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1. Introduction

Bricard’s paper on flexible octahedra [4] proved to be a most influential study about artic-
ulated systems in Euclidean space. As he observed, octahedral structures can be envisaged
either as linkages with twelve bars or as hinge structures with six axes. Both perspectives lead
to interesting geometric characterizations of infinitesimal flexibility [1, 5]; see also [12, 7]. The
remarkable fact is that some of the infinitesimally flexible configurations are actually flexible.
Bricard’s identification of these possibilities has found a role in Connelly’s construction
of flexible polyhedral surfaces which are, topologically, embedded spheres [6].

In this paper we pursue two higher dimensional versions of Bennett’s description [1] of
infinitesimally flexible octahedral linkages.

The first generalization proves, in fact, a conjecture formulated by H. Stachel in [8]
which refers to linkages in Rd given by the 1-skeleton of a d-dimensional cross-polytope.
Although overconstrained for d ≥ 4, the main type of infinitesimally flexible configuration
retains the flavor of Bennett’s result for d = 3. We refer to our Theorem 1 for the precise
statement. The recourse to a bipartite subgraph explains the paramount role of quadrics [9].

The second generalization considers the octahedron as the three dimensional manifestation
of a second-hypersimplex. The 1-skeleton of a d-dimensional second-hypersimplex is then a
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d-minimally rigid graph, as proven in Theorem 4. The paper concludes with Theorem 5
relating infinitesimally flexible configurations to certain hypersurfaces of degree d − 1.

2. Preliminaries

In this section we recall the definition of d-minimally rigid graphs and review the principle of
projective invariance of infinitesimal rigidity. For other details we refer to [3].

Definition. Let G = (V, E) be a graph with n = |V | ≥ d + 1 vertices and |E| = dn −
(

d+1
2

)

edges. Let L = (ℓij)(i,j)∈E, ℓij > 0 be an edge-length vector.

The graph G will be called minimally rigid in Rd if there is some edge-length vector L, for
which (G, L) admits an infinitesimally rigid realization in Rd, that is:
there are n points: p1, . . . , pn ∈ Rd with:

|pi − pj| = 〈pi − pj, pi − pj〉
1/2 = ℓij for all (i, j) ∈ E

and the differential of the function (Rd)n = Rnd → R|E| defined by squared distances:

x = (x1, . . . , xn) 7→ δE(x) = (|xi − xj |
2)(i,j)∈E

has maximal rank at p = (p1, . . . , pn) i.e.

rank(DδE(p)) = |E| = dn −

(

d + 1

2

)

In general, a tangent vector v = (v1, . . . , vn) ∈ (Rd)n = Rnd which lies in the kernel of

DδE(x) : Rnd → R|E|

will be called an infinitesimal motion of the realization G(x).

Note that the rank condition at p means that the fiber of δE passing through p is locally
smooth of dimension

(

d+1
2

)

and therefore obtained by moving the realization p with Euclidean
isometries in a neighborhood of the identity.

Indeed, an infinitesimally rigid realization cannot be contained in any proper affine sub-
space Rr ⊂ Rd since this would ensure at least:

(

r + 1

2

)

+ n(d − r) >

(

d + 1

2

)

independent infinitesimal motions for the realization G(p): at least
(

r+1
2

)

in the proper sub-
space, together with n(d − r) > d(d − r) choices in the orthogonal directions. Hence, the
isometries fixing G(p) are isolated.

Thus, an infinitesimally rigid realization G(p) has only trivial infinitesimal motions (in-
duced from ambiental rigid motions and thereby identifiable with the Lie algebra of the
Euclidean group). Locally, (G, L) has no other realization, modulo rigid motions, but G(p):
it is rigid.

Remark: The proof that, for graphs, minimal rigidity in dimension d is independent of the
context (Euclidean or non-Euclidean) in which one defines it, follows from a sequence of
elementary lemmas:
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(1) shows that the infinitesimal rigidity of a framework Gn(p) in Rd is equivalent to infinites-
imal rigidity of a framework (Gn+1(p0, p) in Rd+1 obtained by introducing a new vertex
p0 ∈ Rd+1 away from Rd, and putting new bars to all vertices of Gn(p) i.e. p1, . . . , pn;

(2) shows that one can move pi so that pi−p0 changes to λi(pi−p0), λi 6= 0, and infinitesimal
rigidity is still preserved;

(3) shows that, in the spherical case, we preserve infinitesimal rigidity when we take a vertex
(with its connections) to its antipode; and

(4) concludes the argument by using the fact that on any bounded region, the metric can
be analytically deformed from spherical to hyperbolic.

