Journal for Geometry and Graphics Volume 12 (2008), No. 1, 23–34.

Yff Conics

Clark Kimberling

Department of Mathematics, University of Evansville 1800 Lincoln Avenue, Evansville, Indiana, USA 47722 email: ck6@evansville.edu

Abstract. Suppose that a, b, c are algebraic indeterminates and U = u : v : w is a point given in homogeneous trilinear coordinates. The Yff conic of U is defined as the locus of a point X = x : y : z satisfying the equation f(x, y, z) = f(u, v, w), where $f(u, v, w) = (vw + wu + uv)/(u^2 + v^2 + w^2)$. The symbolic substitution $(a, b, c) \rightarrow (bc, ca, ab)$ maps the Yff conic of the symmedian point to that of the centroid. This mapping and others are used to find a large number of special points on many Yff conics.

Keywords: ellipse, hyperbola, parabola, symbolic substitution, triangle center, trilinear coordinates, trilinear product, Yff conic *MSC 2007:* 51M05

1. Introduction

Suppose that a, b, c are algebraic indeterminates over the field of complex numbers. A point P is, briefly speaking, *defined* by homogeneous trilinear coordinates

$$P = p(a, b, c) : q(a, b, c) : r(a, b, c).$$

A precise definition of point is given elsewhere (e.g., [1]-[3]) and need not be repeated here. The same holds for special points known as triangle centers, hundreds of which are indexed in [1]; e.g., the incenter of the reference triangle *ABC* having vertices

$$A = 1:0:0, \quad B = 0:1:0, \quad C = 0:0:1$$

is indexed as X_1 and is defined by $X_1 = 1 : 1 : 1$; the centroid, X_2 , is defined by $X_2 = bc : ca : ab$, or equivalently, by $X_2 = 1/a : 1/b : 1/c$, and so on. Note that the definitions are algebraic rather than euclidean. For example, the centroid is defined for (a, b, c) = (2, 3, 6) even though no euclidean triangle has sidelengths 2, 3, 6.

On the other hand, for any values of a, b, c which are sidelengths of a euclidean triangle ABC, the results presented below fit into the subject of traditional triangle geometry. Of particular interest is the use of a nongeometric method in Section 5, called symbolic substitution, which gives geometrically meaningful results.

ISSN 1433-8157/\$ 2.50 © 2008 Heldermann Verlag

Suppose U = u : v : w is a point, and consider the locus of a point X = x : y : z such that

$$\frac{yz + zx + xy}{x^2 + y^2 + z^2} = \frac{vw + wu + uv}{u^2 + v^2 + w^2}.$$
(1)

Peter YFF — the surname is pronounced "ife" and rhymes with *life* — studied this equation in an unpublished notebook in 1958, as mentioned in [2, p. 243]. The Index of [2] lists the locus as *Yff conic*. Here we call it the *Yff conic of* U, denoted by $\mathcal{Y}(U)$. Clearly, $U \in \mathcal{Y}(U)$, and if X is any point on $\mathcal{Y}(U)$, then all six points

$$x:y:z,\quad y:z:x,\quad z:x:y,\quad x:z:y,\quad y:x:z,\quad z:y:x$$

lie on $\mathcal{Y}(U)$; moreover if x, y, z are distinct, then any five of the six points determine the conic, and $\mathcal{Y}(X) = \mathcal{Y}(U)$. We shall call the six points the *associates* of X.

YFF proved that the center of $\mathcal{Y}(U)$ is the point

$$G = g(a, b, c) : g(b, c, a) : g(c, a, b),$$
(2)

where

$$g(a, b, c) = 2au_1 + (b + c - a)u_2,$$

$$u_1 = vw + wu + uv,$$

$$u_2 = u^2 + v^2 + w^2$$

If u + v + w = 0, then from $(u + v + w)^2 = 0$, we find

$$\frac{vw + wu + uv}{u^2 + v^2 + w^2} = -\frac{1}{2} \,,$$

and $\mathcal{Y}(U)$ is in this case merely the line x+y+z=0. Henceforth, we assume that $u+v+w\neq 0$.

