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Abstract. Recent research has produced results on subdivision in arbitrary man-
ifolds. These results can be applied to the manifold of lines and thus we can create
subdivision schemes especially for ruled surfaces. We present different methods
for refining discrete models of ruled surfaces: An algorithm combining subdivision
and projection to the manifold of lines in Euclidean three-space. A further al-
gorithm combines subdivision for the striction curve with geodesic subdivision in
the Euclidean unit sphere. The third method is based on the Denavit-Hartenberg-
Method for serial robots. We refine the sequence of motions of the Sannia frame
by means of geodesic subdivision in the group of Euclidean motions.
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1. Introduction

1.1. Related work

Ruled surfaces appear in many different areas in CAD and CAGD such as in surface ap-
proximation [3, 17], wire cutting [3], milling, tool path planning and robot motion planning
[18, 19]. Even the recognition and reconstruction of ruled surfaces was studied in [14, 15].
So far almost all of the approaches deal with approximations in terms of parameterized ruled
surfaces. There are also some remarkable contributions to the approximation of developable
ruled surfaces [13, 22] dealing with different geometric approaches.

In [21] variational subdivision schemes for ruled surfaces and line congruences were intro-
duced. A finite sequence of lines is called a discrete ruled surface. It is refined by inserting
intermediate lines to the given ones. The presented method uses a triangulation of the discrete
model including the estimated lines and leads to the minimization of a quadratic functional.
This is a time consuming method although only a system of linear equations (in the coordi-
nates of the endpoints of the intermediate line segments to be inserted) has to be solved.

Subdivision schemes for curves and surfaces were originally developed for data in affine
spaces. Nowadays not only the convergence analysis of subdivision schemes is done even
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schemes on manifolds and on Lie groups are well studied and their possible applications are
outlined in [29, 30].

The Klein model of line space is a useful tool for approximation as well as interpolation
problems in line space. It also appeared in a slightly modified version for approximation and
interpolation problems in [16].

1.2. Motivation

With today’s knowledge on subdivision schemes for curves, surfaces, and on manifolds it is
possible to define subdivision schemes directly for the set of geometric objects where we want
to model in, i.e., the set of lines. Methods for this purpose presented until now consider
ruled surfaces as ruled surface strips. The choice of boundary curves enter the construction
and thus the approximation. Defining a subdivision scheme in the manifold of lines allows
to eliminate the arbitrarily chosen directrices on the ruled surface. This approach is different
from the techniques presented so far. We consider ruled surfaces not as ruled surface strips:
Lines are unbounded. Further we do not aim at any parameterization or representation like
a (1, n)-Bézier surface. We present and describe these methods in order show how elegant
subdivision for arbitrary manifolds can be applied in surface design.

On the other hand there is one special curve called central curve or striction curve on
each ruled surface. Together with the striction curve and the so called spherical image of

the rulings (which is nothing but a curve in the Euclidean unit sphere) a ruled surface in
Euclidean three-space is uniquely defined. So we can combine a subdivision scheme for curves
which is applied to an estimated central curve and a geodesic subdivision on the Euclidean
unit sphere in order to refine the given data of a discrete ruled surface.

A third approach in ruled surface design by means of subdivision uses ideas from kine-
matics. The discrete ruled surface can be seen as a set of rotation axes of a serial robot.
The Denavit-Hartenberg method allows to assign a sequence of Cartesian coordinate systems
to the serial robot (or equivalently to its axes). The Euclidean motions transforming each
coordinate system in the subsequent one can be seen as points in the group of Euclidean
motions. Since subdivision in this group is available we can use this for the design of ruled
surfaces too.

1.3. Contributions of the paper

Assume we are given a finite sequence of lines which will henceforth be called discrete ruled

surface R. We aim at a refinement of R, that means, we want to insert new lines in between
the old ones. After infinitely many steps of the procedure we want to obtain a smooth surface.
For practical reasons C1 and C2 transitions are sufficient.