(1) and (2) above may be found in [10] and prove the projective invariance of infinitesimal
rigidity for linkages. In fact, what remains invariant under projective transformations is the
dimension of the space of infinitesimal flexes, which is defined as the space of infinitesimal
motions modulo trivial infinitesimal motions. A linkage configuration is called infinitesimally
flexible or shaky when it has a non-trivial space of infinitesimal flexes. Accordingly, our results
on infinitesimally flexible configurations will have a projective character.

3. The 1-skeleton of the cross-polytope

We define the cross-polytope 3d in dimension d by:

3d = Conv{±ei | i = 1, . . . , d} ⊂ Rd

Its 1-skeleton is a graph Cd with 2d vertices and 4
(

d
2

)

edges, so that for d ≥ 4 it gives linkages
‘overbraced’ by:

4

(

d

2

)

−
[

2d2 −

(

d + 1

2

)

]

= 2d(d − 1) −
d(3d − 1)

2
=

d(d − 3)

2

This difference gives the excess number of constraints on 2d points in Rd when prescribing
distances on pairs corresponding to the edges of a cross-polytope, by comparison with the
number of constraints required for minimal rigidity.

Our aim will be to generalize a result obtained by Bennett for infinitesimally flexible
octahedra in R3 [1], in the form already conjectured by Stachel for d > 3 in [8]. Considera-
tions in [11], although focused for the better part on d = 3, suggest the same type of extension
and principle of proof.

This approach involves a natural decomposition of the edge set of Cd into a disjoint union
of the edge sets of two subgraphs of cross-polytopes (of nearly or exactly half-dimension) and
the bipartite graph on their respective vertices:

C[ d+1

2
](A), Cd−[ d+1

2
](B), K(A, B)

For a precise description, we use the above standard realization of the cross-polytope 3d and
consider the orthogonal decomposition of Rd determined by a choice of [(d + 1)/2] (that is:
d/2 for even dimension d, or (d + 1)/2 for odd dimension d) vectors in the standard basis
ei; i = 1, . . . , d. The cross-polytope traced in their span is denoted 3[(d+1)/2](A) and the one
traced in the orthogonal complement is denoted 3d−[(d+1)/2](B).

A and B should be understood as labels for the vertices of these two cross-polytopes, and
when given a realization of Cd as a framework in Rd, we assume that A and B consist of the
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corresponding list of (marked) vertex coordinates. The bipartite graph K(A, B) has an edge
between any vertex a ∈ A and b ∈ B. This will match notations in [2] and thereby simplify
reference to their results.

Note that the cardinalities are:

|A| = |B| = d, for even dimension d

|A| = d + 1, |B| = d − 1, for odd dimension d

A decomposition of Cd as described above will be called simply an (A, B) decomposition.

Theorem 1 Consider a realization in Rd of the 1-skeleton Cd of the cross-polytope 3d, with
d ≥ 3. Suppose one can find an (A, B) decomposition such that:

(0) the affine span Ā of A is a hyperplane in Rd, and the affine span B̄ of B is a distinct
hyperplane, for even dimension d; or

(1) the affine span Ā of A is the whole space Rd, for odd dimension d.

Then, the given framework is infinitesimally flexible if and only if there’s a quadric passing
through all vertices, and containing all edges of C[ d+1

2
](A) and Cd−[ d+1

2
](B), but distinct from

the rank-two quadric Ā ∪ B̄ in the even dimensional case.

Proof: The proof relies on a very precise result of Bolker and Roth on the dimension of
the space of self-stresses for a bipartite framework [2]. We rephrase it by using the notions of
linear defect δ1(V ) and quadratic defect δ2(V ) for a set V of marked points in Rd or, just the
same, its projective completion Pd.

