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Abstract. This paper exposes the geometrical approach to the numerical sta-
bility analysis of the projective collinear mapping method based on Laguerre’s
points of the involution mapped. The ill-conditioned and corresponding unstable
zones for this mapping method are defined and some alternative procedures for
their corrections are proposed. As a result of the analysis, the stable and well
conditioned collinear mapping technique, which can be used in the design of some
3D imaging software algorithms, are created and explained. The exposed anal-
ysis is a contribution to the theory of projective and computational geometry.
Moreover, it proposes a numerical stability criterion for the practical mapping
procedures in software applications which are based on the principles of the pro-
jective collineation.
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1. Introduction

This work is derived from an educational project in which the object oriented modeling of
projective collinear transformations is accomplished. As a result of this process, a full featured
Windows application that performs the collinear projective mapping and illustrates the main
invariants of projective geometry is designed. One of the most interesting and most significant
parts of this project was solving the practical problems of projective mapping numerical
stability. This paper not just discloses the solution but also offers a possible approach in
finding the answer to this important question.

At the beginning, it is not worthless to recall and emphasize that every mapping method
can be characterized by the accuracy and errors caused by the limited precision of the technical
instruments by which it is practically performed. This problem was considered thoroughly in
literature, especially in the field of robust geometric computing for Computer-Aided Design.
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Very interesting and meticulous work has been done by S.-M. Hu and J. Wallner [2],
who analyze “the propagation of errors through geometric transformations, such as reflections,
rotations, similarity transformations, and projections, and also the scalar product of vectors.”

J. Wallner, R. Krasauskas and H. Pottmann [8] “. . . show how to treat some
problems of error propagation in geometric constructions in a geometric way.”

And H. Pottmann, B. Odehnal, M. Peternell, J. Wallner, R. Ait Haddou [6]
explain: “A geometric approach to the computation of precise or well approximated tolerance
zones for CAD constructions . . . ” They emphasize that “Almost always one assumes precise
input or one is not so much concerned about the effect of input errors or tolerances on the
output. However, for practical purposes, this is a fundamental question.”

All projective collinear mapping methods are based on the line intersections and, without
regard whether the realization of these operations is graphical or numerical, it is possible to
discuss about their stability and precision and analyze the alternative procedures which will
make these projective transformations more stable and accurate.

Despite the fact that algebraic criteria for the stability determination are numerous, nu-
merical stability analysis is obtained in this paper by the geometrical procedures. This geo-
metrical approach is simple and it can be easily understood and practically accomplished. The
essential assumption for this consideration is that the instability of the mapping realization
is induced by the extremely small intersection angle of the point radius vectors.

2. Basic terminology and definitions

For further theoretical considerations, the following terminology and definitions are necessary
to be defined:

Definition 1 A method of the projective collinear mapping from the field F1 to the field
F2 is called stable in the particular zone Ω2 of the field F2, if small changes of its parameters
correspond to small shifts of the points mapped. Otherwise the method of the collinear
mapping is called unstable in the particular zone Ω2 of the field F2.

Definition 2 A method of the projective collinear mapping from the field F1 to the field
F2 is called well-conditioned in a particular area Ω1 of the field F1, if the mapping method
is stable in the associated area Ω2 of the field F2. The method of the projective collinear
mapping from the field F1 to the field F2 is called ill-conditioned in the particular area Ω1 of
the field F1, if the mapping method is unstable in the associated area Ω2 of the field F2.

Definition 3 The area within the projective collinear fields in which one particular map-
ping method is stable is called the stability zone of this mapping method. The area within
the projective collinear fields associated with the corresponding stability zone is the well-
conditioned zone of this mapping method. The ill-conditioned zones are the areas of the
projective collinear fields located outside of the well-conditioned zones.

If the collinear mapping method is interpreted by the algebraic equations, as is shown
clearly in [5], [1] and [7], the stability conditions of that mapping method can be expressed
in algebraic language, i.e., in the well known matrix form. In that sense, the mathematical
concepts of matrix stability, as well as the concept of ill-conditioned and well-conditioned
matrices and systems of linear equations are defined. These definitions are exposed in [3]:
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“Definicija 1. Inverzna matrica A−1 matrice A je stabilna ako malim promenama elemenata
matrice A odgovaraju male promene elemenata matrice A−1. U protivnom matrica A−1 je
nestabilna.”
[“Definition 1. The inverse matrix A−1 of matrix A is stable if small changes of matrix A
entries correspond to little changes of matrix A−1 entries. In the opposite case matrix A−1 is
unstable.”]

