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Abstract. Suppose that a, b, ¢ are algebraic indeterminates and U = v : v : w is
a point given in homogeneous trilinear coordinates. The Yff conic of U is defined
as the locus of a point X = x : y : z satisfying the equation f(z,y,2) = f(u,v,w),
where f(u,v,w) = (vw + wu + wv)/(u* + v* + w?). The symbolic substitution
(a,b,c) — (bc, ca,ab) maps the Yff conic of the symmedian point to that of the
centroid. This mapping and others are used to find a large number of special
points on many Yff conics.
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1. Introduction

Suppose that a, b, ¢ are algebraic indeterminates over the field of complex numbers. A point
P is, briefly speaking, defined by homogeneous trilinear coordinates

P =p(a,b,c):q(a,b,c) :r(a,b,c).

A precise definition of point is given elsewhere (e.g., [1]-[3]) and need not be repeated here.
The same holds for special points known as triangle centers, hundreds of which are indexed
in [1]; e.g., the incenter of the reference triangle ABC having vertices

A=1:0:0, B=0:1:0, C=0:0:1

is indexed as X, and is defined by X7 =1 :1: 1; the centroid, X, is defined by Xy = bc : ca :
ab, or equivalently, by Xo = 1/a: 1/b: 1/¢, and so on. Note that the definitions are algebraic
rather than euclidean. For example, the centroid is defined for (a, b, c) = (2, 3,6) even though
no euclidean triangle has sidelengths 2, 3, 6.

On the other hand, for any values of a, b, c which are sidelengths of a euclidean triangle
ABC, the results presented below fit into the subject of traditional triangle geometry. Of par-
ticular interest is the use of a nongeometric method in Section 5, called symbolic substitution,
which gives geometrically meaningful results.
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Suppose U = u : v : w is a point, and consider the locus of a point X = x : y : 2z such that

Yz +zr+xy  vw+ wu+ uv
22 4 y? + 22 w202 w2

(1)

Peter YFF — the surname is pronounced “ife” and rhymes with life — studied this equation
in an unpublished notebook in 1958, as mentioned in |2, p. 243]. The Index of [2] lists the
locus as Yff conic. Here we call it the Yff conic of U, denoted by Y(U). Clearly, U € Y(U),
and if X is any point on Y (U), then all six points

rTiYiz, YiEZix, Z:ixY, T:IZIY, Y:T:1Z, Z:Y:X

lie on Y(U); moreover if z, y, z are distinct, then any five of the six points determine the conic,
and Y(X) = Y(U). We shall call the six points the associates of X.
YFF proved that the center of Y(U) is the point

G =g(a,b,c):g(bc,a): g(c, a,b), (2)
where

gla,b,c) = 2au; + (b+ ¢ — a)us,
Uy = VW -+ wu+ uv,

uy = u? 404w
If u+v+w=0, then from (u+ v+ w)? = 0, we find

vw + wu+uv 1

w242 +w2 2

and Y(U) is in this case merely the line z+y+2z = 0. Henceforth, we assume that u+v+w # 0.

If vw + wu + wv = 0, then (1) holds if and only if X lies on the ellipse yz + zx + 2y = 0,
represented by Fig. 1. This ellipse is the Yff conic Y(U) for each U on it, except for the
vertices A, B, C'. Such choices of U include Xgg, X109, X162, and Xigg.

Figure 1: The line x + y + 2z = 0 and its isogonal conjugate, the ellipse yz + zx + 2y =0
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2. Yft’s description

At a lecture at the American University of Beirut in the fall of 2003, YFF showed that the
conics which now bear his name constitute a pencil consisting of infinitely many ellipses,
infinitely many hyperbolas, a single parabola, a degenerate point conic, and a line conic (two
coincident lines). In a letter [4], YFF gives an elegant geometric description of these conics,
reproduced with minor editing in this section.