Let V = {v1, . . . , vn}, where the marked points vi ∈ Pd need not be all distinct. Let H(V )
denote the linear space consisting of all linear forms vanishing on V , and Q(V ) the linear
space of all quadratic forms vanishing on V , that is:

H(V ) = {h(x) | h(x) =

d
∑

k=0

hkxk, h(v) = 0 for all v ∈ V }

Q(V ) = {q(x) | q(x) =
∑

i,j

qijxixj , q(v) = 0 for all v ∈ V }

The linear defect of V , with cardinality |V | = n is defined as:

δ1(V ) = dim H(V ) − [(d + 1) − n]

and the quadratic defect is defined as:

δ2(V ) = dim Q(V ) −
[

(

d + 2

2

)

− n
]

where dim stands for the dimension of the respective vector space. In other words, the linear
and quadratic defects measure to what extent the points in V fail to impose independent
conditions on hyperplanes, respectively quadrics, passing through them.

When in Rd, δ1(V ) is nothing else but the dimension of the space of all affine dependencies
amongst the points in V .

Now we can state the main result in [2].
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Formula of Bolker and Roth: Consider a realization in Rd of the bipartite graph K(A, B),
with the two sets of vertices A and B seen as marked points in Rd.
Put C = (Ā ∩ B) ∪ (A ∩ B̄), where Ā denotes the affine span of A, and similarly for B.
Then the dimension ω = ω(A, B) of the space of self-stresses for the given framework is:

ω(A, B) = δ1(A)δ1(B) + δ2(C) (BR)

Specializing (BR) to the particular type of bipartite graph K(A, B) admitted by the assump-
tions of our statement, we find δ1(A) = 0 and therefore:

ω(A, B) = δ2(C)

If we denote by V = A
⊔

B the points marking all the vertices of our framework K(A, B)
(and also Cd), we have:

C ⊂ V ⇒ δ2(C) ≤ δ2(V )

and hence:

dim Q(V ) ≥ δ2(C) +
[

(

d + 2

2

)

− 2d
]

= δ2(C) +

(

d

2

)

+ 1

Let now f = f(A, B) denote the dimension of the space F (A, B) of infinitesimal flexes for the
framework K(A, B) i.e. infinitesimal motions modulo rigid infinitesimal motions. Infinitesimal
flexes and self-stresses are related by the general formula:

f = ω +
[

d|V | − |E| −

(

d + 1

2

)

]

where for K(A, B) the number of edges |E| = |A| · |B|. In our case, according to the parity
of d we find:

(0) f = ω + [d2 −
(

d+1
2

)

] = ω +
(

d
2

)

for even d; and

(1) f = ω + [d2 + 1 −
(

d+1
2

)

] = ω +
(

d
2

)

+ 1 for odd d.

Now, we relate the space Q(V ) of quadrics through the vertices of K(A, B) and the space
F (A, B) of its infinitesimal flexes. Indeed, as observed in [11], when given a quadric through
V = A

⊔

B, there’s a natural way to associate an infinitesimal motion to it.
A simple way to define this map Q(V ) → F (A, B) is to consider the ‘projective’ reading

of our set-up: we consider Rd as the hyperplane x0 = 1 in Rd+1, link all vertices of K(A, B)
to the origin of Rd+1 producing the framework PK(A, B).

As already indicated [10], the infinitesimal flexes of K(A, B) in Rd correspond isomorphi-
cally with those of PK(A, B) in Rd+1. Moreover, the affine quadrics in Rd can be seen as
quadratic forms 〈x, Qx〉 = xtQx associated to symmetric (d + 1) × (d + 1) matrices Q = Qt.
With this interpretation, we have:

Lemma 2 Let Q ∈ Q(V ) be a quadratic form vanishing on V = A
⊔

B. Then the following
assignment of velocities at the vertices of PK(A, B) defines an infinitesimal motion:

0 7→ 0, a 7→ Qa for all a ∈ A, b 7→ −Qb for all b ∈ B

The induced map: Q(V ) → F (A, B) is surjective.
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Proof: The fact that we have an infinitesimal motion is a consequence of the obvious identities:

〈Qv, v〉 = 0 for all v ∈ V, 〈Qa + Qb, a − b〉 = 0 for all a ∈ A, b ∈ B

For surjectivity, we observe that, under our assumptions, we have already established:

(0) dim Q(V ) ≥ ω +
(

d
2

)

+ 1 = dim F (A, B) + 1 for even d; and

(1) dim Q(V ) ≥ ω +
(

d
2

)

+ 1 = dim F (A, B) for odd d.