We present three different subdivision techniques: The projection algorithm is a combina-
tion of projection and subdivision. The second algorithm will be called combined algorithm

since it combines subdivision in Euclidean space R
3 applied to a curve and geodesic subdi-

vision on the Euclidean unit sphere S2. Finally we use the Denavit-Hartenberg method to
refine R.

The paper is organized as follows: In Section 2 we provide the necessary facts on line
geometry, difference geometry, and differential geometry. Section 3 describes the different
algorithms and Section 4 shows how the algorithms work. Finally we conclude in Section 5.

Our main goal is to show how these algorithms work. Geometric ideas help to adapt
the techniques of curve refinement in order to make them accessible for the design of ruled
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surfaces.

2. Geometric background

2.1. Line geometry

In the following we work in Euclidean three-space R
3. Points P are represented by Cartesian

coordinates p = (p1, p2, p3)
T . The space is equipped with the canonical scalar product which

reads 〈u,v〉 = u1v1 +u2v2 +u3v3 for any pair of vectors u,v ∈ R
3. The scalar product defines

a cross product u × v for any pair of vectors u and v. The cross product vanishes, if u and
v are linearly dependent. Otherwise u × v is a vector orthogonal to both u and v, and its
length equals the area of the parallelogram spanned by u and v.

A line L in Euclidean space can be represented by a parameterization such as

l(t) = a + tl t ∈ R,

where A is a point on L and l is a unit vector parallel to L. In order to get rid of the point
A we use the well known concept of Plücker coordinates, see e.g. [23, 31], and define

L = (l, l), where l = a × l.

Obviously there is no difference which point on L we choose since a′ = a + γl (with γ ∈ R)
leads to a′ × l = a × l. The vector l is called momentum vector of L. The vectors l and l

are mutually orthogonal and together with the normalization condition for the vector l the
Plücker coordinates (l, l) of L satisfy

M4 : 〈l, l〉 = 1, 〈l, l〉 = 0. (1)

Note that lines in Euclidean three-space are oriented according to the orientation of l.
The manifold M4 ⊂ R

6 given by Eq. (1) is a point model for the set of oriented lines in
Euclidean three-space. To each oriented line in R

3 we find exactly one point on the manifold
M4. Conversely, we find exactly one oriented line in R

3 to each point on M4. Smooth curves
(polygons) contained in M4 correspond to smooth (discrete) one-parameter families of lines,
so called ruled surfaces.

2.2. Projection onto M4

Assume we are given a polygon in the model space R
6. The vertices of the polygon correspond

to lines in R
3, if they are contained in M4. Now we apply a subdivision scheme to the polygon

and end up with a finer one. The new vertices of the finer polygon are in general not contained
in the manifold M4. We replace these vertices by the closest points in M4. For that we have
to define what does closest mean.

Let P = (p,p) ∈ R
6 \ M4 be a point in the model space but not on M4. We define an

objective function F to be minimized as

F (x,x) = 〈x − p,x − p〉 + 〈x − p,x − p〉. (2)

A solution X = (x,x) ∈ R
6 has to fulfill Eqs. (1). So we define the Lagrange function

L(x,x, λ1, λ2) = F (x,x) − λ1(〈x,x〉 − 1) − 2λ2〈x,x〉. (3)
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The necessary condition for (x,x, λ1, λ2) to be a local minimizer of L from (3) is that it solves
the system of linear equations comprising the partial derivatives of L with respect to all the
unknowns x, x, λ1, and λ2. So we have

x − p + λ1x + λ2x = 0,
x − p + λ2x = 0,
1 − 〈x,x〉 = 0,
〈x,x〉 = 0.

Solving this system of equations results in solving an algebraic equation of degree four. In
order to avoid lengthy computations and ambigous solutions we settle for a weaker solution
by simplifying the projection.

