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Abstract. We study Euler’s problem of determination of a triangle from its
circumcenter, orthocenter, and incenter as a problem of geometric construction.
While it cannot be solved using ruler and compass, we construct the vertices by
intersecting a circle with a rectangular hyperbola, both easily constructed from
the given triangle centers.
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1. Euler’s triangle determination problem

Leonhard Euler studied in his famous paper [2] the problem of determining a triangle ABC
from its circumcenter O, orthocenter H , and incenter I. Euler constructed a cubic polynomial
whose roots are the lengths of the sides, and whose coefficients are rational functions of the
distances among the three given triangle centers. He showed that when OI = IH , the cubic
polynomial factors nontrivially, and gave the roots explicitly. With a numerical example,
Euler showed that in the general case, the solution reduces to the trisection of an angle.
In this note, we address Euler’s determination problem as a construction problem. While
the problem cannot be solved with the traditional restriction to ruler and compass, we shall
nevertheless give the vertices as the intersections of two conics, one a circle and the other a
rectangular hyperbola easily constructed from O, H , and I.

Let G and N be the points which divide OH in the ratio

OG : GN : NH = 2 : 1 : 3 .

These are the centroid and the nine-point center of the required triangle (if it exists). A
necessary and sufficient condition for the existence of ABC is given by the following theorem.
For details, see [4, 5, 6, 7].

Theorem 1 [A. Guinand] Let D be the open circular disk with diameter HG. A triangle
ABC exists with circumcenter O, orthocenter H , and incenter I if and only if I ∈ D \ {N}.
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2. Ruler and compass construction of circumcircle and incircle

Let R and r denote respectively the circumradius and inradius of triangle ABC. In [2], Euler
established, among other things, the famous relation

OI2 = R(R − 2r). (1)

With the help of the famous Feuerbach theorem [3], discovered half a century after Euler’s
paper [2], that the nine-point circle of a triangle is tangent internally to the incircle, we
can easily construct the circumcircle, the incircle, the nine-point circle, and their point of
tangency. According to the Feuerbach theorem,

NI =
R

2
− r. (2)

Together with (1), this gives 2R ·NI = OI2, and suggests the following ruler-and-compass
construction. See also [5], which studies the same problem from a paper-folding approach.
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Figure 1: Incircle from O, H , I

Construction 2 Suppose O, H , I satisfy I ∈ D \ {N}.
(1) Extend OI to X such that OX = 2 OI; construct the circle ONX, and extend NI to

intersect the circle again at Y . The length of IY is twice the circumradius, and four
times the radius of the nine-point circle.

(2) Construct the circumcircle (O) and the nine-point circle (N).

(3) Construct the intersection F of the circle (N) with the half line NI, and the circle,
center I, passing through F . This is the incircle and F is the (Feuerbach) point of
tangency with the nine-point circle (see Fig. 1).

Starting with an arbitrary point A on (O), by drawing tangents, we can complete a triangle
ABC with incircle (I) and circumcircle (O). The locus of the orthocenter of the variable
triangle ABC is the circle, center P , passing through H . We determine the specific triangle
with H as orthocenter. First we consider a special case where the constructibility with ruler
and compass is evident from Euler’s calculations.
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3. The case OI = IH

If OI = IH , consider the intersection A of the half line NI with the circumcircle (see Fig. 2).
We complete a triangle ABC with (O) as circumcircle and (I) as incircle. The orthocenter
of triangle ABC lies on the reflection of AO in the line AI. This is the line AH . Since angle
AHN is a right angle, for the midpoint M of AH , we have NM = 1

2
AH = 1

2
AO = R

2
. This

means that M is a point on the nine-point circle. It is the midpoint of the segment joining A
to the orthocenter. It follows that the orthocenter must be H .
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Figure 2: Triangle from O, H , I with OI = IH

Remark: One referee has kindly pointed us to [1], which shows that in this case the angle
BAC must be π

3
, and the Euler line cuts off an equilateral triangle with the sides AB and

AC.

