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Abstract. Face-based curvature estimations on triangle meshes are presented
in this paper. One method is based on the definition of osculating circles in
normal planes, the other one directly on the definition of the curvature of curves.
The regions of computation are disk neighborhoods with user specified radius
constructed around each triangle of the mesh. The examples show reliable results
in the estimation of the principal directions and of the selection of umbilical, flat,
elliptic, hyperbolic and parabolic regions of the mesh also in such cases where
vertex-based methods cannot be applied.
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1. Introduction

Our aim is to define new curvature values ordered to faces of a triangle mesh. By the help of
circular disks introduced in [25] we give an estimation also for the Gaussian curvature, and
with planar intersections a further estimation for normal curvatures. We extend and analyse
the stability of our method given for estimating the principal curvatures and principal direc-
tions at an arbitrary point of the mesh also in such cases, where the known, frequently used
methods do not work. Principal directions are important informations in several applications,
e.g., for tool-path planning procedures in manufacturing.

Triangle meshes are frequently used approximations of free-form surfaces. They are rep-
resented by discrete data structures containing, e.g., the coordinates of three vertices and the
coordinates of the face normal of each triangle. In geometric algorithms working on triangle
meshes the description of topological informations are necessary. For this purpose different
polyhedral data structures have been developed, which are vertex-oriented in most cases.
Exceptions are few papers, where other representations are described as edge-oriented poly-
hedral data structure [23] or hierarchycal data structure developed for mesh simplification
algorithms [12]. In vertex-based approaches a surface normal vector and curvature values are
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defined from the data of the triangles in a well defined neighborhood of the actual vertex, and
the results are proposed to be considered as estimated surface normal and surface curvatures,
respectively at that point.

In a short survey of curvature estimation methods we mention the most frequently used
ones and the crucial problems inspiring further investigations in the computation methods
of surface normal vectors, normal, principal and Gaussian curvatures at a vertex point. All
these values are influenced not only by the local shape of the mesh, but also by the chosen
region, i.e., the set of triangles involved in the computation.

In curvature estimations there are basically two different approaches: discrete and an-
alytical methods. Discrete methods work with discretized formulae of differential geometry
developed for surface approximation and mesh smoothing ([5, 13, 15, 18, 19]). For example,
the Gauss curvature at a vertex of the mesh is estimated with the help of the discretized
Gauss-Bonnet theorem, the convergence of which has been investigated in [28]. Mean cur-
vature is computed with the help of the discrete Laplace-Bertrami operator providing also
methods for fairing irregular meshes. Analytical methods involve fitting a surface locally, then
computing the curvatures of the fitted surface. Second order ([16, 20, 26, 27]) or third order
[9] surfaces are used to approximate a part of the mesh. Five frequently used discretization
schemes for approximating Gaussian curvature are compared in [7] with the result that the
estimated curvatures are extremely sensitive to noise. The qualification of four other methods
is similar in [20]. This explaines, why the huge number of papers on this field is still growing
rapidly. A systematic survey of curvature estimation methods on triangular meshes is given
in [8].

A basic question arises right at the beginning of the computation which region should be
considered. A number of well known algorithms work on a one-ring neighborhood of a given
vertex containing the triangles, one vertex of which coincides with the actual mesh vertex
(Fig. 1).
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Figure 1: One-ring neighborhood of a vertex and the projection in the tangent plane

Of course, the results are depending on the shapes of the used triangles, and long, narrow
triangles lead to huge fluctuations in the results of computations. The surface normal N at
the point vi is defined by a weighted average of the face normals in the one-ring neighborhood.
The proposed weights are, e.g., areas or Voronoi surface areas or mixed surface areas of the
triangles ([14, 16, 21]). Such an estimated normal vector determines the tangent plane and
normal sections of the mesh. A widely used method for the computation of normal curvatures
is to define the osculating circle by the surface normal and one edge emanating from the actual
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vertex ([11, 15, 16, 26]). The curvature of this circle is (Fig. 2)

κn(vi) ≈
2 < N, (vj − vi) >

|vj − vi|2
,

where <, > denotes the dot product.
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Figure 3: Two-ring and geodesic neighborhood
of a vertex

Instead of one-ring neighborhoods, two-ring neighborhoods are used in [20] providing
more informations about the surface approximated by the mesh. By least squares fitting of
biquadratic Bézier patches better results are achieved also for irregular triangulations.

