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Abstract. The shapes of the spires of Western European medieval churches
show almost as high variability as their interiors, but while inside — after the
first Millennium — the builders began to use curved surfaces (i.e., vaults), the
spires mostly kept their polyhedral (or conical) shapes. Architecture — due to
its necessities and restrictions — used only a limited portion of the infinite set
of potentially possible polyhedral shapes — such a small subset, that it seems
conceivable to categorise them, or at least most of them. This paper suggests a
method of classification of spire shapes, postulating that the more complex forms
can be produced as compounds (either intersections or unions) of some basic
shapes.
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1. Basics

Strictly speaking, the subject of this paper is to describe a specific subset of polyhedra, and
in this sense, its pure geometry. At the same time, the goals and means of architecture play
such an important role in defining the domain and codomain of the design space, that it
seemed not only reasonable, but — for the sake of brevity and clarity — almost inevitable to
use some architectural terms and definitions.

1.1. Base concepts, definitions

By definition, a spire is a steeply pointed termination to a tower. In this paper I will use this
term in a somewhat wider sense: not only for the most common pyramidal or conical shapes,
but for any shape a roof of a tower can have. In the figures below the top parts of the towers
are also depicted, but they do not belong to the spires proper: the spire ends at the horizontal
plane where its bottommost sloping plane ends. In other words the incidental gables are part
of the geometry of the spire (in addition to the sloping planes of the roof proper of course),
but the tower walls are not, even if they are in the same vertical plane.
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1. Spire apex

2. Ridge

3. Valley

4. Gable ridge

5. Gable apex

6. Verge

7. Bottom plane of the spire

8. Gable (gable wall)

Figure 1: Parts of a spire

A gable is a vertical plane (a wall, actually) whose existence is inevitable whenever the
bottom edges of the sloping surfaces of the roof proper are not horizontal. A verge is the
sloping outer edge of a gable, a gable apex is the highest point of a verge. A spire apex,
however, is a point located over the centre of the base, usually the highest point of the whole
shape. A valley is a concave break between adjacent surfaces, which therefore collects the
water from them; while a ridge is a convex break, which consequently diverts, not collects
water. Finally, a gable ridge is a ridge starting from the gable apex, mostly (but not always)
connecting it with the spire apex.

1.2. Base principles

The most obvious examples of architectural restrictions determining the applicability of shapes
are the ones that are consequences of the limitations of the building materials, like the size
and steepness restrictions in case of wood, stone or brick spires. Another consideration is the
rationality of the plan: e.g., the claim for freer plan arrangement causes the dominancy of
rectangular shapes. Finally, a third aspect is aesthetics, which — through the use of symmetry
— effectively excludes every ad hoc plan and shape.

Even if we take the above restrictions into account, the set of possible shapes is still so
enormous, that it takes some abstraction to produce usable categories; however, in my opinion
this does not decreases the applicability of the system.

1.3. Base plans

The archetype of the medieval tower can be described as a building or part of a greater
building (mostly a church or castle), whose height is considerably bigger then the dimensions
of its base — which is usually a square, a polygon or a circle, or, in rare cases, a rectangle or
an ellipse (arranged in order of decreasing frequency).

In this paper I focus on spires with square or regular octagonal base, partially because
conclusions derived from their examinations can be easily generalized, but mainly because
these are (prominently) the most frequent shapes — so much so, that sometimes we find
polygonal spires even on circular towers (e.g., in Maria Laach/Germany). Furthermore, the
spires of circular medieval towers are usually simple surfaces of revolution — mostly cones.
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2. Basic shapes

First let us deal with the simplest shapes, as according to my hypothesis all architecturally
relevant spire shapes can be generated from them.

Note here that in case of these basic shapes the change of the steepness of roof planes
will not produce a topologically different spire shape, therefore a whole set of shapes can be
derived from the ones being shown below using only affine transformations.

2.1. Regular n-gonal pyramid

Perhaps the simplest way to cover a regular n-gonal base is to use congruent isosceles triangles.
The a4 and a8 shapes of Fig. 2 are depicting pyramids of equal height, covering regular
polygonal bases which can be inscribed in circles having equal radii1. By duplicating the
number of the faces of a pyramid we soon get a shape which — at least in architectural
practice —, can be classified as a cone. Perhaps this kinship is the reason why all three
shapes appear on the church of Maria Laach.

a4 −→ a8 −→ a0

Figure 2: Regular n-gonal pyramids

2.2. Convex 2n-gonal base-truncated pyramid

If we grab the midpoints of the base of a regular n-gonal pyramidal spire described in 2.1, and
move them slightly upward, the sloping triangular surfaces break, and because of these new
ridges (connecting the spire apex with the apexes of the newly formed gables) the horizontal
section of the spire becomes a 2n-gonal polygon.