If vw + wu + uv = 0, then (1) holds if and only if X lies on the ellipse yz + zx + xy = 0, represented by Fig. 1. This ellipse is the Yff conic $\mathcal{Y}(U)$ for each U on it, except for the vertices A, B, C. Such choices of U include X_{88}, X_{100}, X_{162} , and X_{190} .

Figure 1: The line x + y + z = 0 and its isogonal conjugate, the ellipse yz + zx + xy = 0

2. Yff's description

At a lecture at the American University of Beirut in the fall of 2003, YFF showed that the conics which now bear his name constitute a pencil consisting of infinitely many ellipses, infinitely many hyperbolas, a single parabola, a degenerate point conic, and a line conic (two coincident lines). In a letter [4], YFF gives an elegant geometric description of these conics, reproduced with minor editing in this section.

I wrote the general equation in the form

$$x^{2} + y^{2} + z^{2} - 2\lambda(yz + zx + xy) = 0,$$

in which

$$\lambda = \frac{u^2 + v^2 + w^2}{2(vw + wu + uv)}.$$

Therefore the system of conics is a one-parameter family. In fact it is a pencil of conics. For example, every conic in the pencil may be regarded as a linear combination of the imaginary conic $x^2 + y^2 + z^2 = 0$ and the circumconic yz + zx + xy = 0.

When $\lambda = 1$ the conic is an ellipse inscribed in the triangle. Its center is X_{37} , and it is the only tritangent conic in the system. The only circumconic is given by $\lambda = \infty$, and its center is X_9 . There is one degenerate point conic, obtained when $\lambda = 1/2$, consisting only of the point X_1 . The line x + y + z = 0 is the only line conic, given by $\lambda = -1$.

Considering the center of a conic as the pole of the line at infinity with respect to the conic, it is found that the center of the general conic in this pencil is

$$a(1-\lambda) + b\lambda + c\lambda : a\lambda + b(1-\lambda) + c\lambda : a\lambda + b\lambda + c1 - \lambda$$

Since the coordinates are linear in λ , the locus of centers is a line, which passes through X_6 ($\lambda = 0$) and X_9 ($\lambda = 1$). Its equation is

$$(b-c)x + (c-a)y + (a-b)z = 0.$$

As the eccentricity of a conic approaches 1, its center approaches infinity. Therefore, in order to find a parabola in this system, we determine the intersection of the line of centers with the line at infinity. This is the point¹.

$$b^{2} + c^{2} - ca - ab$$
: $c^{2} + a^{2} - ab - bc$: $a^{2} + b^{2} - bc - ca$

which is X_{518} . The value of λ for the parabola is

$$\lambda_0 = \frac{-(a^2 + b^2 + c^2)}{2(bc + ca + ab) - (a^2 + b^2 + c^2)},$$

which is never greater than -1. Ellipses in the pencil are given by $\lambda < \lambda_0$ and by $\lambda_0 > 1/2$. When $\lambda_0 < \lambda < -1$ the conics are hyperbolas. For $-1 < \lambda < 1/2$ the conics are imaginary.

¹YFF notes that at (a, b, c) = (5, 10, 13), the function X_{1054} takes the same value as X_{518} . This observation provides a good example for understanding points, as defined in this paper, as functions; e.g., $X_{1054} \neq X_{518}$ although $X_{1054}(5, 10, 13) = X_{518}(5, 10, 13)$, just as sine \neq cosine although sin $\pi/4 = \cos \pi/4$.

Finally, all conics in the system are mutually tangent at two points. To find these points, we solve simultaneously the equations $x^2 + y^2 + z^2 = 0$ and yz + zx + xy = 0. Elimination of x yields

$$y^2 + yz + z^2 = 0,$$

with solutions $y/z \in \{\omega, \omega^2\}$, the complex cube roots of unity. Therefore the two points of intersection are

$$T_1 = 1 : \omega : \omega^2$$
 and $T_2 = 1 : \omega^2 : \omega$.