Given any P = (p,p) ∈ R
6 we can compute the Plücker coordinates (l, l) of a line L close

to P in the following way: We let l = p/‖p‖ and then we apply the Gram-Schmidt procedure
to the pair of vectors (l,p/‖p‖) and find

(l, l) =

(

p

‖p‖
,

p

‖p‖
−

p〈p,p〉

‖p‖3

)

. (4)

This pair of vectors satisfies the conditions (1) and thus they are coordinates of a line
in R

3. A geometric interpretation of this Gram-Schmidt procedure for Plücker coordinates
is illustrated in Fig. 1. The vector l aims at some point of the Euclidean unit sphere S2

and is obtained by normalizing p. The momentum vector l of the closest line needs to be
perpendicular to l and is thus obtained by orthogonal projection to l’s normal plane l⊥ = p⊥,
which is illustrated in Fig. 1.

There are further possibilities for the projection of points in R
6 to the manifold M4 which

should be mentioned here:

p

p

l

o

l

p⊥

S2

Figure 1: Computing the closest lines
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It is well known, that the points which are not contained in M4 represent regular linear
line complexes, see [23, 31]. A linear line complex comprises the set of path normals of a
certain well defined helical motion. Thus a point (p,p) (with 〈p,p〉 6= 0) can be projected
to M4 by simply computing the axis A = (a, a) of the complex, which is the axis of the
corresponding helical motion. For the axis A we have (a, a) = (p,p − 〈p,p〉/〈p,p〉p) (see
[23, 31]), which obviously agrees with Eq. (4) up to the factor ‖p‖. (We do not have to be
afraid of ‖p‖ = 0, because later, when we apply averaging procedures to proper lines we
always can assum p 6= 0 and orientations will not change suddenly.)

Finally we remark that the formula given in (4) can be found in a different way: Oriented
lines in Euclidean three-space can be described by dual unit verctors L = l + εl, ‖l‖ =
1, 〈l, l〉 = 0, ε2 = 0 (see [27, 31]). Affine combinations of dual unit vectors do in general
not produce dual unit verctors. Thus we could project them to the unit sphere in the dually
extended Euclidean three-space in order to find the line closest to this dual vector. The dual
vectors represent screws (see [1, 9, 27, 31]). The computation of the screw axis (i.e., the axis
of a helical motion) results in scaling a vector with a dual number and leads to the formula
given in (4).

2.3. Ruled surfaces

R

a

l

e1

e2

e3

Figure 2: Left: Ruled surface with a directrix and some generators, Right: Sannia frame

A ruled surface R is a (smooth or discrete) one-parameter family of lines. We assume
that a(u) : I ⊂ R

2 → R
3 is a parameterization of a curve a in Euclidean three-space R

3 and
l(u) : I → S2 is a parameterization of a curve l in the Euclidean unit sphere S2. The ruled
surface R with directrix a and spherical image l is parameterized by

R = a + vl (5)

over I × R ⊂ R
2. Curves on R defined by fixed u are called generators or rulings. A part of

a ruled surface can be seen in Fig. 2. Any curve a + v(u) · l on R, which intersects all of the
rulings in exactly one point, can serve as a directrix. In the following we want to replace a

by a special curve.
At any regular surface point the vectors R,u = ȧ + vl̇ and R,v = l are linearly indepen-

dent. Here ˙ indicates differentiation with respect to the only parameter u in both a and l,
respectively. The normal vectors of R at the points on one ruling R0 are thus given by

n = ȧ × l + vl̇ × l (6)
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and obviously, they depend linearly on v. Therefore there is a projective mapping assigning
to each point P0 ∈ R0 its tangent plane TP0

R.
The tangent plane Tω at R0’s ideal point contains the ideal points (0, l) and (0, l̇) –

represented by their homogeneous Cartesian coordinates – which span the tangent to R’s
ideal curve at the ideal point (0, l). There exists a tangent plane TS of R which is orthogonal
to Tω. We call TS the central plane and the uniquely determined point S of contact striction

point or central point. The central points form the central curve or striction curve on R. It is
easy to verify that the striction curve can be parameterized by

s = a−
〈ȧ, l̇〉

〈l̇, l̇〉
l . (7)

Rulings with indetermined denominator of (7) are called cylinderical rulings. Ruled surfaces
carrying only cylindrical rulings are called cylinders.