Since the spire apex is closer to the midpoints of the base then to its corners, if the gables
are not too high, the new gable ridges are steeper then the ridges over the diagonals of the
base (b−

4 ), but when the height of the gables exceed a certain limit (see 2.7), the diagonal
ridges become the steeper of the two sets (b+

4 ).
The idiosyncrasy of shapes b4 and b8 of Fig. 3 is that all of their ridges have equal

slope, and this way their horizontal sections (over the level of their gable apexes) are regular
polygons. Therefore, these shapes can be described as base-truncations of regular 2n-gonal
pyramids. I call a shape “base-truncated pyramid”, when a regular pyramid is truncated by
a rotational symmetric set of planes which are perpendicular to the base of the pyramid. For
example, if we take an a8 pyramid, connect every second vertex of its base, and then keep

1For better comparison all shapes in Section 2 have equal spire height — and therefore equal slope over
the diagonals of their base polygons.
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b−

4 b4 b+

4 −→ b8

Figure 3: Convex 2n-gonal base-truncated pyramids

only that part of the original volume which lies above this new square base, we get a shape
similar (affine) to b4.

The most well-known examples of this shape (or more exactly its b+

4 subtype) are the
spires of the Speyer Cathedral in Germany — but the regular b4 form also appears, for
example on the towers of the Marienkirche in Lübeck/Germany.

2.3. Rotated n-gonal base-truncated pyramid

If we raise the gable apexes higher, until the diagonal ridges are embedded into the roof planes
(see 2.7), we get a rotated base-truncated n-gonal pyramid — or in other words, the part of
a pyramid which lies over the n-gonal base we get by connecting the midpoints of its original
base.

c4 −→ c8

Figure 4: Rotated n-gonal base-truncated pyramids

Over a square base, the c4 shape of Fig. 4 appears when the height of the gable apexes is
exactly half of that of the spire apex. Since in this case the verges and the gable ridges are
parallel, the sloping planes of the spire are rhombuses, and the shape of the roof proper can
be described as a translational surface.

The c8 shape is obviously similar to the previous c4 one as it also lacks the diagonal breaks,
but — just like shape b4 in 2.2 — it also can be described as a (different) base-truncation of
a similar a8 pyramid. The sloping planes of this shape are deltoids.

The c4 form can be found for example on the western tower of the cloister church of Maria
Laach, the octagonal c8 form on St. Martin Münster in Bonn/Germany.
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2.4. Concave 2n-gonal base-truncated pyramid

The obvious next step is to raise the gable apexes even higher, which again produces diagonal
breaks in the roof surfaces — this time valleys.

d−

4 d4 d+

4 −→ d∗

8

Figure 5: Concave 2n-gonal base-truncated pyramid

It is true again that a small lowering (d−

4 ) or raising (d+

4 ) of the gable apexes does not
change the basic attributes of this shape — and that we can find an equilibrium (d4, see 2.7),
when the slopes of the verges and the diagonal valleys are equal. Furthermore, shape d4 of
Fig. 5 is a complementary form of shape b4 described in 2.2, since the slopes of the verges of
shape b4 and the slopes of the gable ridges of shape d4 are equal (and vice versa). This logic
obviously can be applied to an octagonal base also, but — unlike its quadrilateral counterpart
— this shape hasn’t got any further special attributes.

However, in case of n-gons, n > 4, there is a much more significant shape. The appearance
of this d∗

8 shape is similar to the “normal” d8 form (e.g., it also has star-shaped horizontal
section), but in other respects it resembles the c4 form described in 2.3, since its verges and
gable ridges have equal slopes. It has an even more unique attribute also: the roof proper
has sixteen faces, but only eight planes, as each pair of every third face is lying in a common
plane. Hence, this shape can be described as the union of two isomorphic base-truncated
pyramids (one obviously in rotated position) — the same way as the c8 shape can be seen as
their intersection.

This rather attractive d∗

8 shape can be seen for example on the eastern towers of St.
Aposteln in Cologne/Germany.

