane
we’ll call the circle passing through its centroid and belonging to the pencil of circles listed
in Theorem 6 the orthocentroidal circle of the triangle.

Theorem 7 The standard triangle ABC has the orthocentroidal circle with the equation

Ko . . . y = −x2 −
2

3
q. (26)

Proof: The circle we are looking for with the equation y = ux2 +vx+w, and the circumcircle
with the equation given in (1) have as their potential axis a straight line with equation
(1 − u)y = vx + w, i.e.,

y =
v

1 − u
x +

w

1 − u
.

This very potential axis coincides with the orthic axis whose equation is given in (24), where-
from it follows v = 0 and

w

1 − u
= −

q

3
, i.e. u = 1 +

3w

q
. (27)

Knowing that the circle is supposed to pass through the centroid G = (0,− 2

3
q) it follows that

w = −2

3
q, and in (27) we get u = −1.

The observed pencil of circles also contains a circle whose equation is of the form x2 +
vx + w = 0. Eliminating x2 from the latter equation and from equation (1) we obtain their
potential axis obeying y = −vx − w. This will be the same orthic axis (24) provided v = 0
and w = q

3
. That’s why the above mentioned circle has the equation

x2 +
q

3
= 0,

where due to q < 0 it degenerates into a pair of isotropic straight lines with equations

x =

√

−
q

3
, x = −

√

−
q

3
.
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9. Feuerbach theorem in tangential triangle

Theorem 8 The equation of the Euler circle of the tangential triangle AtBtCt of the standard
triangle ABC is

Kte . . . y = −8x2, (28)

the Feuerbach point is Φt = (0, 0), and the Feuerbach line Ft is given by y = 0.

Proof: Points Bt and Ct given in (20) have the midpoint

Atm =

(

a

4
,−

a2

2

)

for ca + ab = −a2. The point Atm obviously lies on the circle (28), and likewise holds for
the analogous points Btm and Ctm. The circle with the equation y = x2 is the excircle of the
triangle AtBtCt. These circles meet at the point Φt = (0, 0) having a common tangent Ft

whose equation is y = 0.

Presuming that G =
(

0,−2

3
q
)

is the centroid of a triangle ABC then the homothety
(G,−2) transforms any point into its anticomplementary point, and any straight line into
its anticomplementary straight line with respect to the triangle ABC. T = (x, y) is a point
anticomplementary to the point T ′ = (−2x,−2q − 2y) since 2y + (−2q − 2y) = 3

(

−2

3
q
)

, i.e.,
2T +T ′ = 3G. Specially, the point Φt = (0, 0) is anticomplementary to the point Φ = (0,−q).
Hence, it holds:

Theorem 9 The Feuerbach point and the Feuerbach line of a tangential triangle of a given
triangle are anticomplementary to the Feuerbach point and the Feuerbach line of that triangle.

From Theorem 8 and Theorem 9 we read a geometrical meaning of the origin (0, 0) and
of the x-axis of the coordinate system which has been chosen for the triangle ABC to be in
the standard position.

Points At, Bt, Ct given in (20) have the centroid Gt =
(

0, q

3

)

lying on the Euler line x = 0
of the triangle ABC. Thus, we have:

Theorem 10 Any triangle and its tangential triangle have the same Euler line.

The potential axis of the circles (21) and (28) is given in the equation

Ht . . . y =
2

3
q. (29)

Therefore:

Theorem 11 The equation of the orthic axis Ht of the tangential triangle of the standard
triangle is given in (29).

The centroid Gt =
(

0, q

3

)

of a tangential triangle has another interesting property: It
represents the fixed point for the homothety with the constant 4 and having the equations of
the form

x′ = 4x, y′ = 4y − q. (30)

(30) transforms a circle having an equation 4y − q = 1

4
(x)2 − q, that is y = x2 in a circle with

the equation y′ = 1

4
(x′)2 − q. Thus, the homothetic transformation maps the circumcircle of

the standard triangle ABC to its inscribed circle. Hence, it follows:

Theorem 12 If Gt represents the centroid of the tangential triangle of the given allowable
triangle ABC, then the homothety (Gt, 4) maps the circumcircle of the triangle ABC onto its
incircle.
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Figure 1: The circumcircle, the Euler circle, the tangential circumcircle, the polar circle,
the incircle, the orthocentroidal circle, the degenerated circle, and the Euler circle

of the tangential circle of the standard triangle
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