4. The general case: construction with the aid of a conic

Set up a cartesian coordinate system with origin at O. Assume H = (k, 0) and I = (p, q).
Since ∠HAI = ∠OAI, and likewise for B and C, the vertices A, B, C are on the locus of the
point P for which ∠HPI = ∠OPI. If P = (x, y), a routine calculation shows that the locus
of P is a curve K: K(x, y) = 0, where

K(x, y) := 2qx3 − (2p − k)x2y + 2qxy2 − (2p − k)y3

− 2(p + k)qx2 + 2(p2 − q2)xy + 2(p − k)qy2

+ 2kpqx − k(p2 − q2)y.
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Note that K(k, 0) = 0, i.e., K contains the point H .
By computing the circumradius R, we easily obtain the equation of the circumcircle

(O) : G(x, y) = 0, where

G(x, y) := x2 + y2 −
(p2 + q2)2

(2p − k)2 + 4q2
.

It is possible to find a linear function L(x, y) such that

Q(x, y) := K(x, y) − L(x, y)G(x, y)

does not contain third degree terms. For example, by choosing

L(x, y) := 2qx − (2p − k)y − 2qk,

we have

Q(x, y) = −2pqx2 + 2(p2 − q2)xy + 2pqy2

−
k2(k − 4p)(p2 − q2) + k(3p2 − 5q2)(p2 + q2) + 2p(p2 + q2)2

(2p − k)2 + 4q2
· x

+
2q(kp((2p − k)2 + 4q2) + (p2 + q2)2)

(2p − k)2 + 4q2
· y −

2k(p2 + q2)2q

(2p − k)2 + 4q2
.

The finite intersections of (O) with K are precisely the same with the conic C defined by
Q(x, y) = 0. Note that the coefficients of x and y in L are dictated by the elimination of the
third degree terms in K −L ·G. We have chosen the constant term such that L(k, 0) = 0, so
that L(x, y) = 0 represents the line HP parallel to NI. It follows that Q(k, 0) = 0, and the
conic C contains the vertices and the orthocenter of the required triangle ABC. It is necessarily
a rectangular hyperbola. This fact also follows from the factorization of the quadratic part
of Q, namely, −2(px + qy)(qx − py). This means that C is a rectangular hyperbola whose
asymptotes have slopes q/p and −p/q . These are parallel and perpendicular to the segment
OI.

To construct the rectangular hyperbola C, we identify its center O′. This is the point
with coordinates (u, v) for which the quadratic polynomial Q(x−u, y− v) has no first degree
terms in x and y. A routine calculation gives

O′ =

(

k((2p − k)2 − p2 + 5q2) + 2p(p2 + q2)

2((2p − k)2 + 4q2)
,

(p2 + q2 − kp)q

(2p − k)2 + 4q2

)

=

(

k

2
+

(2p − k)(p2 + q2) + 2kq2

2((2p − k)2 + 4q2)
,

(p2 + q2)q − kpq

(2p − k)2 + 4q2

)

. (3)

Since C is a rectangular hyperbola, its center O′ lies on the nine-point circle (N). The following
observation leads to a very simple construction of the center.

Proposition 3 The Feuerbach point F lies on the asymptote perpendicular to OI.

Proof: The nine-point circle has the equation

(

x −
k

2

)2

+ y2 −
(p2 + q2)2

4((2p − k)2 + 4q2)
= 0. (4)
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Figure 3: Center O′ of rectangular hyperbola C

This intersects the line NI at two points, the Feuerbach point and its antipode (on the
nine-point circle). The Feuerbach point is the point

F =

(

k

2
+

(2p − k)(p2 + q2)

2((2p − k)2 + 4q2)
,

(p2 + q2)q

(2p − k)2 + 4q2

)

.

It is easy to see that the line O′F has slope −
p

q
, and is perpendicular to the line OI.

Corollary 4 The center O′ of the rectangular hyperbola C is the second intersection of the
nine-point circle (N) with the perpendicular from F to OI (Fig. 3).

It is well known that if C is a rectangular hyperbola passes through the vertices of a
triangle ABC, its fourth intersection with the circumcircle at the reflection of the orthocenter
of the triangle in the center of the hyperbola. Therefore, one of the intersections of C with
the circle (O) is the reflection of H in O′. The other three are the vertices of the required
triangle (see Fig. 4).
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Figure 4: Triangle ABC with given O, H , I
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