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Abstract. Let S, S ′ be two orthogonal line congruences with common middle
surface P (u, v). We study S and S ′ firstly in the case that S is isotropic and then
in the case that S is the normal line congruence of P (u, v).
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1. Introduction

In a three-dimensional Euclidean space E3 two line congruences, whose straight lines corre-
spond one-to-one, are called orthogonal iff the corresponding straight lines are orthogonal to
one another. Orthogonal line congruences with common middle surface have been studied by
N.K. Stephanides [3] and G. Stamou [2]. In this paper we also study the line congruences,
which are orthogonal to a given line congruence S and have the same middle surface with S.
First, we deal with the case that the middle envelope and the middle surface of S are different
and then with the case that the above surfaces coincide.

Let S be an oriented line congruence in E3, defined by the equation

x(u, v, t) = OP + te3, −∞ < t < +∞, (1.1)

where OP = P (u, v) is the coordinate vector for the surface of reference and e3(u, v) is the
unit vector in the direction of the straight lines of S. Suppose D = {ei(u, v) | i = 1, 2, 3}
is an orthonormal, positively oriented moving frame of S and OM = M(u, v) is the middle
envelope of S.
We assume that S satisfies the following conditions:

(a) The functions P (u, v), M(u, v) and ei(u, v), i = 1, 2, 3, are defined on a simply connected
domain G in the (u, v)-plane and are of class C4.

(b) The spherical representation of S is one-to-one.

(c) The middle envelope M(u, v) is a regular surface having no parabolic or umbilical points.
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(d) There is a one-to-one mapping between the points of the middle surface and the points
of the middle envelope.

There exist linear differential forms σi, ωij, i, j = 1, 2, 3, such that

dP =
3∑

i=1

σiei, (1.2)

dej =

3∑

i=1

ωjiei, ωij + ωji = 0, i, j = 1, 2, 3. (1.3)

According to condition (b) the differential forms ω31, ω32 are linearly independent, i.e.,

ω31 ∧ ω32 6= 0, (1.4)

where ‘∧’ denotes the exterior product of two differential forms.
For the exterior derivatives dω31, dω32 of the forms ω31, ω32 respectively we may set

dω31 = q ω31 ∧ ω32, dω32 = q̃ ω32 ∧ ω31, (1.5)

where q, q̃ are functions of u and v defined on G. Then it is well-known [3, p. 319], that

ω12 = q ω31 − q̃ ω32. (1.6)

The surface OP = P (u, v) is the middle surface of S if and only if [3, p. 319]

ω31 ∧ σ2 + σ1 ∧ ω32 = 0. (1.7)

From now on, we assume that P (u, v) is the middle surface of S. There exist functions l, m, n
of u and v defined on G such that

σ1 = −mω31 − nω32, σ2 = lω31 + mω32. (1.8)

The curvature k, the mean curvature h and the limit distance 2z of S are given by the formulae

k = l n − m2, 2h = l + n, (1.9)

2z =
√

(l − n)2 + 4m2 = 2
√

h2 − k. (1.10)

Considering e3(u, v) as the unit normal vector of M(u, v) and D as the moving frame on
M(u, v), there exist linear differential forms ρ, σ such that

dM = ρ e1 + σ e2. (1.11)

We set
OP = OM + a e1 + b e2, (1.12)

where the functions a = a(u, v), b = b(u, v), (u, v) ∈ G, satisfy the condition [3, p. 321]

∇1a + ∇2b − q̃a − qb = r1 + r2. (1.13)

Here ∇i, i = 1, 2, denote the Pfaffian derivatives with respect to the forms ω31, ω32 and r1, r2

the principal radii of curvature of M(u, v). Besides, it is known [3, p. 320] that the relation

σ3 = −a ω31 − b ω32 (1.14)

is valid.
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2. Middle envelope different from middle surface

Suppose S is a line congruence in E3 defined on G by (1.1), where OP = P (u, v) is its middle
surface. Let D = {ei(u, v) | i = 1, 2, 3} be an orthonormal, positively oriented moving frame
of S and OM = M(u, v) be its middle envelope. At every point P (u, v) of the middle surface
of S we consider a positively oriented orthonormal frame D′ = {e′i(u, v) | i = 1, 2, 3} such as

e′
1

= e3, (2.1)

e′
2

= sin ϕ e1 − cos ϕ e2, (2.2)

e′
3

= cos ϕ e1 + sin ϕ e2, (2.3)

where ϕ = ϕ(u, v) is the oriented angle between e1(u, v) and e′
3
(u, v).