Geodesic circle neighborhood around a vertex is more independent from the shapes of the
triangles (Fig. 3). In [17] geodesic neighborhoods are constructed, and normal curvatures are
computed from the angle differences while moving the normal vector along a geodesic arc.
Geodesic rings or their approximations are used also in [4, 6, 11, 22], then analytic methods
are applied as a matrix method similar to Taubin’s algorithm or computations using the
Euler formula.

In the next vertex-based algorithm [21] first, a curvature value is defined for each face
in an one-ring neighborhood of a vertex. The face-based curvatures are defined in terms of
directional derivatives of the surface normals estimated at vertices, then a weighted average of
face curvatures is computed at the vertex. A face-curvature is defined also in [2] from angles
in the face and dihedral angles formed with the adjacent faces, then the maximum of those
associated to triangles around a vertex is used for characterizing the mesh curvature at that
point. Instead of one-ring neighborhood a spherical neighborhood is used in [1]. A weighted
sum of dihedral angles within a sphere around the actual vertex normed by the corresponding
mesh area defines the Gaussian curvature at this point.

The vertex-based algorithms work in vertex neighborhoods by collecting mesh informa-
tions around vertices. Obviously, they cannot be applied in such cases, where all the vertices
are lying on boundaries or along feature edges (see Figs. 9 and 10). We propose a solution
for this problem.

In this paper we define normal curvatures on each face of the triangle mesh in order
to estimate principal directions and to characterize elliptic, umbilical, flat, parabolic and
hyperbolic region (Section 2). In the examples (Section 3) we show the proposed method on
“synthetic” and real triangulated surfaces.
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2. Curvature values defined on a triangle face

Instead of computing surface properties at vertices in vertex neighborhoods we define curva-
ture values associated to faces. The center of the defined region is the barycentric center of
the given triangle. We intersect the mesh with normal planes passing through the face normal
of the triangle, then we measure a given radius along the polygonal lines of intersection in
both directions from the center point. In this way we get a number of curved diameters of
the circular disk bent on the mesh around the face. We call this constructed disk geodesic
circle (however, the normal sections are not geodesic curves) or “splat” after Kobbelt [13]
(Fig. 4). Similar extended neighborhoods are defined around vertices by measuring a user
specified radius along normal sections, and are called geodesic rings. The set of polygonal
diameters of such a ring is called “spider” in [22].
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Figure 4: Geodesic disk around a face
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Figure 5: Osculating circle
in a normal section

We define in each normal plane an osculating circle determined by the given radius and
endpoints of the bent diameter and the face normal (Fig. 5) [25].

Denote rg the given geodesic radius, d the chord length between the endpoints of the
curved diameter, 2α the unknown central angle and rn the required radius of the osculating
circle. For the triangle and the arc belonging to the angle α

sin α =
d

2rn

and rg = rn · α

hold. From these equations we get
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, 0 < α << 1.

Consequently, the third order approximation of the normal curvature is

κn =
1

rn

≈
1

rg

√

(

1 −
d

2rg

)

6 . (1)

Repeating this computation for a set of normal sections in the actual neighborhood of
the given triangle, we obtain normal curvature values κn,i, i = 1, . . . k. If the mesh is a
dense triangulation of a regular surface, then the normal planes belonging to the minimal
and maximal normal curvatures are orthogonal to each other. They determine the principal
directions. The plane of the shortest chord, where the computed curvature value is maximal,
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determines the first principal direction T1 and the first principal curvature κ1 which is the
normal curvature computed in this plane. This direction is fairly stable, even if we compute
with smaller geodesic circles. The second principal direction T2 is orthogonal to it. In the
case of properly specified radius and nearly regular triangulation it is the direction belonging
to the maximal chord length (Fig. 6). In the case of an umbilical or flat triangle (region)
the minimal and maximal normal curvature values are equal (in the flat case zero), and each
direction in the plane of the triangle is a principal direction.
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Figure 6: Principal directions
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Figure 7: Tangent vectors of a normal section

We remark that the approximation of the normal curvature in formula (1) coincides with
the curvature formula of Haantjes in [10]

κ2

n = 4! lim
l→0

l − d

l3
,

where l is the arc length and d the chord length of the osculating circle, applied with the same
geodesic radius rg = l

2
and diameter d in the discrete form (i.e., without limit computation).

