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Abstract. We reprove the result of Stone and DeRose, which gives the geo-
metric classification of the affine type of an untrimmed Bézier curve, using classical
algebraic geometry. We show how to derive the characterization of Stone and
DeRose from three classical results: Bézout theorem, polynomial parametriza-
tion criterion and classification of the singularity type of an algebraic curve given
in Weierstrass normal form.
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1. Introduction

In 1989 Stone and DeRose presented a geometric criterion to determine the affine type
of a parametric cubic curve (see [9]). Having three, out of four, control points of Bézier
representation of the curve fixed to specified locations one can decide if the curve has a
cusp, a node, or one or two inflection points by examining the position of the fourth point.
Stone and DeRose showed that the real plane is divided into regions where the curve has
respectively: a node, a cusp, one or two inflection points. Those regions are given by a
parabola and its tangent. Their proof of this result is based entirely upon the parametric
form of the curve and is purely analytic in nature. In fact, the authors support their analysis
on the earlier papers by Su and Liu [10] and Wang [13], that are also purely analytic. On the
other hand, characterization of the affine type of a (singular) cubic curve has a long history
in algebraic geometry dating back to 19th century and beyond!

The aim of this paper is to show how the result of Stone and DeRose relates to this
classical theory. To this end we reprove the above-mentioned theorem using the language of
classical algebraic geometry. In particular we show that the result of Stone and DeRose is
closely related to the well known classification of singular cubics given in Weierstrass normal
form. Our proof has two advantages. The main is that using the well established basis of
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algebraic geometry our method not only proves the assertion but, more importantly, offers
an insight explaining the phenomenon. Secondly, the presented proof is shorter since it is
completely based upon the classical theory (and so can be considered self-contained), in
contrast Stone and DeRose base their results on two earlier papers: [10] and [13].

As we only reprove here an already known result, using completely classical tools, this
paper is rather of an expository nature. In particular, we give full references to all the results
we use, no matter how classical they are. We want to emphasize the fact that the paper of
Stone and DeRose presents more nice results than the one reproved here. In particular the
authors give also a characterization of trimmed curves and show that similar characterizations
can be obtained for other representations of parametric cubics by appropriate planar slice of
a common three-dimensional “characterization space”. Similar result were obtained also in
the papers by Su and Liu [10], Wang [13] and Forrest [3]. More recently Vincent (see
[11]) presented another algorithm to decide the type of a trimmed Bézier cubic. Further
generalization may be found in [5], where the author solves the problem of characterization
of not only polynomial and rational Bézier curves but also C-Bézier curves.

The idea of using the language of (classical) algebraic geometry to tackle problems from
the realms of geometric modelling, that we use here, is not new. For cubic curves it was
effectively used for example in Patterson’s paper [6]. The connection between the Stone-
DeRose theorem and the classical geometry was also discussed in [7], however the methods
used there are different than the ones used in this paper.

2. Stone-DeRose Theorem

Here we reprove the theorem of Stone and DeRose (c.f. [9]) using the language of (classical)
algebraic geometry. Let C be an untrimmed polynomial Bézier cubic curve, with control points
P0, P1, P2, P3:

C(t) = P0 · (1 − t)3 + P1 · 3t(1 − t)2 + P2 · 3t
2(1 − t) + P3 · t

3. (1)

We assume that the control points P0, P1, P2, P3 are in general position, i.e., they are not
collinear and no two of them are coincident. Since reversing the order of control points of
a Bézier curve reverses only the parametrization but does not affect the shape of the curve,
we may assume that P0, P1 and P2 are not collinear. The Bézier representation is affinely
invariant (see, e.g., [2, § 4.3]). Choosing an appropriate affine transformation, we may fix the
positions of these three control points so that:

P0 =

(

0

0

)

, P1 =

(

0

1

)

, P2 =

(

1

1

)

. (2)

Now, the position of P3 =
(

Px

Py

)

determines the class of the curve C with respect to affine

equivalence (“the characteristic” of the curve in terms of [9]). Substituting the coordinates of
control points into (1) leads us to:

C(t) =

(

(Px − 3)t3 + 3t2

Pyt3 − 3t2 + 3t

)

.

If Px − 3 = 0 = Py the curve degenerates to a conic. Since a parabola is the only conic with
a polynomial parametrization (see, e.g., [1, Chapter 1]) we have:
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Observation 3 If P3 =
(

3

0

)

, then the curve C is a parabola.

From now on, we assume that P3 6=
(

3

0

)

. Implicitize C computing the Bézout resultant
(see, e.g., [8, § 3.3]) for x − (Px − 3)t3 − 3t2 and y − Pyt

3 + 3t2 − 3t. We get

Rest

(

x − (Px − 3)t3 − 3t2, y − Pyt
3 + 3t2 − 3t

)

=

= det





3x −3x − 3y Pyx − (Px − 3)y
−3x − 3y 9 + Pyx − (Px − 3)y 3(Px − 3)

Pyx − (Px − 3)y 3(Px − 3) −3(Px − 3) − 3Py



 =

= −(Pyx − (Px − 3)y)3 + 9
(

A1x
2 + A2xy + A3y

2
)

− 27A3x,

with

A1 = 3Px − 3PxPy − 2P 2

y + 12Py − 9, A2 = 3P 2

x + PxPy − 12Px + 3Py + 9
and A3 = P 2

x − 3Px + 3Py .