Figure 3: Striction curve as locus of points on the rulings where the
Gaussian curvature attains its maximum

The striction curve is the special directrix we have been looking for. The Gaussian
curvature considered to be a function on the ruling reaches its maximum exactly at the
striction point. This can easily be seen from Lamarle’s formula for the Gaussian curvature of
a ruled surface [23]. Consequently the curves of constant Gaussian curvature on R touch the
rulings exactly at the respective striction points which is illustrated in Fig. 3.

In the following we assume that ruled surfaces are given by their striction curve and their
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spherical image. Before we try to find the striction curve in a different way, we recall some
other differential geometric properties of ruled surfaces.

We call a generator R0 torsal, if the tangent planes do not wind about R0. A ruled surface
consisting only of torsal generators is called torsal ruled surface. These surfaces can be mapped
isometrically to the Euclidean plane (at least locally) and are therefore called developable ruled

surfaces. (They consist of parts of cylinders, cones, planes, and the surfaces traced by the
tangents of spatial curves, provided that they are at least two times differentiable.)

For torsal generators the vectors ȧ × l and l̇ × l appearing in (6) are linearly dependent
and thus a torsal generator is characterized by

det(ȧ, l̇, l) = 0.

Later when we approximate ruled surfaces with subdivision schemes in the group of Euclidean
motions, we need to have a geometrically favorable coordinate system attached to the ruled
surface. Therefore we define a right handed basis which in classical literature frequently
appears as Sannia frame. An example is shown in Fig. 2. The moving frame is centered at
the central point S and its vectors are

e1 = l, e2 = l̇/‖l̇‖, e3 = e1 × e2. (8)

The lines s + [e2] and s + [e3] are called central normal and central tangent, respectively.

2.4. Difference geometric approach

The striction curve and the Sannia frame can be found in a different way. Assume that the
ruled surface R is analytic, i.e., any directrix l and the spherical image r can be expanded in
Taylor series.

Assume now that R0 is the generator at a certain parameter value u0 and Rε is the
generator corresponding to the value u0 + ε with sufficiently small ε. Then we compute the
common normal N0,ε of R0 and Rε and the respective intersection points F0 and Fε. We
observe that N0 converges to the striction point S0 if Rε moves to R0 while ε → 0.

For the difference geometric treatment of ruled surfaces see the monograph [25]. A good
approximation of the striction curve by a polygon is given in [21]: On each ruling R0 we
compute the midpoint S0 of the two pedal points F−ε,0 and F0,ε. This is illustrated in Fig. 5.
The approximation of the striction curve by the polygon of midpoints has even quadratic
convergence as shown in [21].

Problems with the method described so far may occur when two consecutive rulings Ri

and Ri+1 of the discrete ruled surface are parallel. In that case the common normal is not
unique and we proceed in the way shown in Fig. 4: We compute the discrete version of the
striction curve from the left and the right hand side of Ri and Ri+1, respectively. Then we
project the left most (F+

i ) and right most (F−

i+1
) pedal point orthogonally to Ri+1 and Ri,

respectively. We obatin F−

i+1

′
∈ Ri and F+

i

′
∈ Ri+1 and the common normal of Ri and Ri+1

shall connect Mi = (F+

i + F−

i+1

′
)/2 and Mi+1 = (F−

i+1 + F+

i

′
)/2. This is also done for more

than two parallel consecutive rulings. Now the points Mi and Mi+1 serve as pedal points of
a common normal of two consecutive rulings and again we are able to compute the striction
points as midpoints in the way shown above.

In case of intersecting consecutive rulings one has to decide whether the ruled surface
should be interpolated or approximated. In the first case the intersection point is a good
choice for the central point on both rulings Ri and Ri+1. In the latter case an average of
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Ri−1

Ri Ri+1

Ri+2

F+

i
F+

i

′

F−

i+1

′ F−

i+1

Mi Mi+1

Figure 4: Estimating central points at torsal or cylindrical rulings

the intersection point an the previously computed pedal points would be sufficient, since
approximating subdivision schemes result in curves that make sharp corners round. So is the
case for subdivision schemes for ruled surfaces.