The other method for defining normal curvature in a given tangent direction is based
directly on the curvature definition of space curves. We consider the directional vectors of the
line of intersection in a normal plane with the mesh at the starting point and at the endpoint
of this polygonal line. In Fig. 7 these vectors are denoted by Tis and Tie, respectively. Instead
of the limit

κni = lim
∆s→0

∆β

∆s
,

where ∆β is the angle between the tangent vectors and ∆s is the arc length between the two
points, we define the normal curvature to the actual face in the direction of Tis by

κni =
∆β

rg

. (2)

Here the radius rg measures the length of the polygonal line between its starting and endpoint.
This value is dependent on the radius, but if it is specified appropriately, the results correspond
to those computed with the osculating circle.

We present a third curvature value, the Gaussian curvature ordered to a triangle face.
The classical formula based on the Gauss-Bonnet theorem expresses the Gaussian curvature
at a point v of an analytical surface using a geodesic circle in the following way [3]:

K(v) = lim
rg→0

3

π
·
2πrg − L

r3
g

, (3)
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where rg is the radius of the geodesic circle around the point v and L is the circumference
(Fig. 4). The value of the Gaussian curvature is equal to the product of the two principal
curvatures. (K = κ1 · κ2 = max(κn) · min(κn))

On the triangle mesh we compute the Gaussian face curvature not by the limit above,
but by a circular disk around the barycentric center v of the triangle face. rg is the length
of each polygonal line in the normal sections (the length of the legs of the spider) and the
circumference L is the length of the polygonal line consisting of the straight line segments
between the endpoints of the adjacent polygonal diameters. In the examples we investigate the
deviation of the product of the computed principal curvatures from this Gaussian curvature.

We have constructed an edge-oriented polyhedral data structure on the mesh which can
differentiate inner, boundary, feature and silhouette edges, and is suitable for the computation
of lines of intersection of a mesh with a plane.

3. Examples

In the examples we show so called synthetic and real meshes. A synthetic mesh is generated by
a triangulation of the parameter domain of an analytical surface representation. Real meshes
are generated from free-form surfaces triangulated by CAD systems (probably on the surface).
In the analysis of the results we are focusing on the stability of the principal directions and on
the classification of surface regions into flat, parabolic and elliptic types. The fluctuation in
the results of our curvature estimations are comparable with the results of other algorithms
in the literature.

The second and third columns in the Table 1 contain the proportional difference (max κ

from (1)) between the maximal normal curvature and the value computed according to (1)
and the Gaussian curvature K1 computed from this normal curvature and the corresponding
second principal curvature. The values in the next columns are the proportional errors of the
maximal normal curvature (max κ from (2)) computed on the base of curvature definition by
formula in (2) and the corresponding Gaussian curvature K2. In the last column the Gaussian
curvature K3 is estimated by the discrete counterpart of the formula in (3). The value of rg

in the Table 1 is in fact a factor, which multiplies the “average size” of the actual triangle in
order to get the radius of the geodesic disk. This factor is a more appropriate input value than
the exact value of the radius due to different triangle sizes. The numerical representation of
the mesh was restricted to 6 decimal digits. As the sign of the normal curvature depends on
the orientation of the surface normal, we worked with its absolute value.

In Fig. 8 a synthetic mesh of a rotational cylinder with radius 10 (cyl1 in the Table 1) is
shown. The radius factor of the disk is 3. According to our investigations, the best results
have been achieved with radius factors between 2.5 and 3.5. The actual triangle (as each
point on the cylinder) is of parabolic type. The longer straight line segment is showing into
the first principal direction belonging to the maximal normal curvature. Because the mesh is
regular, all these computed curvatures are equal for each triangle.

In Fig. 9 a coarse synthetic mesh of the same cylinder is shown (cyl2 in the Table 1).
Of course, the radius factor must be less then 1. Despite of the bad shape of the triangles,
the computed results, especially the curvatures computed by the osculating circle and the
Gaussian curvatures are very good. This kind of triangulation cannot be handled by vertex-
based computations.