I wrote the general equation in the form
22+ y? + 22— 20 yz + zx 4+ 2y) = 0,
in which
u? + v? + w?
2(vw + wu + uv)

Therefore the system of conics is a one-parameter family. In fact it is a pencil
of conics. For example, every conic in the pencil may be regarded as a linear
combination of the imaginary conic 22 + y? + 22 = 0 and the circumconic yz +
zx + xy = 0.

When A = 1 the conic is an ellipse inscribed in the triangle. Its center is X3z,
and it is the only tritangent conic in the system. The only circumconic is given by
A = 00, and its center is Xy. There is one degenerate point conic, obtained when
A = 1/2, consisting only of the point X;. The line z + y + z = 0 is the only line
conic, given by A = —1.

Considering the center of a conic as the pole of the line at infinity with respect
to the conic, it is found that the center of the general conic in this pencil is

a(l=XA)+bA+cA:ar+b(1—X)+ch:a\+bA+cl — A\

Since the coordinates are linear in A, the locus of centers is a line, which passes
through Xs (A = 0) and X (A = 1). Its equation is

(b—c)x+(c—a)y+ (a—b)z=0.

As the eccentricity of a conic approaches 1, its center approaches infinity.
Therefore, in order to find a parabola in this system, we determine the intersection
of the line of centers with the line at infinity. This is the point!.

V+c—ca—ab: +a%>—ab—bc:a®+b*—bc— ca,
which is X5153. The value of A for the parabola is

—(a® + b* + )

A pu—
07 2(bc+ ca+ ab) — (a® + 2 + ¢?)’

which is never greater than —1. Ellipses in the pencil are given by A < A\g and by
Ao > 1/2. When Ay < A < —1 the conics are hyperbolas. For —1 < A < 1/2 the
conics are imaginary.

LY FF notes that at (a,b, c) = (5,10, 13), the function X054 takes the same value as X515. This observation
provides a good example for understanding points, as defined in this paper, as functions; e.g., X1054 # X518
although X3054(5,10,13) = X515(5, 10, 13), just as sine # cosine although sinw/4 = cosm/4.



26 C. Kimberling: Yff Conics

Finally, all conics in the system are mutually tangent at two points. To find
these points, we solve simultaneously the equations 22 +4%+ 22 = 0 and yz + 22 +
xy = 0. Elimination of z yields

v 4 yz+ 22 =0,

with solutions y/z € {w,w?}, the complex cube roots of unity. Therefore the two
points of intersection are

2

Ti=1:w:w?and Th=1:w?: w.

Obviously these points are on every conic in the system. To complete the proof
that all the conics are mutually tangent, it may be shown that the line

T+wy+wz=0

is tangent to every conic (except for A = —1) at 7, and that the common tangent
line at 715 is
T+ Wiy +wz=0.

3. Two points on Y(Xss)

In addition to the point X513 on the parabola Y (X5;5), the point X; X518 N YV(X515) will now
be found. The line X; X515 is given by

b—c)x+(c—a)y+ (a—0b)z=0.
Substitute

(b—c)z+ (c—a)y
b—a

z =
into the equation for V(Xs5;5) written as

yz+zx+xy+bc+ca+ab 1 _0
224 y2 422 a4+ 2

and factor the expression on the left-hand side. The relevant factor simplifies to
—x (462+02+a2—4ca—ab—b0) +y(4a2+b2+02 —4bc—ca—ab),

from which it follows that X = X3546. We leave open the problem of finding other low-degree
polynomial triangle centers on Y(Xs515). Also of interest would be coordinates for the vertex
and focus.