It is well known and obvious that the common normal of R0 and Rε converges to the
central normal. The pitch of the helical motion transforming Rε to R0 converges towards the
so called distribution parameter δ of R at R0. It is a measure for the winding of the tangent
planes of R along R0 and is zero for torsal generators, see [8, 23]. These results can easily be
obtained from the view point of kinematics based on dual vector calculus, see [27].

F−ε, 0

S0

F0, ε

R0

Figure 5: Discrete version of the striction curve

2.5. Interpolatory subdivision for curves

We are interested in the interpolation of given discrete ruled surfaces by finer models. Since we
know that discrete / smooth ruled surfaces are represented by polygons / curves in the Klein
model, we study subdivision schemes for curves. One famous scheme is the four-point-scheme
by Dyn et al. [4]. In the following we use the abbreviation DLG-scheme.
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Given a finite sequence (P old

i )i∈I of points with coordinate vectors pold
i , new points are

computed according to

pnew

2i = pold

i ,

pnew

2i+1 = (1

2
+ w)(pold

i + pold

i+1) − w(pold

i−1 + pold

i+2),
(9)

where w is a shape parameter. The DLG-scheme is known to converge towards a C1-curve in
the limit, if 0 ≤ w < 1

8
. Small w are straightening the curve towards the initial polygon. If

the parameter w is chosen larger than 1/8 the scheme produces fractal like curves.

Figure 6: Some steps of the four-point-scheme and limit curve (w = 1/16)

The DLG-scheme is a special case of an interpolatory scheme. Subdivision schemes with
arbitrarily high smoothness in the limit can be generated [24]. Ternary schemes insert two
new points in between two old points in each step and can be used to produce C2-curves in
the limit, see [7].

2.6. Approximating schemes for curves

Sometimes it is sufficient to perform a refining technique to geometric objects that produces
only an approxmating family of these objects. For curves there exists the well known scheme
by Chaikin [2]. It refines a polygon by simply cutting corners away. The corner cutting can
be applied to polygons according to different masks – that is the matrix of coefficients of the
affine combinations defining the scheme – such that it produces splines consting of curves
which are joined with highest possible continuity in the limit, see [24].

Figure 7: Some steps of Chaikin’s algorithm and limit curve

A simple and well known kind of approximating scheme produces a sequence of parabolae
joined with C1-continuity at the midpoints of the initial polygon. New points are computed
from the old ones by

pnew

2i =
3

4
pold

i +
1

4
pold

i+1,

pnew

2i+1 =
1

4
pold

i +
3

4
pold

i+1.
(10)

For open curves the first and the last point are left fixed. The second point of the new ones
is the midpoint of pold

1 and pold

2 . Analogously we proceed with the last segment of the input
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polygon. Applying higher order schemes we have to take care of a certain number of input
points at the beginning and at the end of the list depending on the order of the scheme.

The coefficients in the mask can be easily obtained from Pascal’s triangle [24]. We will
make use of this fact when refining data in order to obtain smoother results.

2.7. Geodesic subdivision on the Euclidean unit sphere

The second algorithm for the design of ruled surfaces combines subdivision for the discrete
version of the striction curve with a subdivision scheme applied to the direction vectors of the
rulings. It is no restriction to assume that all direction vectors are normalized, i.e., they are
of unit length. (We have already done so while collecting differential geometric properties of
ruled surfaces.)

Figure 8: Spherical version of Chaikin’s algorithm (left to right): Initial spherical
control polygon, first and second step of the spherical corner cutting, and limit curve

Therefore we study a subdivision scheme that works on the unit sphere. In order to show
how it works we define the spherical version of Chaikin’s algorithm as a geodesic subdivision
scheme. This is illustrated in Fig. 8.

As outlined in Sec. 2.6 Chaikin’s algorithm means simply cutting away corners of the
control polygon. The edges of the control polygon for the planar version of Chaikin’s algorithm
are carried by straight lines, i.e., the geodesics in the plane.