Obviously these points are on every conic in the system. To complete the proof that all the conics are mutually tangent, it may be shown that the line

$$x + \omega y + \omega^2 z = 0$$

is tangent to every conic (except for $\lambda = -1$) at T_1 , and that the common tangent line at T_2 is

$$x + \omega^2 y + \omega z = 0.$$

3. Two points on $\mathcal{Y}(X_{518})$

In addition to the point X_{518} on the parabola $\mathcal{Y}(X_{518})$, the point $X_1X_{518} \cap \mathcal{Y}(X_{518})$ will now be found. The line X_1X_{518} is given by

$$(b-c)x + (c-a)y + (a-b)z = 0.$$

Substitute

$$z = \frac{(b-c)x + (c-a)y}{b-a}$$

into the equation for $\mathcal{Y}(X_{518})$ written as

$$\frac{yz + zx + xy}{x^2 + y^2 + z^2} + \frac{bc + ca + ab}{a^2 + b^2 + c^2} - \frac{1}{2} = 0$$

and factor the expression on the left-hand side. The relevant factor simplifies to

$$-x \left(4b^{2} + c^{2} + a^{2} - 4ca - ab - bc\right) + y \left(4a^{2} + b^{2} + c^{2} - 4bc - ca - ab\right),$$

from which it follows that $X = X_{3246}$. We leave open the problem of finding other low-degree polynomial triangle centers on $\mathcal{Y}(X_{518})$. Also of interest would be coordinates for the vertex and focus.

4. Reflections

Suppose that P = p : q : r is on an Yff conic $\mathcal{Y}(U)$ and that G as in (2) is the center of $\mathcal{Y}(U)$. The line GP meets $\mathcal{Y}(U)$ in two points, one of which is P. The other, which we denote by P_G , is the reflection of P in G. In order to find trilinears for P_G , it is helpful to abbreviate g(a, b, c), g(b, c, a), g(c, a, b) as g_a, g_b, g_c , respectively. Temporarily restricting a, b, c

to be sidelengths of a euclidean triangle, and writing the area of ABC as σ , the actual trilinear distances of G are given by the ordered triple (hg_a, hg_b, hg_c) , where

$$h = \frac{2\sigma}{ag_a + bg_b + cg_c}.$$

Actual trilinear distances for P are (kp, kq, kr), where $k = 2\sigma/(ap + bq + cr)$, so that actual trilinear distances for P_G are given by

$$P_G = (2hg_a - kp, \ 2hg_b - kq, \ 2hg_c - kr)$$

and a homogeneous first trilinear is

$$2g_a(ap+bq+cr) - p(ag_a+bg_b+cg_c),$$

which simplifies to

$$2u_{1} \left((a^{2} - b^{2} - c^{2})p + 2abq + 2acr \right) + u_{2} ((b - a + c) (2bq + 2cr) - p (a + b - c) (a - b + c)) = 2p_{1} \left((a^{2} - b^{2} - c^{2})p + 2abq + 2acr \right) + p_{2} ((b - a + c) (2bq + 2cr) - p (a + b - c) (a - b + c)),$$
(3)

where

$$p_1 = qr + rp + pq, \quad p_2 = p^2 + q^2 + r^2$$

Expanding (2) and letting

$$\begin{aligned} t(a,b,c) &= p^3(a+b-c)(a-b+c) \\ &+ 2p^2\left[(c-a)(a-b+c)q + (b-a)(a+b-c)r\right] \\ &- p\left[4a(q+r)(bq+cr) - (a^2-(b-c)^2)(q^2+r^2) + 2qr(a^2-b^2-c^2)\right] \\ &- (bq+cr)\left[4aqr + 2(b-a+c)(q^2+r^2)\right], \end{aligned}$$

we conclude that

$$P_G = t(a, b, c) : t(b, c, a) : t(c, a, b).$$
(4)

In the above derivation, the hypothesis that $u_1/u_2 = p_1/p_2$, used to establish (3), implies that the trilinears in (4) are invariant of u, v, w. Returning now to the more general case that a, b, c are indeterminates, we define P_G by the trilinears obtained for (4). It is easy to confirm that P_G , so defined, lies on $\mathcal{Y}(U)$.