In Fig. 10 a real mesh of a cylinder is shown with a geodesic disk on the upper face (cyl3
in the Table 1). The triangles on this face are of flat type, and each geodesic disk lying inside
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Figure 8: Geodesic disk on a cylinder (cyl1) Figure 9: The same cylinder (cyl2)

of the upper face and all the three computation methods have given very accurate results.
Such triangulations, from boundary to boundary, occur frequently in flat regions, especially
in STL files. The mesh has two four-sided holes on the side, the boundary edges of which are
registered in the data structure [24].

Figure 10: A real mesh of a cylinder (cyl3)

In Fig. 11 a part of a torus is shown (tor1 in the Table 1) and a geodesic disk on it. The
maximal normal curvature equals to the reciprocal of the radius of the meridian circle at each
point of the torus. The investigation of the variation of the Gaussian curvature K3 computed
on the base of the Gauss-Bonnet theorem concluded that larger geodesic disks led to better
results with this formula on convex (elliptic) surfaces. The computed values are constant
along parallel circles according to the shape of the torus.

In Fig. 12 a coarser, irregular mesh of the same torus is shown. Here bigger disks are
necessary for the same accuracy in the results than in the denser triangulation. (The regular
mesh is not shown, the computed values are in the row tor2 in the Table 1.) Fig. 12 shows
also the influence of the triangulation. The parameter values are disturbed randomly by 3%.
The results show the same relative error in the computations with the formulae (1) and (3) as
in the regular case. Computing with the tangent vectors by the formula (2) is less accurate
in this case. The results for irregular meshes are shown in the Table 1 in the rows tor3 in the
dense and tor4 in the coarse triangulation, respectively.

Noise added to the coordinate values (i.e., the mesh points are not l ying on the torus)
lead to bigger errors (3% random change in the coordinates course 16-29% error).
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Figure 11: Regular mesh of a torus (tor1) Figure 12: Irregular coarse mesh of the
same torus (tor4)

Table 1: Data of examples

model, rg max κ from (1) K1 max κ from(2) K2 K3 from (3)

cyl1, 3 1.4% 0.0% 1.4% 0.0% 0.3%

cyl2, 0.7 0.4% 0.0% 1.1% 0.0% 0.2%

cyl3, 0.5 0.0% 0.0% 0.0% 0.0% 0.0%

tor1, 3 0.5% 1.5% 1.2% 7.0% 1.2%

tor2, 4.5 0.9% 2.0% 0.4% 2.0% 1.2%

tor3, 4.0 0.5% 1.5% 1.2% 8.0% 1.2%

tor4, 4.6 0.9% 2.7% 0.4% 4.3% 1.9%

In the construction of a geodesic disk its center point has been set into the barycentric
center of the actual triangle. The next example shows that the maximal normal curvature and
the corresponding principal direction are very stable independently from the exact position
of the center point in the actual triangle. This is demonstrated by stepping in the principal
direction by the given radius on the mesh (Fig. 13). The path of this movement is a meridian
circle of the torus, however, some center points are close to a triangle edge. The bordering
polygonal line of the disks are computed and drawn with 24 diameters. The position of the
center point in the actual triangle is shown in an enlarged part of the path (Fig. 14). The
straight line segments are pointing into the principal directions.

We emphasize that in cases shown in Figs. 9 and 10 vertex-based methods cannot be ap-
plied. Our method applying circular disks is less sensitive on the irregular triangulations than
vertex-based computations, and especially the principal direction belonging to the maximal
normal curvature is very stable.

4. Conclusion

We have introduced curvature values ordered to faces in triangle meshes by laying a flexible
circular disk with user-specified radius onto each face of the mesh. From the chords of such a
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Figure 13: Moving in the computed
principal directions

Figure 14: The center points of the disks
are not in the barycenters of the faces

bent disk and on the base of classical curvature definitions we have defined normal, principal
and Gaussian curvatures. Novel in the presented algorithms is the characterization of the
mesh by curvature values and principal directions associated to mesh triangles. Our method
has the advantages compared to former estimations that it does not use estimated normal
vectors, and the defined osculating circle approximates that of the underlying surface in third
order. Moreover, our method can be used in regions with long, narrow triangles and in
regions without inner mesh vertices where vertex-based methods don’t work. The examples
have shown that the obtained principal curvature values and the corresponding principal
directions are quite reliable, when the radius of the disk achieves an optimal size. Our method
provides a good classification of elliptic, parabolic, flat and hyperbolic regions of the mesh.

We have implemented the presented algorithms in Java on PC.
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