4. Reflections

Suppose that P = p : ¢ : r is on an Yff conic Y(U) and that G as in (2) is the center of
Y(U). The line GP meets Y(U) in two points, one of which is P. The other, which we
denote by Pg, is the reflection of P in GG. In order to find trilinears for Pg, it is helpful to
abbreviate g(a, b, c), g(b,c,a), g(c,a,b) as ga, gv, ge, respectively. Temporarily restricting a, b, ¢
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to be sidelengths of a euclidean triangle, and writing the area of ABC as o, the actual trilinear
distances of G are given by the ordered triple (hgq,, hgp, hg.), where

20
aga + bgy + cge

Actual trilinear distances for P are (kp, kq, kr), where k = 20 /(ap + bq + cr), so that actual
trilinear distances for Pg are given by

Pg = (2hga — kp, 2hgy — kq, 2hg. — kr)
and a homogeneous first trilinear is

29a(ap + bq + cr) — p(aga + bgs + cge),
which simplifies to

2uy ((a® — b* — ¢)p + 2abg + 2acr)
+us((b—a+c)(2bg+2cr) —pla+b—c)(a—b+c))

= 2p; ((a® = b° — *)p + 2abq + 2acr) (3)
+pa((b—a+c)(20g+2cr) —pla+b—2c)(a—b+c)),

where
pL=qr+rp+pq, pr=p +q+r’
Expanding (2) and letting

t(a,b,c) = p*lat+b—c)la—b+c)
+2p°[(c —a)(a —b+c)g+ (b—a)(a+b— )]
—p [4a(q +7)(bg +cr) — (a® — (b —¢)*)(¢* + 1) + 2qr(a® — b* — 02)}
— (bq + cr) [4aqr +2(b—a+c)¢*+ 7“2)] ,

we conclude that
Po =t(a,b,c):t(b,c,a) :t(c,a,b). (4)

In the above derivation, the hypothesis that uy/us = p1/pa, used to establish (3), implies
that the trilinears in (4) are invariant of u, v, w. Returning now to the more general case that
a, b, c are indeterminates, we define Pg by the trilinears obtained for (4). It is easy to confirm
that Pg, so defined, lies on Y(U).

5. The conic Y(Xj)
Let U = a: b: ¢, the symmedian point, Xg. By (1), an equation for Y(Xs) is

yz+zx+wxy  be+ca+ ab
2 +y2422 a2+ b+

It is easy to check that the point

Xys=a—2b—2c:b—2c—2a:c—2a—2b
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satisfies (5), that the center of V(Xs) is the point G = g, : gy : g. given by
go=a>+alb—c)* — (b+c)(3a® +b* + ),

and that Xy5 is the reflection (4) of X4 in G. On writing Xy5 as p : ¢ : r, one might expect
that the six points

piq:r, q:r:ip, TIp:q, piriq, q:p:r, T:q:p
are, in some order, the reflections in GG of the six points
a:b:c, b:c:a, c:a:b, a:c:b, b:a:c, c:b:a,

but the only such match is the one already recognized. Thus, we have, so far, 22 distinct
points on Y(Xp).
Symbolic substitution, a method introduced in [3], maps Y(Xs) onto other Yff' conics.
As a first example, the substitution (a,b,c) — (be, ca,ab) maps Y(Xg) onto Y(X5), given,
according to (5), by
yz+zr+xy  abc(a+b+c) 6)
22 4 y2 + 22 Cb2e2 4 c2q2 4 a2b?’ (
Specifically, each point x : y : z = x(a,b,¢) : x(b,c,a) : x(c,a,b) satisfying (5) maps to the
point

'y 2 = x(be, ca,ab) : y(be, ca, ab) : z(be, ca, ab)

on Y(X5); e.g., X45 maps to the point
X240 = bec — 2a(b+ ¢) : ca — 2b(c + a) : ab — 2¢(a + b). (7)