5. The conic $\mathcal{Y}(X_6)$

Let U = a : b : c, the symmetrian point, X_6 . By (1), an equation for $\mathcal{Y}(X_6)$ is

$$\frac{yz + zx + xy}{x^2 + y^2 + z^2} = \frac{bc + ca + ab}{a^2 + b^2 + c^2}.$$
(5)

It is easy to check that the point

$$X_{45} = a - 2b - 2c : b - 2c - 2a : c - 2a - 2b$$

satisfies (5), that the center of $\mathcal{Y}(X_6)$ is the point $G = g_a : g_b : g_c$ given by

$$g_a = a^3 + a(b-c)^2 - (b+c)(3a^2 + b^2 + c^2),$$

and that X_{45} is the reflection (4) of X_6 in G. On writing X_{45} as p:q:r, one might expect that the six points

$$p:q:r,\quad q:r:p,\quad r:p:q,\quad p:r:q,\quad q:p:r,\quad r:q:p$$

are, in some order, the reflections in G of the six points

a:b:c, b:c:a, c:a:b, a:c:b, b:a:c, c:b:a,

but the only such match is the one already recognized. Thus, we have, so far, 22 distinct points on $\mathcal{Y}(X_6)$.

Symbolic substitution, a method introduced in [3], maps $\mathcal{Y}(X_6)$ onto other Yff conics. As a first example, the substitution $(a, b, c) \to (bc, ca, ab)$ maps $\mathcal{Y}(X_6)$ onto $\mathcal{Y}(X_2)$, given, according to (5), by

$$\frac{yz + zx + xy}{x^2 + y^2 + z^2} = \frac{abc(a+b+c)}{b^2c^2 + c^2a^2 + a^2b^2}.$$
(6)

Specifically, each point x : y : z = x(a, b, c) : x(b, c, a) : x(c, a, b) satisfying (5) maps to the point

x':y':z'=x(bc,ca,ab):y(bc,ca,ab):z(bc,ca,ab)

on $\mathcal{Y}(X_2)$; e.g., X_{45} maps to the point

$$X_{3240} = bc - 2a(b+c) : ca - 2b(c+a) : ab - 2c(a+b).$$
⁽⁷⁾

It is easy to check that the center of $\mathcal{Y}(X_6)$ maps to a point that is not the center of $\mathcal{Y}(X_2)$, and that the point (7) is not the reflection of X_2 about the center of $\mathcal{Y}(X_2)$.

It will be convenient to write \mathcal{S} for the substitution $(a, b, c) \to (bc, ca, ab)$. Recall that G denotes the center of $\mathcal{Y}(X_6)$, and let H denote the center of $\mathcal{S}(\mathcal{Y}(X_6))$; that is, of $\mathcal{Y}(X_2)$. Suppose that

$$P = p(a, b, c) : q(a, b, c) : r(a, b, c)$$

is a point on $\mathcal{Y}(X_6)$. We shall show that ordinarily H is not on the line $\mathcal{S}(P)\mathcal{S}(G)$. This property of symbolic substitution, we shall see, enables the production of infinite sequences of triangle centers on $\mathcal{Y}(X_6)$.