In this paragraph, we assume that the middle envelope OM = M(u, v) of S is different

from its middle surface OP = P (u, v), that is, we study the case that S is not the normal line

congruence of a minimal surface.

It is already known [3, p. 322] that in a neighborhood of each point (u0, v0) ∈ G, there are
infinitely many line congruences which are orthogonal to S and have the same middle surface
P (u, v). All these congruences are defined by the equation

b∇1ϕ − a∇2ϕ − m cos 2ϕ +
l − n

2
sin 2ϕ + q̃a + qb = 0. (2.4)

The solutions of (2.4) depend on an arbitrary function of one variable.
If we put

Γ = q̃ −∇2ϕ, ∆ = q + ∇1ϕ, (2.5)

then the equation (2.4) may be written in the form

aΓ + b∆ − m cos 2ϕ +
l − n

2
sin 2ϕ = 0. (2.6)

We consider a line congruence S ′(ϕ), the straight lines of which are directed by the unit
vector e′

3
(u, v). The orthogonal line congruences S, S ′(ϕ) have the same middle surface iff

(2.6) is valid. Referring to the moving frame D′, according to the relations (1.2), (1.3), we
may write

dP =

3∑

i=1

σ′

i e
′

i, (2.7)

de′j =

3∑

i=1

ω′

jie
′

i, ω′

ij + ω′

ji = 0, i, j = 1, 2, 3. (2.8)

By the equations (1.2), (2.7) and applying the equations (2.1)–(2.3), we can conclude that

σ′

1
= σ3, (2.9)

σ′

2
= sin ϕ σ1 − cos ϕ σ2, (2.10)

σ′

3
= cos ϕ σ1 + sin ϕ σ2. (2.11)

Besides, using (1.6), (2.1)–(2.3), (2.5), from (2.8) we find out that

ω′

31
= − cos ϕ ω31 − sin ϕ ω32, (2.12)
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ω′

32
= −dϕ − ω12 = −∆ω31 + Γω32, (2.13)

ω′

12
= sin ϕ ω31 − cos ϕ ω32. (2.14)

As for the exterior product of the linear differential forms ω′

31
, ω′

32
takes the form

ω′

31
∧ ω′

32
= D ω31 ∧ ω32, (2.15)

where
D = − (cos ϕ Γ + sin ϕ ∆) . (2.16)

The differential forms ω′

31
, ω′

32
are linearly independent iff D 6= 0 ∀(u, v) ∈ G.

From now on, we assume

cos ϕ Γ + sin ϕ ∆ 6= 0 ∀(u, v) ∈ G. (2.17)

Then, there exist functions l′, m′, n′, q′, q̃′ of u and v defined on G such that

σ′

1
= −m′ω′

31
− n′ω′

32
, (2.18)

σ′

2
= l′ω′

31
+ m′ω′

32
, (2.19)

ω′

12
= q′ω′

31
− q̃′ω′

32
. (2.20)

From the relations (2.9), (2.18), by virtue of (1.14), (2.12), (2.13), we obtain

m′ cos ϕ + n′∆ = −a, (2.21)

m′ sin ϕ − n′Γ = −b. (2.22)

Solving the preceding equations and using (2.6), (2.16), we get

m′ =
1

D
(aΓ + b∆) =

1

D

(
m cos 2ϕ − l − n

2
sin 2ϕ

)
, (2.23)

n′ =
1

D
(a sin ϕ − b cos ϕ) . (2.24)

Besides, from (2.10), (2.19), by the relations (1.8), (2.12), (2.13), we find out the system

l′ cos ϕ + m′∆ = l cos ϕ + m sin ϕ, (2.25)

l′ sin ϕ − m′Γ = m cos ϕ + n sin ϕ. (2.26)