It is easy to check that the center of J(Xs) maps to a point that is not the center of Y(X5),
and that the point (7) is not the reflection of X5, about the center of Y(X5).
It will be convenient to write S for the substitution (a,b,c¢) — (bc, ca,ab). Recall that
G denotes the center of V(Xg), and let H denote the center of S()(Xg)); that is, of Y(X5).
Suppose that
P =p(a,b,c) : q(a,b,c):r(a,b,c)

is a point on Y(Xg). We shall show that ordinarily H is not on the line S(P)S(G). This
property of symbolic substitution, we shall see, enables the production of infinite sequences
of triangle centers on Y (Xs).
We have
S(P) = p(be, ca, ab) : q(be, ca, ab) : r(be, ca, ab), (8)

and S maps the center of Y(Xg) to the point
S(G) = g(be, ca, ab) : g(ca,ab,be) : g(ab, be, ca).
Moreover, H = h(a,b,c) : h(b,c,a) : h(c,a,b), where
h(a,b,c) = a*(b—c)* —a® (b+¢)* + b*P(a — b —¢).
Let
Z ) )

g(be, ca,ab) g(ca,ab,bc) g(ab,be, ca) |,
h(a,b,c) h(b,c,a) h(c,a,b)

D
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so that the line S(G)H has equation D = 0. Straightforward computation shows that

D = d[(b - C)f(a'a ba C)pl + (C - a’)f(ba ) a)ql + (a’ - b)f(C, a, b)T/], where
d = 2(a®0®+a’c + b — abc(a+ b+ ¢)),
fla,bc) = a* (b*+ )+ 2a’bc (b+ ¢) + a’be (3b° + 3¢® + 5be) + b’

Thus, writing S(P) as P’ =p’ : ¢’ : r’, we conclude that S(P) does not lie on the line S(G)H
unless

(b—c)f(a,b,c)p’+ (¢ —a)f(b,c,a)d + (a—b)f(c,a,b)r =0.

It is easy to check, for example, that for P = Xg and P = X5 (i.e., for P/ = X, and
P = X3949), the point S(P) does not lie on the line S(G)H. Consequently, the reflection
of Xy in H is a third point, which we denote by R, on Y(X3), in addition to Xy and X3zo40.
Using (4) with (p, q,r) = (be, ca, ab) gives

R = pla,b,c): p(b,c,a): p(c,a,b), where
pla,b,c) = be(b*c® —2abc® — 2ab’c — 5a*) (b— ¢)?
+2a*be (b + 2¢) (20 +¢) (b+ )
—a’be (bc + b + 02) (5bc — b — 02) .

As S is a self-inverse mapping, the point
S(R) = p(be, ca, ab) : p(ca,ab,be) : p(ab, be, ca)

is a third point on Y(Xg). In like manner, the reflection of X394 in H is a fourth point on
Y(X3), and S maps this reflection to a fourth point on Y(Xg). Call the two new points Pj
and Py.

We conjecture that the reflections of P; and Py in GG are new points Ps and Py on Y(Xg),
that S(Ps) and S(Fs) are new on Y(X5»), that their reflections in H are new on Y(X3), that
S maps these reflections onto new points P; and Py on Y(Xg), and that this manner of
production can be continued indefinitely, giving infinitely many triangle centers on Y (Xjs), as
well as V(X5).

Similar results can be found from other symbolic substitutions, of which we mention two,
briefly. The substitution

(a,b,¢c) = (b—c,c—a,a—0)

maps Y (Xs) onto V(Xi00) and maps Xy5 to the point X3 = b+c:c+a:a+b The
substitution
(a,b,¢c) = (b+c,c+a,a+Db)

maps ) (Xs) onto V(X37), and it maps X5 to the point
da+b+c:4db+c+a:4c+a+b.
Note that this second substitution has an inverse:
(a,b,¢c) = (b+c—a,c+a—ba+b—c).

Consequently, we conjecture that sequences of triangle centers on Y (Xs), in addition to those

mentioned above, can be found using reflections and substitutions, as above, between the
conics YV(Xg) and YV(X37).
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6. The conic Y(Xoyy)

The point
Xoy=u:v:w=(b—c)?:(c—a)*:(a—0b)?

has a notable Yff conic. Indeed, on substituting for u, v, w, we find

yz+zex+ay owtwutuw 24yt 422 — 2wz — Yz — 2y
w24 y2 22 w2t fw? 2(2? +y? 4 22)

I

which shows, by (1), that an equation for Y (Xs44) is simply
22 4 y* + 2% — 2z — 220 — 22y = 0.