“Definicija 2. Matrica A je slabo uslovljena ako je njena inverzna matrica A−1 nestabilna.”
[“Definition 2. Matrix A is ill-conditioned if its inverse matrix A−1 is unstable.”]

3. Measure of the local absolute and local relative mapping error

It is well known that fields of projective collineation possess two pencils of vanishing lines
and the absolute involutions mapped, whose supports they are, represent elliptical involuted
ranges. A projective collinear mapping can be accomplished directly by using Laguerre’s
points, pairs of projectively associated circular pencils of rays and especially defined polar
coordinate systems. This fact are exposed in [4]:

“U posebno znač ajne invarijante kolokalnih kolinearnih polja ubrajaju se i njihove žǐze. One
omogućavaju da se, uvodenjem polarnih koordinata, primene jednostavni i grafič ki precizni
postupci direktnog preslikavanja jednog polja u drugo.”
[“Especially important invariants of collocal collinear fields are their foci. By them, polar
coordinate systems can be defined and simple and graphically precise methods of direct mapping
from one to the another field can be applied.”]

and [5]:

“Lagerovim tač kama preslikanih apsolutnih involucija definisani su polarni koordinatni sis-
temi u poljima opšte kolineacije, tako da se preslikavanja tač aka vrše sa konstantnim ugaonim
koordinatama, variranjem dužina njihovih potega. Lagerove tač ke preslikanih apsolutnih in-
volucija, odnosno žǐze kolokalnih kolinearnih polja, predstavljaju centre, a glavne normale su
pridružene ose tih polarnih koordinatnih sistema.”
[“By Laguerre’s points of the involution mapped, the polar coordinate systems are defined in
general collinear fields in such a way that the point mapping is accomplished with the constant
angular coordinates by varying the radius vectors’ length. Laguerre’s points of the involution
mapped, i.e., the foci of the collocal collinear fields, are the centers and the principal normal
lines are the associated axes of those polar coordinate systems.”]

This work considers the numerical stability of the above-mentioned collinear mapping
method based on Laguerre’s points of the involution mapped.

The principal parameters of the projective collinear mapping method based on Laguerre’s
points of the involution mapped are: homogenous coordinates of Laguerre’s points and angular
coordinates of the field points. Since the positions of Laguerre’s points must be defined by
coordinates or determined by an alternative mapping method, errors of their location do not
have the influence on the mapping method stability considered in this paper. Consequently to
this conclusion, full attention will be concentrated only to the relation between the mapping
stability and the point angular coordinates.

Let us presume that angular coordinates of the points in the field F1 are determined
with some errors and that these errors cause the errors of the angular coordinate ϕ and ψ
of the points mapped in the field F2. Also, let us presume that the absolute value of all
angular errors is not greater than some particular number ε. It is necessary to evaluate the
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Figure 1: The measure of the local absolute and local relative mapping error

alteration of the point mapped positions in the function of this number ε. Acting similarly,
J. Wallner, R. Krasauskas and H. Pottmann [8] write:

“We consider a very simple geometry construction: the intersection of two lines in the Eu-
clidean plane. The input consists of two lines, and the output is a point. . . . If we speak
of error propagation, we mean the following: Suppose each item of the input data can vary
independently in some domain (for instance, a point varies in a disk). We can think of input
data given imprecisely or of tolerance zones for the input data. We ask for the set of all
possible outputs. If this is not possible, we would at least want to know some tolerance zone
which contains all possible outputs.”

As shown in Fig. 1, the Laguerre’s points L21 and L22 are defined in the field F2, as
well as the mapped point M(ϕ, ψ) whose radius vectors intersect at the angle α. From the
presumption that angular coordinates are determined with error limit ±ε, it can be concluded
that the real positions of the point mapped can be altered inside the square ABCD whose
sides are formed by the radius vectors with angular coordinates (ϕ ± ε, ψ ± ε). The square
ABCD actually represents the “Fat Point” and this consideration is in accordance with its
definition [8]:

“In Euclidian geometry, points are the most elementary geometric objects. A fat point is a set
of points. Usually when computing with fat points, one restricts attention to sets with certain
properties, like closed convex ones, or even balls.”

For this reason, the square area Π(ϕ, ψ, l2, ε) can represent the measure of the local
absolute mapping error, in function of angular coordinates ϕ and ψ, distance l2 between
Laguerre’s points, and error limit ε.