In view of (2.16), from the latter system, it follows

l′ = − 1

D
[(mΓ + n∆) sin ϕ + (m∆ + lΓ) cos ϕ] . (2.27)

Let us now denote by k′, h′ and 2z′ the curvature, the mean curvature and the limit
distance of S ′(ϕ) respectively. Similarly to the formulae (1.9), (1.10), we have

k′ = l′n′ − m′2, (2.28)

2h′ = l′ + n′, (2.29)

4z′2 = (l′ − n′)2 + 4m′2. (2.30)
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When m′, n′, l′ from (2.23), (2.24), (2.27) are substituted in (2.28), (2.29), (2.30), we find

k′ =
1

D
[(an − bm) sin ϕ + (am − bl) cos ϕ] , (2.31)

2h′ = − 1

D
[(mΓ + n∆ − a) sin ϕ + (lΓ + m∆ + b) cos ϕ] , (2.32)

4z′2 =
1

D2

{
[(−m∆ − lΓ + b) cos ϕ − (mΓ + n∆ + a) sin ϕ]2 + 4(aΓ + b∆)2

}
. (2.33)

Moreover, similarly to (1.14), there are functions a′ = a′ (u, v), b′ = b′(u, v) so that

σ′

3
= −a′ω′

31
− b′ω′

32
(2.34)

holds. From (2.34) we deduce

a′ = − σ′

3
∧ ω′

32

ω′

31
∧ ω′

32

, b′ = − ω′

31
∧ σ′

3

ω′

31
∧ ω′

32

. (2.35)

By substituting (2.11)–(2.13) into (2.35) and using (1.8), (2.16) we get

a′ =
1

D
[(mΓ + n∆) cos ϕ − (lΓ + m∆) sin ϕ] , (2.36)

b′ =
1

D

(
m sin 2ϕ − n cos2 ϕ − l sin2 ϕ

)
. (2.37)

If OM ′ = M ′(u, v) is the middle envelope of the line congruence S ′(ϕ), then similarly to
(1.12) we have

OM ′ = OP − a′e′
1
− b′e′

2
, (2.38)

in which the functions a′(u, v), b′(u, v) are defined by (2.36), (2.37) respectively. Thus, making
use of the relations (2.1), (2.2) eq. (2.38) can also be written as

M ′P = b′ sin ϕ e1 − b′ cos ϕ e2 + a′e3. (2.39)

Remark 2.1. We assume, without loss of generality, that the S−principal ruled surfaces of
the line congruence S are the parameter surfaces ω31 = 0, ω32 = 0, which happens iff

m = 0 ∀(u, v) ∈ G. (2.40)

According to (2.23), (2.40) we have the equivalent relations

m′ = 0 ⇐⇒ aΓ + b∆ = 0 ⇐⇒ either l = n or ϕ = 0,
π

2
, π,

3π

2
∀(u, v) ∈ G. (2.41)

Hereafter, we continue to have only the values ϕ = 0, ϕ = π
2

in the second equivalence
of (2.41), because the straight lines of the line congruences S ′(0) and S ′(π) (resp. S ′

(
π
2

)
and

S ′
(

3π
2

)
) have the same direction.

Besides, by (1.12), we lead up to

MP∣∣MP
∣∣ =

a√
a2 + b2

e1 +
b√

a2 + b2
e2, (a2 + b2 6= 0 ∀(u, v) ∈ G). (2.42)
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The line congruence, whose straight lines are directed by the unit vector e′
3

=
MP∣∣MP

∣∣ is or-

thogonal to S and because of (2.3), (2.42) we can set

cos ϕ =
a√

a2 + b2
, sin ϕ =

b√
a2 + b2

. (2.43)

By using (2.40), (2.41),(2.43), as well as taking into consideration the hypothesis (2.17), we
come to the following conclusion:

If the line congruence S is isotropic (m ≡ 0, l − n ≡ 0) or we obtain S ′(ϕ) for the values

ϕ = 0, ϕ = π
2
, we always assume e′

3
6= ± MP∣∣MP

∣∣ .