We have

$$\mathcal{S}(P) = p(bc, ca, ab) : q(bc, ca, ab) : r(bc, ca, ab),$$
(8)

and \mathcal{S} maps the center of $\mathcal{Y}(X_6)$ to the point

$$\mathcal{S}(G) = g(bc, ca, ab) : g(ca, ab, bc) : g(ab, bc, ca).$$

Moreover, H = h(a, b, c) : h(b, c, a) : h(c, a, b), where

$$h(a, b, c) = a^{3}(b - c)^{2} - a^{2}(b + c)^{3} + b^{2}c^{2}(a - b - c).$$

Let

$$D = \begin{vmatrix} x & y & y \\ g(bc, ca, ab) & g(ca, ab, bc) & g(ab, bc, ca) \\ h(a, b, c) & h(b, c, a) & h(c, a, b) \end{vmatrix}$$

so that the line $\mathcal{S}(G)H$ has equation D = 0. Straightforward computation shows that

$$D = d[(b-c)f(a,b,c)p' + (c-a)f(b,c,a)q' + (a-b)f(c,a,b)r'], \text{ where}$$

$$d = 2(a^{2}b^{2} + a^{2}c^{2} + b^{2}c^{2} - abc(a+b+c)),$$

$$f(a,b,c) = a^{4}(b^{2} + c^{2}) + 2a^{3}bc(b+c) + a^{2}bc(3b^{2} + 3c^{2} + 5bc) + b^{3}c^{3}.$$

Thus, writing $\mathcal{S}(P)$ as P' = p' : q' : r', we conclude that $\mathcal{S}(P)$ does not lie on the line $\mathcal{S}(G)H$ unless

$$(b-c)f(a,b,c)p' + (c-a)f(b,c,a)q' + (a-b)f(c,a,b)r' = 0.$$

It is easy to check, for example, that for $P = X_6$ and $P = X_{45}$ (i.e., for $P' = X_2$ and $P' = X_{3240}$), the point $\mathcal{S}(P)$ does not lie on the line $\mathcal{S}(G)H$. Consequently, the reflection of X_2 in H is a third point, which we denote by R, on $\mathcal{Y}(X_2)$, in addition to X_2 and X_{3240} . Using (4) with (p,q,r) = (bc, ca, ab) gives

$$R = \rho(a, b, c) : \rho(b, c, a) : \rho(c, a, b), \text{ where}$$

$$\rho(a, b, c) = bc \left(b^2 c^2 - 2abc^2 - 2ab^2 c - 5a^4\right) (b - c)^2$$

$$+ 2a^3 bc \left(b + 2c\right) (2b + c) (b + c)$$

$$- a^2 bc \left(bc + b^2 + c^2\right) \left(5bc - b^2 - c^2\right).$$

As \mathcal{S} is a self-inverse mapping, the point

$$\mathcal{S}(R) = \rho(bc, ca, ab) : \rho(ca, ab, bc) : \rho(ab, bc, ca)$$

is a third point on $\mathcal{Y}(X_6)$. In like manner, the reflection of X_{3240} in H is a fourth point on $\mathcal{Y}(X_2)$, and \mathcal{S} maps this reflection to a fourth point on $\mathcal{Y}(X_6)$. Call the two new points P_3 and P_4 .

We conjecture that the reflections of P_3 and P_4 in G are new points P_5 and P_6 on $\mathcal{Y}(X_6)$, that $\mathcal{S}(P_5)$ and $\mathcal{S}(P_6)$ are new on $\mathcal{Y}(X_2)$, that their reflections in H are new on $\mathcal{Y}(X_2)$, that \mathcal{S} maps these reflections onto new points P_7 and P_8 on $\mathcal{Y}(X_6)$, and that this manner of production can be continued indefinitely, giving infinitely many triangle centers on $\mathcal{Y}(X_6)$, as well as $\mathcal{Y}(X_2)$.

