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1. Introduction, background and notations

Ceva and Menelaus theorems are well known. However, these theorems characterize a projec-
tive property (concurrence in Ceva’s theorem and collinearity in Menelaus’ theorem) in terms
of an affine property. The purpose of this paper is to overcome this. To be more precise, we
characterize the concurrence of the cevians by using the cross ratio (a projective quantity).
The dual of this latter characterization permits to state the projective version of Menelaus’
theorem. Before establishing the main results, we review some simple definitions and facts
about projective geometry.

A projective point is a line in IR3 that passes through the origin. The projective plane IP2

is the set of all projective points. If P is a projective point then there exists v ∈ IR3\{0} such
that P is the line in IR3 that passes through 0 and v. Thus, we can define π : IR3 \ {0} → IP2

as follows: π(v) is the projective point through 0 and v.
A projective line in IP2 is a plane in IR3 that passes through the origin. Given two

projective points P and Q there exists a unique projective line r such that P and Q lie on r,
such projective line shall be denoted by L(P,Q). It is easy to see that the projective point
π(u) lies on L(π(v), π(w)) if and only if u is a linear combination of v,w, thus π(u), π(v),
and π(w) are collinear if and only if det(u,v,w) = 0. Also, the projective lines with equations
xTu = 0, xTv = 0, and xTw = 0 are concurrent if and only if det(u,v,w) = 0. A triangle is
formed by three non collinear points or by three non concurrent lines.

Let four projective points P1, P2, P3, P4 be collinear. So, we can write v3 = αv1 + βv2

and v4 = γv1 + δv2 for nonzero vectors vi with π(vi) = Pi for i = 1, . . . , 4. The cross ratio
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of P1, P2, P3, P4 is

cr(P1, P2, P3, P4) =
β/α

δ/γ
.

It can be proved that this definition is well done. Moreover, the cross ratio is preserved under
all projective transformations (see for example [2, pp. 138–140]).

Let four projective lines a1, a2, a3, a4 be concurrent on P and let r be a projective line not
passing through P . The cross-ratio of a1, a2, a3, a4 is

cr(a1, a2, a3, a4) = cr(a1 ∩ r, a2 ∩ r, a3 ∩ r, a4 ∩ r).

Since the cross-ratio of four collinear points is preserved under all projective transformations,
this latter definition does not depend on the choice of the projective line r.

The fundamental theorem of projective geometry can be stated as follows: Let A,B,C,D ∈
IP2 no three of which are collinear and A′, B′, C ′, D′ ∈ IP2 no three of which are collinear.
Then there is a unique projective transformation wich maps A 7→ A′, B 7→ B′, C 7→ C ′, and
D 7→ D′ (see, for example, [2, p. 127]).

It is well known the duality principle in projective geometry: for any projective result
established using points and lines, while incidence is preserved, a symmetrical result holds if
we interchange the roles of lines and points.

2. Main results

In this section we state the main results of this paper only using terms from projective
geometry.

Theorem 2.1 Let ABC be a triangle and r a projective line with A,B,C /∈ r. Let A′ =
L(B,C)∩ r, B ′ = L(C,A)∩ r, and C ′ = L(A,B)∩ r. Let A′′, B′′, and C ′′ be three projective
points distinct from A,B,C such that A′′ ∈ L(B,C), B ′′ ∈ L(C,A), and C ′′ ∈ L(A,B) (see
Fig. 1, left). Then L(A,A′′), L(B,B′′), and L(C,C ′′) are concurrent if and only if

cr(B,C,A′′, A′) · cr(C,A,B ′′, B′) · cr(A,B,C ′′, C ′) = −1.

Proof: Denote α = cr(B,C,A′′, A′), β = cr(C,A,B ′′, B′), and γ = cr(A,B,C ′′, C ′). Be-
cause this theorem is concerned exclusively with the projective geometry, by the dual of the
fundamental theorem of projective geometry, we can suppose that the equations of L(A,B),
L(B,C), L(C,A), and r are z = 0, x = 0, y = 0, and x + y + z = 0, respectively. It is easy
to deduce that

A = π(1, 0, 0), B = π(0, 1, 0), C = π(0, 0, 1),

and
A′ = π(0,−1, 1), B ′ = π(1, 0,−1), C ′ = π(−1, 1, 0).