A spherical control polygon now consists of points in the Euclidean unit sphere, i.e., a
sequence of unit vectors. The edges are segments of spherical geodesics (great circles) on
the sphere. During the algorithm, midpoints have to be computed. The spherical midpoint
m(pi,pi+1) of two points pi and pi+1 (both contained in the unit sphere) is now given by

m(pi,pi+1) =
pi + pi+1

‖pi + pi+1‖
, (11)

where ‖v‖ is the Euclidean length of v. The orientation of rulings will not change in a small
neighborhood of a regular ruling, so we can assume pi 6= pi+1 and thus (11) is well defined.
Eq. (11) allows to apply the Chaikin scheme as defined in Eq. (10) to a spherical polygon.
Since

(3pi + pi+1)/4 = (pi + (pi + pi+1)/2)/2

we have to compute three times a spherical midpoint according to formula (11) in each
step and for each segment in order to perform the geodesic version of Chaikin’s algorithm

on the Euclidean unit sphere. Higher order corner cutting schemes can also be defined by
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Figure 9: The DLG-scheme on the sphere

iterated computation of midpoints. Thus the spherical and indeed any geodesic version can
be computed in the same way.

Affine combinations on the sphere can also be computed via spherical linear interpolation.
Let pi and pi+1 be two unit vectors, i.e., points in the unit sphere, and let further ϕ be the
angle enclosed by them. Then

slerp(pi,pi+1, t) =
sin(1 − t)ϕ

sin ϕ
pi +

sin tϕ

sin ϕ
pi+1, (12)

where 0 ≤ t ≤ 1 parameterizes the circular arc between pi and pi+1 with constant velocity
ϕ. It was introduced into the computer graphics community in [26]. Note that this formula
is independent of the dimension of the underlying space. With Eq. (12) each averaging
procedures on the sphere can be performed.

In order to adapt the DLG-scheme for the sphere, we manipulate the second equation of
(9) and find

(

1

2
+ w

)

(pi + pi+1) − w(pi−1 + pi+2) =
1

2
qi +

1

2
qi+1, with

qi = −2wpi−1 + (1 + 2w)pi and qi+1 = (1 + 2w)pi+1 − 2wpi+2.

Consequently the newly inserted point can be constructed by applying linear combinations to
three pairs of points. Therefore and with (12) the DLG-scheme can also be applied to data
in the sphere. An example is shown in Fig. 9.

2.8. Geodesic subdivision in the group of Euclidean motions

Now we assume that we are given two orthonormal frames

Σi = (si; e1,i, e2,i, e2,i), Σi+1 = (si+1; e1,i+1, e2,i+1, e2,i+1).

There is a uniquely defined shortest uniform Euclidean motion (this is either a helical motion,
or a rotation, or a translation)

µ : Σi → Σi+1.

By shortest (without introducing a metric) we mean that the angle of the rotational part is
the smallest possible. The Euclidean motion µ is the geodesic within the group of Euclidean
motions joining the two points representing the respective orthonormal frames Σi and Σi+1.
We can parameterize this motion with constant speed such that µ(0) = Σi and µ(1) = Σi+1.
The geodesic midpoint Σm

i = (sm
i ; em

1,i, e
m
2,i, e

m
3,i) is then given by µ(1

2
) = Σm

i .
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si

e1,i

e2,i

e3,i

si+1

e1,i+1

e2,i+1

e3,i+1

sm
i

em
1,i

em
2,i

em
3,i

Figure 10: Computing the geodesic midpoint in the group of Euclidean motions

An example is shown in Fig. 10. These facts enable us to modify Chaikin’s algorithm
– indeed any corner cutting algorithm – and also the DLG scheme for subdivision in the
Euclidean motion group, see for example Fig. 11.

There are several types of interpolation and modeling techniques for motion design and
motion planning in Study’s quadric, see [5, 6, 10, 11, 12].