2.5. Intersecting gable roofs

If we raise the gable apexes to the height of the spire apex, we get intersecting gable roofs.
Shape e4 of Fig. 6 resembles shape d∗

8 described in 2.4, since in both cases each pair
of every third verge is lying in a common plane passing through the spire apex, and the
intermediate gables seem to emerge from these planes.

In strict architectural sense these shapes are probably not spires — but they are used as
components of several compound spire shapes. Besides, these forms can indeed be seen on
towers: after World War II (before its restoration), the e4 shape appeared on the Marienkirche
in Lübeck.

2.6. Additional basic shapes

There are shapes not described above that can be generated by similar logic.
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e4 −→ e8

Figure 6: Intersecting gable roofs

Shape f4 of Fig. 7 illustrates that the gable apexes (theoretically at least) can be even
higher then the spire apex: in this figure the slopes of the diagonal valleys and the gable
ridges are equal (resembling b4).

Shape d∗∗

8 of Fig. 7 is another special case. On shape c8 each pair of every second verge, on
d∗

8 each pair of every third verge, and on e8 each pair of every seventh is lying in a common
plane passing through the spire apex. Therefore it is quite obvious, that there must be a
shape, where each pair of every fifth verge is lying in a common plane, with two intermediate
gables emerging from these planes.

f4 d∗∗

8

Figure 7: Additional basic forms

2.7. Comparison of basic shapes

Before moving on to the more complicated forms, let us have a look at the more significant
shapes summarized in Fig. 8, and clarify algebraically what the above geometrical solutions
mean.

Let us designate the height of the spire as H, the radius of the circumcircle of its base
n-gon as R, and let hv be the height of the gable apex (v := a, b, c, d, e) (see Fig. 9).

As we have seen in 2.2, a bn spire is basically a base-truncated 2n-gonal pyramid whose
diagonal ridges (starting from the spire apex) reach the base plane, while its gable ridges
— due to the base-truncation — do not. Since both sets of ridges have equal slopes, their



L. Strommer: Spire-polyhedra 117

a4 b4 c4 d4 e4

a8 b8 c8 d∗

8 e8

Figure 8: Basic square and octagonal spire shapes of equal spire apex height, arranged in
order of ascending gable apex height: an regular n-gonal pyramid, bn convex 2n-gonal
base-truncated pyramid, cn rotated n-gonal base-truncated pyramid, dn concave 2n-gonal
base-truncated pyramid, en intersecting gable roofs

height-difference is proportional with the length-difference of their horizontal projections —
and hence the radii of the circumcircle and incircle of the base. If we designate the radius of
the incircle of the base n-gon as r, we can write:

r = R · cos π
n

,
H

R
=

hb

R − r
=⇒

H

R
=

hb

R − R · cos π
n

=⇒ hb = H ·
(

1 − cos π
n

)

.

The cn spire is also a base-truncated pyramid — this time an n-gonal one —, hence R can be
seen as the radius of the incircle of the un-truncated pyramid. As this way the gable ridges
are simply the remains of the original pyramid’s sloping edges (the length of their horizontal
projections is again r), if we designate the radius of the circumcircle of the un-truncated
pyramid (hence the length of the horizontal projection of the pyramid’s sloping edges) as S,
we can write:

R = S · cos π
n

,
H

S
=

hc

S − r
=⇒

H

S
=

hc

S − S · cos2 π
n

=⇒ hc = H · (1 − cos2
π

n
).

The idiosyncrasy of a d∗

n spire (n > 4) is that the horizontal projections of the sloping
triangular faces of the un-truncated pyramids have 4π/n central angles (not 2π/n, as in the
bn and cn cases) — hence, shape d∗

2n and shape bn have equal gable apex height. If we
designate the radius of the circumcircle of of the un-truncated pyramid as T , we can write:

r = T · cos 2π
n

,
H

T
=

h∗

d

T − r
=⇒

H

T
=

h∗

d

T − T · cos 2π
n

=⇒ h∗

d = H · (1 − cos 2π
n

).
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bn cn

d∗

n dn

Figure 9: Finding the height of the gable apex

Since in n = 4 case the above equation would produce an unsatisfactory result (shape e4),
in 2.4 I suggested another specification for the dn designation: a shape whose verges and
diagonal valleys have equal slopes. The advantage is that this type can be interpreted in
n ≤ 4 cases also — the disadvantage is its irrelevancy in n > 4 cases. If we designate the
length of the side of the base n-gon as a, we can write:

a
2

= R · sin π
n

,
H

R
=

hd

a/2
=⇒

H

R
=

hd

R · sin π
n

=⇒ hd = H · sin π
n

.
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As (obviously) ha = 0, and he = H, we now have all necessary limits set:2

for h = hv we have vn, (v := a, b, c, d, e)
for ha < h < hb we have b−n ,
for hb < h < hc we have b+

n ,
for hc < h < hd we have d−

n ,
for hd < h < he we have d+

n ,
and for he < h we have fn.