When we consider the kernel of our map, we see that if Q induces an infinitesimal rigid motion
(actually an infinitesimal rotation), we must have:

〈Qa, a′〉 = 0 for all a, a′ ∈ A, 〈Qb, b′〉 = 0 for all b, b′ ∈ B

This means that the quadric contains the span Ā of A, as well as the span B̄ of B. For odd d,
this requires Q = 0, while for even d it requires Q = α · βt + β · αt, with vector α orthogonal
to the linear span of A and vector β orthogonal to the linear span of B. Indeed, when non-
zero, such a rank two quadric induces the infinitesimal rotation given by the skew-symmetric
matrix α · βt − β · αt.

Thus, the kernel is zero for odd d and of dimension one for even d, proving not only the
claimed surjectivity, but also the more precise relations:

(0) dim Q(V ) = ω +
(

d
2

)

+ 1 = dim F (A, B) + 1 for even d; and

(1) dim Q(V ) = ω +
(

d
2

)

+ 1 = dim F (A, B) for odd d. 2

Now, we can conclude the proof of the theorem:
If the given realization of Cd has a non-trivial infinitesimal flex, we can use the assumed

decomposition (A, B), and find a quadric through the vertices of Cd which induces, as in the
above lemma, the given infinitesimal flex considered on K(A, B).

Since the flex is valid for the edges of the cross-polytopes C[ d+1

2
](A) as well as Cd−[ d+1

2
](B),

the quadric contains the lines defined by all such edges. In the even dimensional case, it is also
obvious that the quadric must be different from Ā ∪ B̄, which induces a trivial infinitesimal
flex.

Conversely, if there is a quadric, other then Ā ∪ B̄ in the even dimensional case, passing
through all vertices and containing the lines defined by all edges in C[ d+1

2
](A) and Cd−[ d+1

2
](B),

then, the non-trivial infinitesimal flex determined for K(A, B) is in fact good for Cd. 2

Remark: In odd dimension d = 2k + 1, an affinely independent A as in the theorem corre-
sponds to a generic realization of Ck+1 in R2k+1 ⊂ P2k+1. Obviously, any two such generic
realizations are projectively equivalent.
Using the projective language, we may observe further that the family of quadrics passing
through the vertices of a generic realization of Ck+1 in Pk+1 and containing its edges must
contain in fact all Pk ⊂ P2k+1 supporting facets of 3k+1.

There are 2k+1 such k-dimensional projective subspaces in P2k+1 in a configuration generalizing
the case of a skew-quadrilateral in P3 for k = 1. The pencil of quadric surfaces through the
skew-quadrilateral becomes, for arbitrary k, a family of quadrics parametrized by Pk, with any
independent subset of k + 1 quadrics therein intersecting exactly in the given configuration
of Pk’s (of degree 2k+1).
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Indeed, we impose 2(k +1)+4
(

k+1
2

)

= 2(k +1)2 conditions when requesting a quadric to pass
through the edges of Ck+1(A), and this leaves a linear space of dimension:

(

2k + 3

2

)

− 2(k + 1)2 = k + 1

i.e. a Pk family of quadrics.
A simple way to describe this family relies on a natural basis consisting of rank-two quadrics.
Using the notation a(±ei), i = 1, . . . , k + 1 for the vertices of the given generic realization
of 3k+1 in P2k+1, we observe that each pair of vertices: a(ei), a(−ei) determines a rank-two
quadric:

qi = span[a(ei), a(±ej), j 6= i] ∪ span[a(−ei), a(±ej), j 6= i]

This gives Pk = span[qi, i = 1, . . . , k + 1].

If we use the vertices a(±ei), i = 1, . . . , k + 1 as a reference simplex in P2k+1, with a(ei)
related to xi and a(−ei) to xk+1+i, then our Pk family of quadrics corresponds to second
diagonal symmetric (2k + 2) × (2k + 2) matrices. This standard realization yields:

Proposition 3 The only projective invariant of a quadric in P2k+1 passing through all vertices
and edges of a generic realization of Ck+1 in R2k+1 ⊂ P2k+1 is its rank, which is an even number.