Similar results can be found from other symbolic substitutions, of which we mention two, briefly. The substitution

$$(a, b, c) \rightarrow (b - c, c - a, a - b)$$

maps $\mathcal{Y}(X_6)$ onto $\mathcal{Y}(X_{100})$ and maps X_{45} to the point $X_{37} = b + c : c + a : a + b$. The substitution

$$(a, b, c) \rightarrow (b + c, c + a, a + b)$$

maps $\mathcal{Y}(X_6)$ onto $\mathcal{Y}(X_{37})$, and it maps X_{45} to the point

$$4a + b + c : 4b + c + a : 4c + a + b.$$

Note that this second substitution has an inverse:

$$(a, b, c) \rightarrow (b + c - a, c + a - b, a + b - c).$$

Consequently, we conjecture that sequences of triangle centers on $\mathcal{Y}(X_6)$, in addition to those mentioned above, can be found using reflections and substitutions, as above, between the conics $\mathcal{Y}(X_6)$ and $\mathcal{Y}(X_{37})$.

6. The conic $\mathcal{Y}(X_{244})$

The point

$$X_{244} = u : v : w = (b - c)^2 : (c - a)^2 : (a - b)^2$$

has a notable Yff conic. Indeed, on substituting for u, v, w, we find

$$\frac{yz + zx + xy}{x^2 + y^2 + z^2} - \frac{vw + wu + uv}{u^2 + v^2 + w^2} = -\frac{x^2 + y^2 + z^2 - 2xz - 2yz - 2xy}{2(x^2 + y^2 + z^2)},$$

which shows, by (1), that an equation for $\mathcal{Y}(X_{244})$ is simply

$$x^2 + y^2 + z^2 - 2yz - 2zx - 2xy = 0.$$

This is the inscribed ellipse $W(X_1)$ in [2, p. 238]. Its center is $X_{37} = b + c : c + a : a + b$, as already noted in Section 2.

For arbitrary $p: q: r \neq 1: 1: 1$, the symbolic substitution $(a, b, c) \rightarrow (p, q, r)$ maps $\mathcal{Y}(X_{244})$ to itself and in particular maps X_{244} to the point

$$(q-r)^2 : (r-p)^2 : (p-q)^2.$$

Thus, $\mathcal{Y}(X_{244})$ consists of the trilinear squares of points of the form

$$q-r:r-p:p-q,$$

that is, points on the line x + y + z = 0, the antiorthic axis. Among such squares are X_i for $i \in \{244, 678, 2310, 2632, 2638, 2643, 3222, 3248\}$.

7. The conic $\mathcal{Y}(X_{1054})$

Another special Yff conic is $\mathcal{Y}(X_{1054})$, where

$$X_{1054} = (a-b)(a-c) - (b-c)^2 : (b-c)(b-a) - (c-a)^2 : (c-a)(c-b) - (a-b)^2.$$

Taking these three trilinears as u, v, w, we find

$$\frac{yz + zx + xy}{x^2 + y^2 + z^2} - \frac{vw + wu + uv}{u^2 + v^2 + w^2} = \frac{x^2 + y^2 + z^2 + 3xy + 3xz + 3yz}{3(x^2 + y^2 + z^2)},$$

so that a simple equation for $\mathcal{Y}(X_{1054})$ is

$$x^2 + y^2 + z^2 + 3xy + 3xz + 3yz = 0,$$

or equivalently,

$$(x+y)(x+z) + (y+z)(y+x) + (z+x)(z+y) = 0.$$
(9)

The conic $\mathcal{Y}(X_{1054})$ is represented by Fig. 2.

For arbitrary $p: q: r \neq X_1$, the symbolic substitution $(a, b, c) \rightarrow (p, q, r)$ maps $\mathcal{Y}(X_{1054})$ to itself and in particular maps X_{1054} to the point

$$(p-q)(p-r) - (q-r)^2 : (q-r)(q-p) - (r-p)^2 : (r-p)(r-q) - (p-q)^2.$$

Figure 2: The Yff conic $\mathcal{Y}(X_{1054})$ and the six associates of the point $P_1 = 0: -3 + \sqrt{5}: 2$

Thus, each point on $\mathcal{Y}(X_{1054})$ is the P^* -Hirst inverse of X_1 , where P^* is a point on the antiorthic axis (which is the trilinear polar of X_1), and conversely.