Let F be the homogenization of f and take Ĉ := {(x : y : w) ∈ P
2
R : F (x, y, w) = 0} the

Zarisky closure of C in the projective plane P
2
R. The curve C has a polynomial parametriza-

tion, hence its genus is zero. Thus Ĉ must have a singular point. It is well know (see, e.g.,
[4, Chapter 7]) that there are only three types of real singular cubics:

A cuspidal — it has a single real cusp with a double real tangent; it has a unique real flex;

B crunodal — it has a single real node with two different real tangents; it has a unique real
flex and two complex flexes;

C acnodal — it has a single real node with two complex conjugate tangents; it has three
distinct real flexes.

Now, we know that C has a polynomial parametrization, consequently Ĉ has exactly one place
at infinity (see, e.g., [1, Chapter 1]). Thus Bézout’s theorem (see, e.g., [4, Theorem 14.7] or
[12, Theorem IV.5.4]) implies that there are only two possibilities:

1 Ĉ has a cusp at infinity and its (double) tangent is a line at infinity;

2 Ĉ has a flex at infinity and its tangent is again a line at infinity.

In the first case the curve is of type A, and so has exactly one affine flex and no affine
singularities. In the other case it may be of any type, but since it already has one flex at
infinity it may have either two or zero affine inflection points. If it has no affine inflection
points it is of type A or B and so it has a cusp or a crunode. If it has two affine inflection
points it is of type C so has an acnode, and since the acnode is an isolated point of the real
algebraic curve, it does not belong to the parametric curve. Thus, we have the following
possibilities:

1A the Bézier curve C has one inflection point and no singular points;

2A the Bézier curve C has no inflection points and one cusp;

2B the Bézier curve C has no inflection points and one crunode;

2C the Bézier curve C has two inflection points and no singular points.

The following theorem due to Stone and DeRose correlates the position of the control point
P3 to one of the above cases.
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Theorem 4 (Stone, DeRose) If C is an untrimmed Bézier curve with control points P0,
P1, P2, P3 satisfying (2) then:

0 it is a parabola if and only if P3 =
(

3

0

)

;

1A it has one inflection point if and only if P3 belongs to the line x+y−3 = 0 and P3 6=
(

3

0

)

;

2A it has a cusp if and only if P3 lies on the parabola (x− 3)(x + 1) + 4y = 0 and P3 6=
(

3

0

)

;

2B it has a crunode if and only if P3 lies below the parabola (x − 3)(x + 1) + 4y = 0;

2C it has two inflection points if and only if P3 lies above the parabola (x−3)(x+1)+4y = 0
but does not belong to the line x + y − 3 = 0.

The five cases mentioned above are illustrated in Fig. 1. Fig. 2 shows the shapes of the
four types of cubic curves for different positions of P3.
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Figure 1: The characterization diagram of Stone and DeRose
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Figure 2: Different types of Bézier cubics

Proof: We have already solved the degenerate case in Observation 3. Next, we know that
the curve Ĉ has exactly one place at infinity. Substituting w = 0 to F (x, y, w) = 0 we have
((Px − 3)y − Pyx)3 = 0. Hence the point at infinity has coordinates (Px − 3 : Py : 0). From
our earlier discussion we know that the curve is of type 1A if and only if this point is singular
(and then it is necessarily a cusp) and the double tangent is the line at infinity. Compute the
partial derivative

∂F

∂w
(Px − 3 : Py : 0) = 27(Px + Py − 3)3.
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Figure 3: Examples of rational cubic segments having: (a) a cusp and an inflection point;
(b) a node and an inflection point; (c) three inflection points.

The inflection points are marked with arrows.

Thus (Px − 3 : Py : 0) is singular if and only if the coordinates of P3 satisfy Px + Py − 3 = 0.
This proves 1A.

On the other hand suppose that the point at infinity is not singular, hence it is a flex and
the tangent is the line at infinity. Consider a change of variables

x 7→ Pyx + (Px − 3)y, y 7→ Pyy, w 7→ Pyw.

It transforms Ĉ into Ĉ1 given by

G1(x, y, w) := F
(

Pyx + (Px − 3)y, Pyy, Pyw
)

.

The curve Ĉ1 has a flex at (0 : 1 : 0) and its tangent is the line at infinity {w = 0}. Notice
that we are now at the initial position for the classical derivation of Weierstrass normal form
(see, e.g., [4, § 15.2] or [12, III § 6.4]). Repeating the classical scheme we dehomogenize G1

to obtain g1. Now, there is an affine change of variables that transforms the curve into
Weierstrass normal form:

y2 = x3 + αx + β.

With a direct computation1 we find out that

α = −
3 3

√

P 4
y

(

(Px − 3)(Px + 1) + 4Py

)2

16(Px + Py − 3)4
, β = −

(

(Px − 3)(Px + 1) + 4Py

)3

32(Px + Py − 3)6
.

It follows from the already proved part that the denominators are non-zero. Now, the classifi-
cation of cubics given in Weierstrass normal form is well known (see [4, § 15.3]): it is cuspidal
(hence of type 2A) if and only if α = β = 0 if and only if (Px − 3)(Px + 1) + 4Py = 0; it has
a crunode (i.e., it is of type 2B) iff β > 0; and finally it has an acnode (hence its type is 2C)
when β < 0.

It is worth to stress the point that singularities and inflection points are mutually exclusive
only for polynomial curves. In rational case it is not hard to show a Bézier curve (in fact
even a segment) having a cusp and an inflection point, a node and an inflection point or three
inflection points (see Fig. 3).

1We used the computer algebra system Mathematica 3.01 (c.f., [14]).
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