In other words, given two quadrics of the same (even) rank passing through all vertices and
edges of a generic realization of Ck+1 in R2k+1 ⊂ P2k+1, there is a projective transformation
which takes the (image of the) cross-polytope skeleton Ck+1 to itself and one quadric onto the
other. 2

Remark: This discussion shows that in order to produce infinitesimally flexible configurations
which satisfy the assumption of our theorem for the odd dimensional case d = 2k+1, we may
use a projective transformation and identify the realization of Ck+1(A) with the one given by
a(ei) = ei, a(−ei) = ek+1+i; i = 1, . . . , k + 1, then choose a symmetric ((2k + 2) × (2k + 2)
matrix with zeroes away from the second diagonal, and then place Ck(B) with its vertices and
edges on this quadric.
If we follow this scenario for the case of a non-degenerate quadric Q, which, according to our
proposition, we may choose to have 1 along the second diagonal, we see that placing Ck(B)
with its vertices and edges on Q2k ⊂ P2k+1 amounts to 4

(

k
2

)

equations on (Q2k)
2k.

The solution space has dimension (no less than) 4k2 − 4
(

k
2

)

. We have a natural action of a
(k + 1)-dimensional torus, corresponding to projective transformations

ei 7→ λiei, ek+1+i 7→ λ−1
i ek+1+i, i = 1, . . . , k + 1

which keep invariant both the fixed realization Ck+1(A) and the fixed quadric through it. This
leaves us with a moduli space of dimension (no less than):

4k2 − 4

(

k

2

)

− (k + 1) = 2k2 + k − 1

for projective equivalence classes of infinitesimally flexible configurations of cross-polytope
skeleta C2k+1 in R2k+1 ⊂ P2k+1.
This is perfectly consistent with the fact that there are:

d(2d) − [(d + 1)2 − 1] = d(d − 2)



8 C.S. Borcea: Infinitesimally Flexible Skeleta of Cross-Polytopes and Second-Hypersimplices

moduli for projective equivalence classes of realizations of Cd in Rd ⊂ Pd, and d(d − 3)/2
overbracing conditions. Indeed, for d = 2k + 1, we find:

d(d − 2) −
d(d − 3)

2
=

d(d − 1)

2
= 2k2 + k

Under no overbracing (d = 3), the codimension of the infinitesimally flexible configurations is
one. Thus, we see consistency with the expectation that overbracing increases the codimension
of the infinitesimally flexible locus by the number of (independent) conditions.

4. The 1-skeleton of the second-hypersimplex

We’ll prove here the infinitesimal rigidity of the framework defined by the 1-skeleton of the
second-hypersimplex Qd = ∆(2, d + 1) in its standard realization in Rd, and then study
infinitesimally flexible configurations.

The standard realization of the second-hypersimplex Qd is:

Qd =
{

x ∈ [0, 1]d+1 ⊂ Rd+1 :

d
∑

i=0

xi = 2
}

= Conv(ei + ej ; 0 ≤ i < j ≤ d)

or, rescaled by 1/2, the convex hull of the midpoints of edges in the standard d-(hyper)simplex
∆d = ∆(1, d + 1).

The first description makes clear that there are (d + 1) facets xi = 0, which are second-
hypersimplices Qd−1, and (d + 1) facets xi = 1, which are simplices ∆d−1.

We observe that Qd has
(

d+1
2

)

vertices and (d − 1)
(

d+1
2

)

= 3
(

d+1
3

)

edges, and infinitesimal
rigidity amounts to showing that all infinitesimal motions are induced from rigid motions.
Since we can use the latter to ‘fix’ say the simplicial facet x0 = 1, it is equivalent to prove
that an infinitesimal motion vector (vij) with v0i = 0, 1 ≤ i ≤ d is actually zero.

Our proof will proceed by induction on d ≥ 3.
For d = 3, Q3 is the regular octahedron. It will be proper to see half of its faces as ∆(2, 3) = ∆2

and the other half as ∆(1, 3) = ∆2. Of course, in dimension three, infinitesimal rigidity is
a consequence of the classical Legendre-Cauchy-Dehn theorem for convex polyhedra, but an
explicit argument adapted to our setting can be given as follows:

for an infinitesimal displacement vector vij applied at vertex pij = ei + ej , 1 ≤ i < j ≤ 3, we
must have:

vij ⊥ pij − p0i = ej − e0 and vij ⊥ pij − p0j = ei − e0,

Besides, the orthogonal projections P (vij) = wij of these vectors on the facet x0 = 0 must
represent an infinitesimal motion of that (equilateral) triangle in its plane. However, no such
infinitesimal motion other than zero would have its vectors along the three angle bisectors,
as is the case with wij. Thus, vij must be perpendicular to x0 = 0 as well, and this makes all
of them zero. 2