Since the point position and the measure of local absolute mapping error are determined
by the pair of radius vectors, the measure of the local relative error of the mapping method
must be determined by the function of both radius vectors’ length. Therefore, the measure of
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the local relative error of the mapping method ρ(ϕ, ψ, l2, ε) can be represented by the ratio

ρ(ϕ, ψ, l2, ε) = Π(ϕ, ψ, l2, ε)/∆(ϕ, ψ, l2). (1)

In this formula, ∆(ϕ, ψ, l2) is the area of the triangle L21L22M which algebraically comprises
the product of two points radius vectors length. Since the angular coordinate ψ is a function
of α and ϕ, the measure of the local relative error ρ can also be expressed by the ratio

ρ(ϕ, α, l2, ε) = Π(ϕ, α, l2, ε)/∆(ϕ, α, l2). (2)

4. Geometrical loci of constant relative mapping error

Now, let us assume that the radius vectors’ intersection angle α is constant. Under this
assumption, the geometrical loci of constant relative error of the mapping method based on
Laguerre’s points will be considered and determined. As shown in Fig. 2, it is clear that the
locus of mapped points, whose radius vectors cut at a constant angle α, belongs to the pair
of equal radii circles that intersect at Laguerre’s points L21 and L22.

Figure 2: The geometrical loci of constant relative mapping error

The function ρ = ρ(ϕ, α, l2, ε) of the local relative mapping error can be effectively deter-
mined from the following equations:

P0 =
l2 · (sinϕ · sin (ϕ+ α))

2 sinα
; P1 =

l2 · (sin (ϕ+ ε) · sin (ϕ+ α− ε))

2 sin (α− 2ε)

P2 =
l2 · (sin (ϕ+ ε) · sin (ϕ+ α+ ε))

2 sinα
; P3 =

l2 · (sin (ϕ− ε) · sin (ϕ+ α− ε))

2 sinα
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P4 =
l2 · (sin (ϕ− ε) · sin (ϕ+ α + ε))

2 sin (α + 2ε)
; ρ =

P1 − P2 − P3 + P4

P0

. (3)

This function is computed numerically for different values of angle α and the constant value
of ε. The result is shown in the following tables:

Table 1: Numerical values of the function ρ = ρ(ϕ, α, l2, ε)

α = 0.1; ε = 10−5 α = 0.01; ε = 10−5

ϕ ρ ϕ ρ

0.01 8.02672113179 0.01 8.00030267188

0.1 8.02672044451 0.1 8.00029874459

1.0 8.02672040531 1.0 8.00029867272

2.0 8.02672040527 2.0 8.00029867257

3.0 8.02672054031 3.0 8.00029871479

4.0 8.02672040555 4.0 8.00029867298

5.0 8.02672040514 5.0 8.00029867247

6.0 8.02672041992 6.0 8.00029868221

6.1 8.02672045689 6.1 8.00029869708

6.2 8.02671983168 6.2 8.00029880329

6.28 8.02671781117 6.28 8.00026181718

Table 2: Numerical values of the function ρ = ρ(ϕ, α, l2, ε)

α = 2.1 10−5; ε = 10−5 α = 2.01 10−5; ε = 10−5

ϕ ρ ϕ ρ

0.01 19.5122145929 0.01 199.501445977

0.1 19.5121953166 0.1 199.501248871

1.0 19.5121951237 1.0 199.501246898

2.0 19.5121951233 2.0 199.501246894

3.0 19.5121952189 3.0 199.501247872

4.0 19.5121951243 4.0 199.501246905

5.0 19.5121951230 5.0 199.501246891

6.0 19.5121951459 6.0 199.501247125

6.1 19.5121951797 6.1 199.501247471

6.2 19.5121954036 6.2 199.501249760

6.28 19.5123887086 6.28 199.503225632

The following conclusions can be drawn from equations (3) and numerical data exposed
in Tables 1 and 2:
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1. For the constant value of the error limit ε, the function ρ = ρ(ϕ, l2, ε), which measures
the local relative mapping error, increases as the value of the radius vectors intersection
angle decreases. This is the most important characteristic of this function.