Figure 11: Chaikin’s algorithm in the group of Euclidean motions:
Initial sequence of orthonormal frames, two steps, and the result after
eight steps of geodesic subdivision in the group of Euclidean motions
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3. Algorithms

3.1. Projection algorithm

The first algorithm will be called the projection algorithm because it uses a projection to the
manifold M4 as an intermediate step.

First we are given an initial list of data lines Li. These are represented by a list of data
points in the Klein model of Euclidean line space. Then we refine the polygon in R

6 by
applying an interpolatory or approximating subdivision scheme. The resulting finer polygon
may consists of two types of points: Points which lie on the manifold M4 and points which
do not. Points of the second type do not represent lines in Euclidean three-space R

3. Thus
we use Eq. (4) in order to find the nearest points M4.

Repeating the averaging and the projection we obtain in the limit a smooth ruled surface.
The necessary convergence results are given in [28, 29, 30].

Figure 12: Example 1: The projection algorithm reproduces the straight
striction curve of the cylindroid

3.2. Combined algorithm

The second approach can be used to refine a discrete ruled surface in a neighbourhood of
the striction curve. Assume we are given an initial list of lines Li. At first we compute the
discrete analogue of the striction curve as shown in Sec. 2.4. Then we compute the spherical
image of the discrete ruled surface which results in a sequence of points in the Euclidean unit
sphere S2. Now we apply a subdivision scheme to the discrete striction curve and a geodesic
subdivision scheme in S2 to the spherical image as shown in Sec. 2.7. Since this algorithm
combines ordinary subdivision with geodesic subdivision in the sphere we call this technique
combined algorithm.

3.3. Denavit-Hartenberg-algorithm

A sequence (Li)i∈I of lines can be seen as a discrete ruled surface or as the set of axes of a
serial robot with #I revolute joints. The direct kinematics of this serial robot uses the so
called Denavit-Hartenberg method, see [1, 9]. To each system a Cartesian coordinate system is
attached such that the first axis coincides with the rotation axis between to adjacent systems.
The second axis coincides with the common normal of the two adjacent rotation axes. We
choose the origin on Li at the pedal point of the common normal between Li and Li+1. There
are no problems with closed kinematical chains. For open chains (i.e., open ruled surfaces)
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Figure 13: Example 3: Combining Chaikin’s rule for the striction curve as well as
the spherical Chaikin algorithm for the spherical image

we choose the pedal point on L1 of L1 and L2, and in an analogous way at the end of the
chain.

Each of the Cartesian coordinate systems Σi attached to the discrete ruled surface can
be seen as an analogue to the Sannia frame as described in Sec. 2.3. There is a uniquely
determined shortest Euclidean motion (helical motion rotation, or translation) transforming
Σi into Σi+1. By means of geodesic subdivision within the group Euclidean motions (explained
in Sec. 2.8) we can refine the given sequence of motions or equivalently the sequence of given
Sannia frames.

This algorithm delivers more than rulings of a finer model of the ruled surface. The trace
of origins serves as an approximant of the striction curve, and the one-parameter motion of
the Sannia frame is also refined.

4. Examples

4.1. Projection algorithm: example 1 & 2

The cylindroid rendered data for the first test of the projection algorithm. Eight lines evenly
distributed on the entire surface were picked. Five steps of the algorithm which combined
subdivision for the points being the lines images in the Klein model and subsequent projection
to the manifold of lines were performed. This example shows that the straight striction curve
which is part of a directing line contained in the cylindroid are reproduced by the algorithm.

Figure 14: Example 5: The Denavit-Hartenberg-Method shows a way to refine
ruled surfaces by means of geodesic subdivision in the group of Euclidean motions
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The results can be seen in Fig. 12.

The projection algorithm does not fail even if we have to refine data that comes from a
developable ruled surface. The pictures shown in Fig. 15 demonstrate that even the curve of
regression which was computed from the set of lines of the finer discrete ruled surface can be
recovered. The data in this special example comes from a helical developable.

Figure 15: Example 2: Reproducing a helical developable with the projection algorithm

4.2. Combined algorithm: example 3 & 4

Four abitrarily given lines in Euclidean three-space served as initial sequence of lines (see
Fig. 13) for a test of the combined algorithm. We applied one, two, and four rounds of the
combined algorithm and obtained the lines of the interpolating finer discrete ruled surface
also shown in Fig. 13.