For d > 3, note that each vertex pij, with 1 ≤ i < j ≤ d is a vertex of (d − 2) > 1 facets
Qd−1 given by xk = 0, for k 6= 0, i, j, and all their vertices in the simplex x0 = 1 are fixed. By
induction, all these facets correspond to frameworks infinitesimally rigid in their supporting
hyperplanes, which means: the orthogonal projections of vij on all such must be zero. Since
we have at least two independent projections, vij = 0. This proves:
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Theorem 4 The linkage given by the edges of the standard second-hypersimplex Qd in di-
mension d is infinitesimally rigid, and hence the graph defined by the 1-skeleton of Qd is
d-minimally rigid.

We shall denote by Γd the graph given by the 1-skeleton of the second-hypersimplex
Qd = ∆(2, d + 1).

It may be convenient to think of a framework in Rd which represents Γd, for some edge-
length vector, as an assemblage of (d + 1) simplices ∆i

d−1, where any two of them have a
common vertex:

pij ∈ ∆i
d−1 ∩ ∆j

d−1

In order to investigate the configurations which would make the framework infinitesimally
flexible, we’ll make use of the equivalences mentioned in (1) and (2) above (which express at
the same time the projective invariance of the property of infinitesimal rigidity/mobility) and
consider instead the framework in Rd+1 with one vertex at the origin connected with pij 6= 0,
0 ≤ i < j ≤ d, with the latter connected according to Γd.

Keeping the vertex at the origin fixed, a non-trivial infinitesimal motion amounts to
finding a solution other than all Ai = A for the system:

Aipij = Ajpij 0 ≤ i < j ≤ d (S)

where Ai denote skew-symmetric (d + 1) × (d + 1) matrices, corresponding to the fact that
(with 0 fixed), every d-simplex (0, ∆i

d−1) can move infinitesimally only by such an Ai.
Every pair i < j in (S) gives (d + 1) scalar equations which always have the linear

dependency resulting from:
〈(Ai − Aj)pij , pij〉 = 0

Let us consider all vertices but one, say x = p01, fixed (in some generic configuration) and
inquire which positions for x correspond to infinitesimal flexibility.

We may put A0 = 0 (fix the d-simplex (0, ∆0
d−1)) and look for a non-trivial solution of

(S), where, for each pair i < j one ‘dependent’ scalar equation (see the special considerations
for 01 below) has been dropped. Clearly, the determinant of the matrix of coefficients is
a homogeneous polynomial of degree d in the coordinates x0, . . . , xd of the “floating” vertex
x = p01. However, when dropping one equation from the group:

−A1x = 0

say, the kth, we still have a dependency amongst the rest for xk = 0, that is, the determinant
has xk as a factor.

Thus, the true locus for x where there are non-trivial solutions is the locus defined by the
vanishing of the degree (d− 1) homogeneous polynomial obtained after dividing the determi-
nant by its factor xk.

On the other hand, we may recognize directly some situations where the framework is
surely shaky: indeed, when x is in either of the two codimension two subspaces spanned by
p0k, k = 2, . . . , d, or p1k, k = 2, . . . , d, we have a degenerate simplex which has a non-trivial
self-stress, extending (by zero) to a non-trivial self-stress of the whole framework. Also, when
x is in the subspace spanned by p0k and p1k, (for each k 6= 0, 1) there’s an obvious non-trivial
self-stress.

We can reformulate our discussion for the originally intended set-up, namely realizations
of Γd in Rd, yet retaining the projective character of the matter by conceiving the latter as
extended to Pd.
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Theorem 5 Suppose all vertices of Γd except x = p01 are assigned (sufficiently general)
positions in Rd ⊂ Pd. Then, the positions of x corresponding to infinitesimally flexible
realizations of Γd are the points of a hypersurface of degree (d − 1) which contains the two
(d − 2)-planes spanned by p0k, k = 2, . . . , d, respectively p1k, k = 2, . . . , d, and all the lines
connecting p0k and p1k, for k 6= 0, 1.
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