2. For one particular and constant error limit ε and any value of angular coordinate ϕ,
the function ρ = ρ(ϕ, α, l2, ε) can become infinitely large if it satisfies the following
condition:

|α| ≤ 2 · ε (4)

This condition will be reached in the numerical example exposed above if

|α| ≤ 2 · 10−5 (5)

3. For one particular value of angles α and ε, the function ρ = ρ(ϕ, α, l2, ε) is very nearly
constant and practically independent from the angular coordinate ϕ. Therefore, it can
be concluded that the elliptical pencil of circles whose base points are L21 and L22

represents the geometrical locus of approximately constant relative errors ρ in the field
F2 of the mapping method based on Laguerre’s points of the absolute involution mapped.
The analogue conclusion can be formulated for the geometrical locus of approximately
constant relative errors ρ in the field F1.

5. Measure of the integral absolute and integral relative mapping

error

The vertices A, B, C and D of the squares whose area Π(ϕ, ψ, l2, ε) represents the measure of
the mapping method local absolute error belongs to the same elliptical pencil of circles whose
base points are Laguere’s points L21 and L22. As shown in Fig. 1, all mapped points belong
to the circular lunettes Λ1 and Λ2 whose area

Π(Λ1,Λ2) = Π(Λ1) + Π(Λ2) (6)

decreases if the intersection angle α increases, and vice versa. It is essential to note that
lunettes area Π(Λ1,Λ2) can become infinitely large if the value of intersection angle α satisfies
condition (4). This means that the error of the practical realization of the collinear mapping
can be immeasurably large if the value of intersection angle α becomes less or equal to the
doubled value of the error limit ε. From this considerations and the fact that all mapped
points belong to the circular lunettes Λ1 and Λ2, it can be concluded that the area Π(Λ1,Λ2)
represents a measure of integral absolute error of the projective collinear mapping method
based on the Laguerre’s points.

According to the definitions of local relative and integral absolute mapping errors, the
measure of the integral relative mapping error can be expressed by the ratio

R(Λ1,Λ2) = Π(Λ1,Λ2)/Π(Λ01,Λ02) (7)

where Π(Λ01,Λ02) is the area of circular lunettes Λ01 and Λ02 shown in Fig. 2.
From these considerations, one can draw the conclusion that the reciprocal value R−1(Λ1,Λ2)

of the measure of the integral relative mapping error represents a measure for the constructive
graphical and numerical stability of the collinear mapping method based on Laguerre’s points
of the absolute involution mapped. The angle α0 = 2ε is the critical intersection angle of the
mapped points’ radius vectors, and its numerical value depends on the technical instruments
quality by which the collinear mapping is effectively performed.
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6. The analyze deduction

The following deductions referring to the collinear mapping from the field F1 to the field F2

can be drawn from the exposed stability analyzes:
1. Every circle from the elliptical pencil of circles whose base points are L21 and L22 rep-

resents the geometrical locus of constant local relative errors ρ in the field F2 of the
mapping method based on Laguerre’s points of the absolute involution mapped.

2. There are exactly two circles in the elliptical pencil whose base points are L21 and L22

which correspond to the critical value of the radius vectors intersection angle α0. These
circles represent the stability zone limits in the field F2 of the mapping method based
on Laguerre’s points, and they are called circles of critical stability for those mapping
method.

3. Circles of critical stability in the collinear fields F1 and F2 are associated by the pro-
jective collineation to the pair of hyperbolas in the fields F2 and F1 respectively. These
hyperbolas represent the hyperbolas of critically conditioned mapping method based on
Laguerre’s points of the absolute involution mapped.

Figure 3: Hyperbolas of critically conditioned mapping method and circles of critical stability
for the mapping method based on Laguerre’s points of the absolute involution mapped

A pair of projective collinear fields F1 and F2 and the hyperbolas of critically conditioned
mapping method are shown in Fig. 3, as well as the instability zones and associated ill-
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conditioned areas. For one particular value of the error limit ε by which the polar coordinates
are determined, those hyperbolas correspond to one particular value of the critical angle
α0 = 2ε. As clearly shown in Fig. 3, two ill-conditioned zones of these mapping method
exist in the field F1, the first of which comprises the vanishing line r1 and the second one the
principal normal line n1. The pair of ill-conditioned zones of the same mapping method exists
in the second field too, but they comprise the vanishing line q2 and the principal normal line
n2. The most important consequence of these considerations is that the collinear mapping
method based on Laguerre’s points can not be applied in those ill-conditioned areas, and the
alternative, well-conditioned mapping methods must be accomplished and performed in above
mentioned zones.