Now, A′′ = π(0, 1, λ) for some λ 6= 0 because A′′ lies on L(B,C) and B 6= A′′ 6= C. Since
α = cr(B,C,A′′, A′) = −λ we get A′′ = π(0, 1,−α) and thus, the equation of L(A,A′′) is
αy + z = 0. Analogously, the equations of L(B,B ′′) and L(C,C ′′) are x + βz = 0 and
γx + y = 0, respectively. Now, L(A,A′′), L(B,B′′), and L(C,C ′′) are concurrent if and only
if
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Figure 1: Theorem 2.1 and its dual

This finishes the proof.

We can dualize Theorem 2.1: Let abc be a triangle and R a projective point with R /∈
a ∪ b ∪ c. Let a′ = L(b ∩ c, R), b′ = L(c ∩ a,R), and c′ = L(a ∩ b, R). Let a′′, b′′, and c′′ be
three projective lines distinct of a, b, c such that b ∩ c ∈ a′′, c ∩ a ∈ b′′, and a ∩ b ∈ c′′ (see
Fig. 1, right). Then a ∩ a′′, b ∩ b′′, and c ∩ c′′ are collinear if and only if

cr(b, c, a′′, a′) · cr(c, a, b′′, b′) · cr(a, b, c′′, c′) = −1.

In order to state this theorem clearer, notice that under the hypothesis of the dual of
Theorem 2.1, if we denote A = b∩c, B = c∩a, C = a∩b, A′ = a∩a′′, B′ = b∩b′′, C ′ = c∩c′′,
A′′ = a ∩ a′, B′′ = b ∩ b′, and C ′′ = c ∩ c′, then

cr(b, c, a′′, a′) = cr(b ∩ a, c ∩ a, a′′ ∩ a, a′ ∩ a) = cr(C,B,A′, A′′) = cr(B,C,A′′, A′)

and analogously,

cr(c, a, b′′, b′) = cr(C,A,B ′′, B′), cr(a, b, c′′, c′) = cr(A,B,C ′′, C ′).

Thus, we get the following result:

Theorem 2.2 Let ABC be a triangle and let R be a projective point. Let A′′ = L(B,C) ∩
L(A,R), B′′ = L(C,A) ∩ L(B,R), and C ′′ = L(A,B) ∩ L(C,R). Let A′, B′, and C ′ be
three projective points distinct from A,B,C such that A′ ∈ L(B,C), B ′ ∈ L(C,A), and
C ′ ∈ L(A,B). Then A′, B′, C ′ are collinear if and only if

cr(B,C,A′′, A′) · cr(C,A,B ′′, B′) · cr(A,B,C ′′, C ′) = −1.

Recall that two projective points C,D are said to be harmonic conjugates with respect to
the projective points A,B when cr(A,B,C,D) = −1. By Theorems 2.1 and 2.2, the following
result holds.

Corollary 2.1 Given a triangle ABC, let C ′′, C ′ be harmonic conjugates with respect to
A,B; let A′′, A′ be harmonic conjugates with respect to B,C; and let B ′′, B′ be harmonic
conjugates with respect to C,A. Then A′, B′, and C ′ are collinear if and only if L(A,A′′),
L(B,B′′), and L(C,C ′′) are concurrent.
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The above corollary is indeed classical and it deals with the classical “polarity with respect
to a triangle”. A variant of a Desargues’ theorem says that if in the triangle ABC, the cevians
AA′′, BB′′, and CC ′′ meet in point R, the lines AB, A′′B′′ meet in C ′; AC, A′′C ′′ meet in B′;
and BC and B′′C ′′ meet in A′, then the points A′, B′, C ′ are collinear. By the construction,
the pairs A′ and A′′, B′ and B′′, C ′ and C ′′ are harmonic conjugate with respect to (B,C),
(C,A), (A,B). This aforementioned polarity maps the common points of the lines AA′′,
BB′′, and CC ′′ onto the line passing through A′B′C ′. See [5] for a comprehensive summary
on projective geometry at the beginning of twentieth century. See [7, Ch. 7] (for example) for
another proof of the former corollary.