3. Compound shapes

I use the term “compound” for the shapes described in this section because they can be
produced as combinations of the basic elements described in Section 2.

Note that this process adds a new level of variability: if we combine the same types of
elements, but choose different relative heights for them, we get shapes that are — although
still topologically similar — not affine transformations of each other, unlike the basic shapes
described above.

3.1. Combinations of basic shapes having square base

All shapes of Fig. 10 can be produced as either a union (∪) or an intersection (∩) of two of
the a4, c4, or e4 shapes. Each cell of the figure contains a combination of the elements that
can be found in the first column of its row, and in the first row of its column. In the top
left, middle, and bottom right cells we can see the basic elements themselves (as either unions
or intersections of two congruent shapes). Above this diagonal we can see the results of the
unions, below it the intersections of the basic shapes.

Obviously, the shapes of Fig. 10 are not equally frequently used in the architectural prac-
tice — probably we cannot even find examples for all of them. (However, the rarely used
forms in the second row of the table get a greater role if we add another a8 pyramid to the
compound, as we will see it in 3.3).

It seemed pointless to repeat the same table of combinations for octagonal shapes, as it
would show even fewer relevant forms. One noticeable exception is the octagonal variation of
the top right shape (e8 ∪ a8), which can be seen for example on the cathedral of Limburg an
der Lahn in Germany.

3.2. Combinations of pyramids

Not only different types of shapes can be combined: a considerable number of spires can be
described as unions of pyramids.

Shape a4 ∪ a8 of Fig. 11 illustrates the union of two pyramids (a square and an octag-
onal one) whose bases are circumscribed about the same circle (e.g., St. Vigor, Cerisy-la-
Forêt/France). But it’s the exception, not the rule: the typical solutions are unions of a
steeper pyramid having smaller base dimensions and a less steep one having a bigger base.

The number of the faces of the two pyramids can be equal, as in the a4 ∪ a′

4 and a8 ∪ a′

8

cases (e.g., in Marmoutier/France), but it can also be different: in this case usually the higher

2Two examples: hc4 = h
∗
d6

= 0.5H, and hb4 = h
∗
d8

= 2 · hc8 = H − hd4 = H · (1 −
√

2

2
) ≈ 0.2929H.
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↓ a4 ↓ c4 ↓ e4

→

a4 a4 c4 ∪ a4 e4 ∪ a4

→

c4 a4 ∩ c4 c4 e4 ∪ c4

→

e4 a4 ∩ e4 c4 ∩ e4 e4

Figure 10: Combinations of basic shapes having square base

a4 ∪ a8 a4 ∪ a′r
8 a4 ∪ a′

4 a8 ∪ a′

8

Figure 11: Unions of square and octagonal pyramids

pyramid has more faces, probably because — due to its more acute angles at its top — it
seems to be even higher this way.

Shape a4∪a′r
8 demonstrates another possibility also: the upper pyramid can be in rotated

position (e.g., Nýırbátor/Hungary, bell tower). This can be done in case of square pyramids
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also, but it’s more likely in case of octagonal ones, since this way — as it can be seen in the
figure — the ridges can run directly from the spire apex to the corners of the base.

3.3. Combinations of pyramids and other shapes

As I mentioned in 3.1, the shapes in the second row of Fig. 10 are more frequently used in
union width an additional a8 pyramid3.

a4 ∩ c4 ∪ a8 c4 ∪ a′r
8 e4 ∪ c4 ∪ a8

Figure 12: The shapes of the second row of Fig. 10 with an added a8 pyramid

Shape c4 ∪ a′r
8 of Fig. 12 is related to shape a4 ∪ a′r

8 of Fig. 11: both compounds are
unions of a basic (c4 or a4) shape and a rotated a8 pyramid (e.g., Corvey/United Kingdom,
Westwerk).