The center of $\mathcal{Y}(X_{1054})$ is the point

$$5a - 3(b + c) : 5b - 3(c + a) : 5c - 3(a + b),$$

so that $\mathcal{Y}(X_{1054})$ is an ellipse, parabola, or hyperbola ([2, p. 234], according as

$$\Phi>0,\quad \Phi=0,\quad {\rm or}\quad \Phi<0,$$

where

$$\Phi = -5a^2 - 5b^2 - 5c^2 + 6bc + 6ca + 6ab.$$

For example, the conic is an ellipse for (a, b, c) = (5, 11, 13), a parabola for (a, b, c) = (5, 10, 13), and a hyperbola for (a, b, c) = (5, 12, 13).

Putting x = 0 in (9) leads to two points of intersection of $\mathcal{Y}(X_{1054})$ with the line BC:

$$0: -3 + \sqrt{5}: 2$$
 and $0: -3 - \sqrt{5}: 2$.

These and their associates comprise a set of 6 (not 12) distinct noncentral points on $\mathcal{Y}(X_{1054})$.

8. General homogeneous coordinates

In connection with the equation (1) that defines Yff conics, suppose that the homogeneous coordinates given for U and X are barycentric rather than trilinear. Then, for example, the barycentric points a : b : c and

$$a - 2b - 2c : b - 2c - 2a : c - 2a - 2b$$

are, in trilinears, 1:1:1 and

$$(a-2b-2c)/a: (b-2c-2a)/b: (c-2a-2b)/c,$$

and (1), expressed in terms of trilinear coordinates, is

$$\frac{bcyz + cazx + abxy}{a^2x^2 + b^2y^2 + c^2z^2} = \frac{bcvw + cawu + abuv}{a^2u^2 + b^2v^2 + c^2w^2}.$$
(10)

The locus of a point X satisfying (10) is a conic closely related to the Yff conic $\mathcal{Y}(X_6 \cdot U)$, where \cdot denotes trilinear product. Actually, $\mathcal{Y}(X_6 \cdot U)$ is given by

$$\frac{yz + zx + xy}{x^2 + y^2 + z^2} = \frac{bcvw + cawu + abuv}{a^2u^2 + b^2v^2 + c^2w^2},\tag{11}$$

so that for each X on $\mathcal{Y}(X_6 \cdot U)$, the point X/X_6 , where / denotes trilinear quotient, lies on the conic (10).

One may generalize from barycentric to general homogeneous coordinates with arbitrary base-point P having trilinear coordinates p:q:r. (For barycentrics, $P = X_2$; for trilinears, $P = X_1$.) As exemplified by (10) and (11), the resulting conic represented by (1) in general homogeneous coordinates takes the following form in trilinears:

$$\frac{qryz + rpzx + pqxy}{p^2x^2 + q^2y^2 + r^2z^2} = \frac{qrvw + rpwu + pquv}{p^2u^2 + q^2v^2 + r^2w^2}.$$
(12)

We denote the conic (12) by $\mathcal{Y}(P, U)$ and observe that it is simply the locus of X/P as X traverses the Yff conic $\mathcal{Y}(P \cdot U)$.