We have tested our algorithm on data from a ruled surface which is of the topological
type of a Moebius strip. In Fig. 16 we see the result of the combined algorithm applied to
data from the Moebius-like surface.

Figure 16: Example 4: Moebius strip approximated by combined Chaikin algorithm

4.3. Denavit-Hartenberg-algorithm: example 5 & 6

We have also tested the Denavit-Hartenberg-Algorithm. An example is shown in Fig. 14. It
illustrates the case were data comes from a ruled quadric. Four lines are chosen and four
steps of the refinement based on the Denavit-Hartenberg-Method are applied.
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Figure 17: Example 6: Reproducing a helical ruled surface

The third algorithm which uses geodesic subdivision in the group of Euclidean motions
also nicely reproduces the shape of surfaces which are invariant under one-parameter sub-
groups, i.e., helical ruled surfaces. Starting with an initial set of six lines we have performed
three steps of the algorithm. The result can be seen in Fig. 17.

4.4. Comparison of algorithms

The projection algorithm does not differ between different types of rulings. Torsal rulings
and cylindrical correspond to points in the model space and they can be treated with any
averaging procedure. There is no computation of the striction curve and the problems of
choosing the right striction point there cannot occur. The adjacent projection does not fail.

Before applying the second algorithm, we have to clarify, whether we want to interpolate
or approximate the ruled surface. As outlined in Section 2.4 there are two possibilities for the
estimatation of the striction point in case of intersecting consecutive rulings. However, any
approximating scheme makes sharp corners round. This is also the case for singular rulings of
ruled surfaces. Interpolating schemes can be forced to make sharp ridges by reducing weights
only locally. This needs a preprocessing step were the possible sharp edges have to be detected
and a decission, if they should be reproduced has to be made.

Here we should remark that the discrete version of the striction curve converges quadrat-
ically towards the smooth striction curve, if the data lines that come from a smooth surface
become finer. Nevertheless the limit curve obtained from a subdivision scheme applied to the
previously estimated striction polygon will in general not coincide with the striction curve of
a ruled surface that rendered the data lines. It is still a good approximation since it cannot
be too far away.

We like to describe a refinement method very similar to the combined algorithm here:
Apply a subdivision scheme to the discrete striction curve once and apply the same scheme
to the discrete spherical image once. Now we can recompute the discrete striction curve and
restart the refinement. In this case the convergence results by Wallner and Dyn [28] cannot
be applied. Tests confirm that after a few steps the striction curve as well as the ruled surface
shows a somehow chaotic behavior.

Finally we remark that the third algorithm may have the same problems like the combined
algorithm since in the first step (computation of the Sannia frames) the discrete version of
the striction curve is also computed.
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5. Conclusion

We have presented geometric ideas for the approximation and interpolation of ruled surfaces.
After some minor modification subdivision schemes for curves nicely apply to ruled surfaces.
There is no doubt that these constructions can also be done in the set of spheres in Euclidean
space. Geodesic subdivision in the set of spheres is very simple since we can work in the
cyclographic model which is in fact an affine space.

For visualization and animation the discrete models of ruled surfaces or canal surfaces
are sufficient. It is not necessary to look for parameterizations or representations in terms
of implicit equations. In the case of ruled surfaces it is easy to switch to a representation in
terms of a triangle mesh (or any other mesh). This will not be the case for canal surfaces
when constructed in a similar way. Nevertheless these representations should be sufficiently
well for visualizations and animations.

The less elegant approach to ruled surface subdivision would be the following: Consider
a discrete ruled surface to be bounded by two polygons. Apply a subdivision to each of the
polygons and join the new vertices by lines which then comprise the set of rulings of the
refined discrete ruled surface. We did not discuss this method here since it does not present
new ideas. It is mainly based on the subdivision of the arbitrarily chosen directing curves.
Exactly that is what we tried to circumvent.
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