If we use more elements, their relative heights and steepness obviously become even more
significant. In case of shape e4 ∩ c4 ∪ a8 of Fig. 12, the slopes of the e4 and c4 elements are
equal, while the slope of the a8 element ensures that its ridges exactly meet the valleys formed
by the union of the previous two shapes4.

If we cut off the gables of the previous spire, we get a shape similar to shape a4∩c4∪a8 of
Fig. 12. This latter shape (e.g., Patrixbourne/France) has a more straightforward genealogy
too: it’s simply the union of an a8 pyramid and the a4 ∩ c4 shape of Fig. 10 — which in itself
is the intersection of two basic elements.

It is worth noting that — unlike in the figure — the slope of the a4 and a8 pyramids might
as well be different, which results in a break (a horizontal intersection line) between the two
shapes — probably it is the more common solution in the architectural practice. Because
of this break, the general appearance of the shape strongly resembles the a8 ∪ a′

8 shape of
Fig. 11 — which may be the reason, why these spire shapes appear together on the square
and octagonal towers of the St. Martin Münster in Bonn.

3.4. A special shape

Can we say then, that no other spire shape exists? Obviously no. Firstly, our examination is
restricted to spires having square and polygonal bases, but this doesn’t mean that we can rule
out other (rarely used) base shapes. Secondly, I did not depict every possible combination of
the basic shapes — evidently there are variations not shown above (I’ve even mentioned one in
3.1). It is much harder to find a compound shape that cannot be produced as a combination

3It is also true for the e4 shape.
4These considerations are obviously not common in the architectural practice.
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of the basic shapes summarised in Fig. 8. I will present one such example — but prior to
that, we have to take a look at the roof forms having rectangular bases.

Figure 13: Adaptations of constructions to rectangular base (examples)

The first shape of Fig. 13 shows a possible method for the adaptation of a gabled form to
a rectangular base: the height-separation of gable ridges. (The alternative would evidently be
the use of different steepness of the sloping faces.) The second shape demonstrates the easiest
and probably most aesthetic solution for adapting a pyramid to a rectangular base: simply
cut it into two, then insert a horizontal ridge between the two separated apexes. Naturally, we
might as well say that this form is a simple hipped roof — but the above logic can be applied
to any shape without gables — as the third figure demonstrates it, adapting the a4 ∩ c4 ∪ a8

shape of Fig. 10.
At first glance the fourth shape of Fig. 13 (similar to the gate tower of the Charles

Bridge, Prague) shows only insignificant variations compared to the previous shape: the only
difference is that the ridges of the upper portion of its frontal sloping face are parallel. However
— as it can be seen in Fig. 14 — this small change means that we have to use a hexagonal
a6 pyramid as a base shape to ensure equal horizontal length for the sloping triangular and
sideward pentagonal faces at the height of the horizontal breaks. Furthermore, in order to
produce the above breaks, we need to change the other two elements of the compound also:
instead of the two square-based pyramids of the “regular” a4 ∩ c4 shape, this time we need
pyramids having rectangular and rhomboidal bases.

It is true that this shape lies outside the range of the delineated constructional method
— however its rotational symmetry (unlike the spires above) is somewhat decreased.

3.5. Spire-shapes that were never built

Since we do not (and cannot) have any proofs, only observations, we obviously cannot say
with mathematical certainty that no spire has ever been built with a different construction
method then the ones we already saw. Moreover, their theoretical possibility is definite, as it
is demonstrated by the shapes of Fig. 15.

The octagonal element of shape a4∪a8 of Fig. 11 can be seen as the intersection of two a4

pyramids (one being in rotated position). If we change the steepness of one of these pyramids,
it evidently modifies the shape of the intersection. In case of the first shape of Fig. 15 I set
the slope so that the pentagonal faces have two parallel ridges.

The second shape of Fig. 15 is an intersection of a c4 shape and two a4 pyramids. The
rhomboid faces are inherited from the c4 shape, the squares from the first a4 pyramid, and the
equilateral triangles from the second, less steep one. Since the gable itself is a half hexagon,
the edges all have equal length.
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a4, ar
4 (or c4), and a8 base shapes, their a4 ∩ c4 ∪ a8 compound, and its extrusion

aδ
4, a

ρ
4, and a6 base shapes, their aδ

4 ∩ a
ρ
4 ∪ a6 compound, and its extrusion

Figure 14: Covering a rectangular base — different elements, similar results

a4 ∩ ar
4 ∪ a′

4 c4 ∩ a4 ∩ a′

4 s4

Figure 15: Spire-shapes that were never built

The third shape of Fig. 15 is the octagonal variation of the previous one, demonstrating
that — despite of its symmetry — how easy to exceed the complexity limits of a credible
medieval spire shape.