This is the inscribed ellipse W (X) in [2, p. 238]. Its center is X3 =b+c:c+a:a+0b, as
already noted in Section 2.

For arbitrary p : ¢ : r # 1 : 1 : 1, the symbolic substitution (a,b,c¢) — (p,q,r) maps
V(Xa44) to itself and in particular maps Xsy4 to the point

(g=7):(r=p?:(p—q)°
Thus, YV(X244) consists of the trilinear squares of points of the form
q—rir—p:p—g,

that is, points on the line = + y + 2z = 0, the antiorthic axis. Among such squares are X; for
i € {244,678, 2310, 2632, 2638, 2643, 3222, 3248}.

7. The conic Y(Xps54)

Another special Yff conic is V(Xj054), where
Xisa=(a—b)(a—c)—(b—c)?:(b—c)(b—a)— (c—a)*: (c—a)(c—0b) —(a—0b)>

Taking these three trilinears as u, v, w, we find

yz+zr+xy  vw+ wu+uv _:E2+y2+z2+3:py+3xz+3yz
22 4 y2 + 22 w2 + 2 + w2 3(x2+y2+22)

I

so that a simple equation for )(Xjps4) is
2 +y? + 22+ 3xy + 3wz + 3yz = 0,

or equivalently,
(x+y)(z+2)+W+2)(y+2)+(z+x)(z+y)=0. (9)

The conic Y(Xj054) is represented by Fig. 2.

For arbitrary p : ¢ : 7 # Xj, the symbolic substitution (a, b, c) — (p,q,r) maps Y(Xi0s54)
to itself and in particular maps Xigs4 to the point

p—a)p—r)—(g—7):(¢g—7r)g—p)— (r—p)*: (r—p)(r—q) — (p—q)*
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Figure 2: The Yff conic Y(Xj054) and the six associates of the point P, =0: —3 + V52

Thus, each point on Y(Xjgs4) is the P*-Hirst inverse of X;, where P* is a point on the
antiorthic axis (which is the trilinear polar of X;), and conversely.
The center of V(Xjgs54) is the point

5a —3(b+c¢):5b—3(c+a):5¢—3(a+b),
so that V(Xi54) is an ellipse, parabola, or hyperbola (|2, p. 234], according as
>0, =0, or <O,

where
® = —5a% — 5% — 5¢% + 6be + 6¢a + Gab.

For example, the conic is an ellipse for (a, b, ¢) = (5,11, 13), a parabola for (a, b, ¢) = (5, 10, 13),
and a hyperbola for (a, b, c) = (5,12, 13).
Putting = 0 in (9) leads to two points of intersection of ) (Xjgs4) with the line BC' :

O:—3+\/5:2 and O:—3—\/g:2.

These and their associates comprise a set of 6 (not 12) distinct noncentral points on Y(Xi54).

8. General homogeneous coordinates

In connection with the equation (1) that defines Yff conics, suppose that the homogeneous
coordinates given for U and X are barycentric rather than trilinear. Then, for example, the
barycentric points a : b : ¢ and

a—2b—2c:b—2c—2a:c—2a—2b
are, in trilinears, 1:1: 1 and

(a—2b—2c)/a:(b—2c—2a)/b: (c—2a—2b)/c,
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and (1), expressed in terms of trilinear coordinates, is

beyz + cazx + abry  bevw + cawu + abuv
a2z? + b2y + (222 O a2u? 4 b2 + 2w?

(10)
The locus of a point X satisfying (10) is a conic closely related to the Yff conic Y(Xg - U),
where - denotes trilinear product. Actually, Y(Xg - U) is given by

yz +zr+zy  bevw + cawu + abuv
2y + 22 a?u 4 b2 + w?