9. Related conics

It is obvious that the general symmetric polynomial of degree 2 in x, y, z is a linear combination

$$f(x, y, z) = r(x^{2} + y^{2} + z^{2}) + s(yz + zx + xy),$$

where r, s are real numbers or, in the present context, functions of a, b, c. For arbitrary U = u : v : w, the equation

$$f(x, y, z) = f(u, v, w)$$
(13)

is nonhomogeneous in a, b, c. In order to obtain a corresponding homogeneous equation, let

$$F(x, y, z) = \frac{f(x, y, z)}{(ax + by + cz)^2}$$

Then since

$$ax + by + cz = au + bv + cw = 2\sigma,$$

the equation

$$F(x, y, z) = F(u, v, w)$$
(14)

has the desired properties. We call the locus of X satisfying (14) the (r, s)-Yff-like conic of U, and denote it by $\mathcal{Y}(U; r, s)$. The form (14) lends itself to analytical methods as in [2, p. 234]. Let

$$N = r(u^{2} + v^{2} + w^{2}) + s(vw + wu + uv),$$

$$D = (au + bv + cw)^{2}.$$

Then (14) can be written as

$$(rD - Na^{2})x^{2} + (rD - Nb^{2})y^{2} + (rD - Nc^{2})z^{2} + (sD - 2Nbc)yz + (sD - 2Nca)zx + (sD - 2Nab)xy = 0.$$

Define

The center of the conic is the point

$$aU_1+bH+cG:aH+bV_1+cF:aG+bF+cW_1,\\$$

where

$$aU_1 + bH + cG = \left(-\frac{1}{4}\right) (au + bv + cw)^4 (s - 2r) (2ar + as - bs - cs),$$

so that the center of the conic, in case $s \neq 2r$, is

$$s(b+c-a) - 2ar: s(c+a-b) - 2br: s(a+b-c) - 2cr$$

and this is invariant of U. Examples depending on r and s are tabulated here:

r	0	1	1	1	-2	$2bc + 2ca + 2ab - a^2 - b^2 - c^2$
8	1	0	-2	1	3	$2(a^2 + b^2 + c^2)$
center of $\mathcal{Y}(U; r, s)$	X_9	X_6	X_{37}	X_1	X_{3247}	X_{518}

Regarding the classification of $\mathcal{Y}(U; r, s)$, define

$$\Phi = U_1 a^2 + V_1 b^2 + W_1 c^2 + 2Fbc + 2Gca + 2Hab$$

and find that this polynomial factors as

$$(F_1)(2r(a^2+b^2+c^2)+sa^2+b^2+c^2-2ac-2bc-2ab)),$$
 where
 $F_1 = (au+bv+cw)^4(2r-s)/4,$

so that classification depends on the factor

$$\widehat{\Phi} = 2r(a^{2} + b^{2} + c^{2}) + sa^{2} + b^{2} + c^{2} - 2ac - 2bc - 2ab$$

as follows: the conic is an ellipse, a parabola, or a hyperbola according as $\widehat{\Phi} > 0$, $\widehat{\Phi} = 0$, or $\widehat{\Phi} < 0$.

For example, $\mathcal{Y}(U; 1, 0)$, given by

$$\frac{x^2 + y^2 + z^2}{(ax + by + cz)^2} = \frac{u^2 + v^2 + w^2}{(au + bv + cw)^2},$$

is an ellipse. As a second example, if

$$2r(a^{2} + b^{2} + c^{2}) + s(a^{2} + b^{2} + c^{2} - 2bc - 2ca - 2ab) = 0,$$

and $2r \neq s$, then $\widehat{\Phi} = 0$, so that the conic is the parabola represented in the above table, with center X_{518} . Explicitly, the conic is a parabola if

$$\frac{r}{s} = \frac{bc + ca + ab}{a^2 + b^2 + c^2} - \frac{1}{2}$$

C. Kimberling: Yff Conics

References

- [1] C. KIMBERLING: *Encyclopedia of Triangle Centers ETC*. http://faculty.evansville.edu/ck6/encyclopedia/ETC.html.
- [2] C. KIMBERLING: Triangle centers and central triangles. Congressus Numerantium 129, 1–285 (1998).
- [3] C. KIMBERLING: Symbolic substitutions in the transfigured plane of a triangle. Aequationes Mathematicae **73**, 156–171 (2007).
- [4] P. YFF: letter to the author, May 11, 2007.

Received May 25, 2007; final form February 3, 2008