In my opinion the first two shapes prove that — though it’s far from being easy — it
is possible to find compound shapes that are simple, geometric, and aesthetic enough to be
conceivably possible, while being completely outside the range of the historical shape set. At
the same time they demonstrate, that even these shapes can be dealt with using the above
construction methods.
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3.6. Variations

Did we see every architecturally relevant form then? Certainly no. Though the domain of
used forms seems to be practically closed, architects created a wide variety of shapes using
this relatively narrow range of geometrical elements. In addition to the diversity produced by
the variations of steepness and relative heights of the elements of compound shapes, architects
sometimes deliberately and habitually violated the rules of pure geometrical constructions in
order to produce more fascinating shapes. Fig. 16 shows some examples of these “limited
irregularities”.

cv
4 e4 ∪ av

4 bv
4

Figure 16: Architectural variations of geometrical constructions

Perhaps the simplest change is the use of gables as substantive elements (shape cv
4, e.g.,

Cathedral of Limburg/Germany). If the sloping faces of the c4 shape end not at the outer,
but at the inner edges of the gables, the overall appearance resembles the e4 ∪ c4 shape of
Fig. 10, since the gable walls appear to be short gable roofs. The characteristic difference
between the two shapes is in the direction of the valleys, which in this case run parallel to
the facades.

Another frequently used solution is the divergence of base dimensions of elements. We
have already observed the kind of freedom that can be derived from the difference of the base
dimensions of the elements (for example in 3.2). The second shape of Fig. 16 (e4 ∪ av

4, e.g.,
Cathedral of Pécs/Hungary), can be seen as a simple truncation: if we elongate its edges
downwards (and outwards), we get the “original” e4 ∪ a4 shape of Fig. 10.

The third shape of Fig. 16 also represents this sort of height-irregularity (shape bv
4, e.g.,

Cathedral of Paderborn/Germany). The significant difference is that — unlike the a4 pyramid
above — the b4 shape used here has got only one square horizontal section: its original base.
Hence, when it is cut above its normal base, a new element is needed in order to cover the
whole plan: a pinnacle. (When we decide the width of the gable, at the same time we set the
width of the adjoining pinnacle, and the intersection of the inner vertical edge of the pinnacle
and the diagonal ridge of the spire determines the minimum height of the pinnacle too.)

The introduction of the pinnacle does not effects the delineated geometric system since
it uses the same shapes as the spires: its most typical form is probably the e4 ∪ a4 shape of
Fig. 10 — with steeply pointed a4 pyramids [1] — but we can also find more complicated
forms like the d∗

8 shape for example on Groß St. Martin in Cologne/Germany.
This architectural element sometimes appear on towers in some functional role (e.g.,

on watch-towers), sometimes as a geometrical necessity (like above), but most of the times
its presence simply has architectural (mostly aesthetical) aim — it serves as a geometrical
compositional element.
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Figure 17: Polyhedral spires (examples)
Top: Bonn, St. Martin Münster; Corvey, abbey church; Cerisy-la-Forêt, St. Vigor
Middle: Patrixbourne, church; Prague, gate towers; Maria Laach, cloister church
Bottom: Lübeck, Marienkirche and Petrikirche; Limburg, cathedral; Cologne, St. Aposteln
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4. Summary

I wouldn’t say that the suggested analytic categorization method is appropriate for every
theoretically imaginable roof shape, but it is certainly proved to be appropriate for the existing
shapes of architectural practice — in fact, its range is rather too wide: we found some shapes
that were never built, but none that were built, but cannot be dealt with. In my opinion the
examples above convincingly certify that the method discussed in this paper is applicable for
depicting, describing and categorizing the spires bounded by polygonal planes.
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[6] E. Koźniewski: On the Existence of Shapes of Roofs. J. Geometry Graphics 8, 185–198
(2004).

[7] R. Toman, B. Beyer, A. Gundermann: Die Kunst der Romanik. Tandem Verlag
GmbH, Budapest 2005.

Received November 30, 2006; final form June 22, 2007