7. The alternative mapping methods

In Fig. 4 fields of projective collineation, their vanishing lines r1, q2, and Laguerre’s points
L11, L12, L21, L22 on the corresponding principal normal lines n1 and n2 are shown. It is
evident that the collinearly associated points A1 and A2 belong to the straight lines s1 and s2,
which are parallel to the vanishing line r1, and q2 in the collinear fields F1 and F2, respectively.
From this facts and the theorem of the projectively associated points of the corresponding
principal normal lines, the following equation can be formulated:

η · ξ =
l1 · l2

4
(8)

where
– η, ξ is the distance between projectively associated points from the corresponding collinear

field vanishing lines,

– l1 is the distance between F11 and F12,

– l2 is the distance between F21 and F22.
This hyperbolical function of coordinates η and ξ can be applied directly in the ill-conditioned
zones of the projective collinear mapping method based on Laguerre’s points of the absolute
involution mapped. Point A1 on the straight line s1 that is parallel to the principal normal
line n1 is shown on Fig. 4, as well as the radius vector p11 of the point A1, its distance η
from the line n1, and angular coordinate ϕ1. The distance ξ between mapped point A2 and
vanishing line q2 is determined in the field F2 by the above mentioned hyperbolical function.
The position of the radius vector p21, associated to the radius vector p11, is found from the fact
that the angular coordinate ϕ2 is equal to the angular coordinate ϕ1. The mapped point A2

represents the intersection point between line s2 and radius vector p21. Since the intersection
angle between lines s2 and p21 is extremely close to the right angle for the points located
very close to the principal normal line n2, this mapping method shows a great stability in
the mentioned area. This collinear transformation becomes unstable for the points which are
extremely fare from the principal normal lines, and very close to the vanishing lines. From the
above, it can be concluded that this alternative mapping method possesses stability precisely
in those zones in which the classical procedure, based on Laguerre’s points, is unstable.

Another collinear transformation, which can stabilize the classical mapping method, is
represented in Fig. 5. It is well known that the pencil of straight lines, whose vertex is point
O1, is projectively transformed, from the field F1 to the field F2, into the pencil of parallel
lines that are orthogonal to the vanishing line q2. As is shown in Fig. 5, the position of each
line, which belongs to the pencil (O1), is determined in the field F1 by the angular coordinate
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Figure 4: The alternative mapping method

ϕ, and the position of the corresponding line, which belongs to the projectively associated
orthogonal pencil, is determined in the field F2 by the linear coordinate ν. The following
equation describes the relation between these two coordinates:

ν =
l2 · tanϕ

2
(9)

From the relations (8) and (9), the theorem of the coordinate orthogonal net can be formu-
lated:
The collinear transformation of the angular coordinate ϕ and linear coordinate η of each point
in the field F1 into the pair of linear coordinates ν and ξ of the corresponding point in the
field F2, is described by following relations:

ν =
l2 · tanϕ

2
, ξ =

l1 · l2
4 · η

. (10)

The linear coordinates ν and ξ of the mapped point represent the coordinate orthogonal
netting in the field F2.

The relations describing the collinear coordinate transformation from the field F2 to the
field F1, as well as the coordinate orthogonal netting in the field F1 can be formulated similarly
to the relations (10).

It is important to emphasize that all finite mapped points are determined in the exposed
mapping procedure by the intersection of orthogonal straight lines, which means that this
collinear procedure is well-conditioned and stabile for all finite points in the pair of projectively
associated collinear fields. This mapping method is ill-conditioned in the field F1 and F2 only
for points whose coordinates have the following properties:

ϕ1 → 900 ∧ η → 0 (Field F
1
)

ϕ1 → 900 ∧ η → 0 (Field F
2
)

and consequently unstable for points in the field F2 and F1 (respectively) which are extremely
fare from the principal normal lines vanishing lines. From the above, it can be concluded that
this mapping method can compensate the ill-conditioned and unstable collinear mapping
transformations based on Laguerre’s points of absolute involutions mapped.
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Figure 5: The associated coordinate nettings in the fields F1 and F2

8. Conclusion

This paper analyzes the stability of the projective collinear mapping method based on La-
guerre’s points of the involution mapped. The ill-conditioned and unstable zones for this
collinear transformation are defined and some alternative procedures for its correction are
proposed. As the result of this analysis, the stabile and well-conditioned general collinear
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fields mapping methods, which can be used in computer graphics and object model design of
the collinear projective transformations, are created and explained. The exposed analysis is a
contribution to the theory of computational and projective geometry; moreover, it makes the
mapping procedures in software models of projective collineation more accurate and effective.
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