(11)

so that for each X on Y(Xg - U), the point X/Xg, where / denotes trilinear quotient, lies on
the conic (10).

One may generalize from barycentric to general homogeneous coordinates with arbitrary
base-point P having trilinear coordinates p : ¢ : r. (For barycentrics, P = Xj; for trilinears,
P = X;.) As exemplified by (10) and (11), the resulting conic represented by (1) in general
homogeneous coordinates takes the following form in trilinears:

qryz +rpzx +pqry  qrow + rpwu + pquu
p2$2 + qzyz 422 - p2u2 + q2v2 22

(12)

We denote the conic (12) by Y(P,U) and observe that it is simply the locus of X/P as X

traverses the Yff conic Y(P - U).

9. Related conics

It is obvious that the general symmetric polynomial of degree 2 in x, y, z is a linear combination
fla,y,2) = r(@® +y* +2°) + s(yz + za + 2y),

where 7, s are real numbers or, in the present context, functions of a,b,c. For arbitrary
U =u:v:w, the equation

is nonhomogeneous in a, b, c. In order to obtain a corresponding homogeneous equation, let
Fla,y,5) = 02
(azx + by + cz)?

Then since
ax + by + cz = au + bv + cw = 20,

the equation

has the desired properties. We call the locus of X satisfying (14) the (r, s)- Y{ff-like conic of
U, and denote it by Y(U;r,s). The form (14) lends itself to analytical methods as in [2,
p. 234]. Let

N = r@®+0*+w?) + s(vw + wu + w),
D = (au+bv+ cw)?.



Then (14) can be written as
(rD — Na*)z* + (rD — Nb*)y? + (rD — Nc?)2?
+(sD — 2Nbc)yz + (sD —2Nca)zz + (sD —2Nab)xy = 0.

Define
Uy =
f =
U, =
F =

rD — Na?
(sD —2Nbc)/2
viwy — f*
gh —uyf
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U1

Vi
G

The center of the conic is the point

where

aU; +bH + G :

9

rD — Nb?

(sD —2Nca)/2
_92

wy1U1

hf —wvig

wy = rD — N2
h = (sD —2Nab)/2
W1 = ulvl—hQ
H = fg—wh

aH +bVi + cF : aG + bF + cWy,

1
alUy +bH + G = <_Z) (au+ bv + cw)* (s — 2r) (2ar + as — bs — ¢s) ,

so that the center of the conic, in case s # 2r, is

s(b+c—a)—2ar:s(c+a—>b)—2br:s(a+b—c)—2cr,

and this is invariant of U. Examples depending on r and s are tabulated here:

r 0 1 1 | —2 |2bc+ 2ca+ 2ab—a®—b*—c?
s 110} -2]1 3 2(a® + b* + %)
center of :);(U7 T, 8) Xg X(; X37 X1 X3247 X518

Regarding the classification of Y(U;r, s), define
& = Uya® + Vib? + Wic? + 2Fbe + 2Gea + 2Hab

and find that this polynomial factors as

(F1)(2r (a® +b* + ¢*) + sa® + b° + ¢ — 2ac — 2bc — 2ab)), where
Fy = (au + bv + cw)*(2r — 5)/4,

so that classification depends on the factor

&J:QT(Q2+62+02)+sa2+b2+02—2ac—260—2ab

33

as follows: the conic is an ellipse, a parabola, or a hyperbola according as d > 0, P = 0, or

d < 0.

For example, Y(U; 1,0), given by

$2+y2+22

u2+v2+w2

(azx + by + cz)? B
is an ellipse. As a second example, if

(au + bv + cw)?’

2r (a® +b° + ) + s(a® + b* + ¢ — 2bc — 2ca — 2ab) = 0,

and 2r # s, then b= 0, so that the conic is the parabola represented in the above table, with

center X513. Explicitly, the conic is a parabola if

r _ be+ca+ab
R

S

1

2
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