3. Ceva and Menelaus’ theorems

In this section we explain the way in which the affine plane is involved in Theorems 2.1 and
2.2. The ideal line is the projective line whose equation is z = 0. An ideal point is a projective
point that belongs to the ideal line. If A(IP2) is the set of all non-ideal points, we can establish
two bijective maps in the following way:

IR2 i
→ A(IP2)

(x, y) 7→ π(x, y, 1)
A(IP2)

j
→ IR2

π(x, y, z) 7→ (x/z, y/z)

We can easily check that j ◦ i = IIR2 and i ◦ j = IA(IP2), where I denotes the identity map. In

the following, we say that P is an affine point (or simply point) when P ∈ IR2.
Let A,B,C,D be four collinear points. It is easy to see (see, for example, [2]) that

cr(i(A), i(B), i(C), i(D)) =

−→
AC/

−−→
BC

−−→
AD/

−−→
BD

.

Let A,B,C be three collinear points. Let D be the intersection of the ideal line and
L(i(A), i(B)). It can be easily checked that

cr (i(A), i(B), i(C), D) =

−→
AC
−−→
BC

.

Ceva’s and Menelau’s theorems are classical results. We present here a proof of these the-
orems based on the former section. For an analytical proof of Ceva’s and Menelau’s theorems
with coordinates, it can be consulted [2]. For a analytical proof without coordinates, see, for
example, [1]. Another standard idea for Ceva’s theorem is to study the areas of sub-triangles,
see [6]. In this same web-site, one can consult a proof of Menelau’s theorem. Grünbaum and
Shepard show that Ceva’s theorem and Menelaus’ theorem are both corollaries of a single
result based on areas, see [3]. In [7, Ch. 7], the Menelaus’ theorem was proved before than
the Ceva’s theorem. One can consult also [4] and references therein.

Corollary 3.1 (Ceva’s Theorem) Let ABC be a triangle and let X, Y , and Z be points
on the sides AB, BC, and CA respectively. Then CX, BZ, and AY are concurrent if and
only if

−−→
BY
−−→
Y C

·

−→
CZ
−→
ZA

·

−−→
AX
−−→
XB

= 1
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Proof: We shall apply Theorem 2.1 when r is the ideal line. Let us define A′ = r ∩
L(i(B), i(C)), B ′ = r ∩ L(i(C), i(A)), and C ′ = r ∩ L(i(A), i(B)). Since

cr (i(B), i(C), i(Y ), A′) =

−−→
BY
−−→
CY

, cr (i(C), i(A), i(Z), B ′) =

−→
CZ
−→
AZ

,

cr (i(A), i(B), i(X), C ′′) =

−−→
AX
−−→
BX

,

we get that CX, BZ, and AY are concurrent if and only if
−−→
BY /

−−→
CY ·

−→
CZ/

−→
AZ ·

−−→
AX/

−−→
BX = −1.

This finishes the proof.

Corollary 3.2 (Menelaus’ Theorem) Let ABC be a triangle and let three points X, Y ,
and Z lie respectively on the lines AB, BC, and CA. Then X, Y , and Z are collinear if and
only if

−−→
AX
−−→
XB

·

−−→
BY
−−→
Y C

·

−→
CZ
−→
ZA

= −1.

Proof: Pick any point R that does not belong to the lines AB, BC, and CA. Let A′′ be the
intersection of the lines BC and AR; let B ′′ be the intersection of the lines CA and BR; and
let C ′′ be the intersection of the lines AB and CR. By Ceva’s Theorem, we get

−−→
B′′C
−−→
AB′′

·

−−→
A′′B
−−→
CA′′

·

−−→
C ′′A
−−→
BC ′′

= 1,

Apply Theorem 2.2 in order to obtain that X, Y , and Z are collinear if and only if

cr(i(B), i(C), i(A′′), i(Y )) · cr(i(C), i(A), i(B ′′), i(Z)) · cr(i(A), i(B), i(C ′′), i(X)) = −1.

Since, one has

cr(i(B), i(C), i(A′′), i(Y )) · cr(i(C), i(A), i(B ′′), i(Z)) · cr(i(A), i(B), i(C ′′), i(X))

=

−−→
BA′′/

−−→
CA′′

−−→
BY /

−−→
CY

·

−−→
CB′′/

−−→
AB′′

−→
CZ/

−→
AZ

·

−−→
AC ′′/

−−→
BC ′′

−−→
AX/

−−→
BX

= −

−−→
CY
−−→
BY

·

−→
AZ
−→
CZ

·

−−→
BX
−−→
AX

=

(−−→
BY
−−→
Y C

·

−→
CZ
−→
ZA

·

−−→
AX
−−→
XB

)−1

,

this completes the proof.
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