Line congruences whose straight lines are directed by e′
3

= ± MP∣∣MP
∣∣ have been studied by

N.K. Stephanidis [3], L. Vanhecke, L. Vermeire [4] and G. Stamou [2].

We suppose now, that the line congruence S is isotropic. Then we have

l = n, m = 0 ∀(u, v) ∈ G. (2.44)

The relations (2.31), (2.37), because of (2.44), can be written as

k′ =
l

D
(a sin ϕ − b cos ϕ) , (2.45)

b′ = − l

D
. (2.46)

Besides, by making use of (2.45), (2.46), from (1.12), (2.39) we conclude

Proposition 2.1 Let S, S ′(ϕ) be orthogonal line congruences with the same middle surface.

If S is an isotropic line congruence, then

k′ = −
〈
MP, M ′P

〉
(2.47)

is valid.

(A) The line congruence S ′(ϕ) is parabolic iff

k′ = 0 ∀(u, v) ∈ G. (2.48)

According to the conclusion of Remark 2.1 we have e′
3
6= MP∣∣MP

∣∣ ⇐⇒ a sin ϕ − b cos ϕ 6= 0

∀(u, v) ∈ G. From this and the relations (2.45), (2.48), we can get the following:

Proposition 2.2 If S is an isotropic line congruence, then there is no parabolic line congru-

ence orthogonal to S sharing the middle surface with S.

(B) The line congruence S ′(ϕ) is isotropic iff

l′ = n′, m′ = 0 ∀(u, v) ∈ G. (2.49)

Taking into account the relations (2.23), (2.24), (2.27), (2.44), we derive from (2.49)

l =
1

D
(a sin ϕ − b cos ϕ) , aΓ + b∆ = 0. (2.50)

Then, by virtue of (2.5), (2.16), the equations (2.50) lead to the



P. Koltsaki, D. Papadopoulou: Orthogonal Line Congruences with Common Middle Surface 129

Proposition 2.3 Let S be an isotropic line congruence. The isotropic line congruences

S ′(ϕ), which are orthogonal to S and have the same middle surface with S, are defined by

the equations

l∇1ϕ + ql + a = 0, l∇2ϕ − q̃l + b = 0.

(C) The line congruence S ′(ϕ) is normal iff h′ = 0 ∀(u, v) ∈ G. Using the relations (2.5),
(2.16), (2.32), (2.44) and taking into account the result of the second equivalence in (2.41),
we deduce

Proposition 2.4 If S is an isotropic line congruence, then the normal line congruences S ′(ϕ),
which are orthogonal to S and have the same middle surface with S, are defined by the

equations

l∇1ϕ + ql − a = 0, l∇2ϕ − q̃l − b = 0.

3. Coincided middle envelope and middle surface

In this paragraph, we consider that the middle envelope M(u, v) of the line congruence S
coincides with its middle surface P (u, v). In other words P (u, v) = M(u, v) ∀(u, v) ∈ G. This
makes the line congruence S to be the normal line congruence of a minimal surface P (u, v).
Therefore we have

a = b = 0, 2h = l + n = 0, r1 + r2 = 0 ∀(u, v) ∈ G. (3.1)

It is well-known [3, p. 324] that in such a case, there are exactly two line congruences S ′,
S ′′ orthogonal to S, the middle surface of which coincides with the minimal surface P (u, v).
Assuming, without loss of generality, an S−canonical frame, i.e., m ≡ 0, the line congruences
S ′ and S ′′ are defined for the values ϕ = 0 and ϕ = π

2
respectively.

Taking into account (1.6), (2.1) and substituting ϕ = 0 in the relations (2.2), (2.3), (2.5),
(2.12)–(2.16) we deduce for the line congruence S ′

e′
1

= e3, e′
2

= −e2, e′
3

= e1, (3.2)

ω′

31
= −ω31, ω′

32
= −ω12, ω′

12
= −ω32, (3.3)

ω′

31
∧ ω′

32
= −q̃ ω31 ∧ ω32. (3.4)

Similarly, for the value ϕ = π
2
, we obtain that for the line congruence S ′′ the relations

e′′
1

= e3, e′′
2

= e1, e′′
3

= e2, (3.5)

ω′′

31
= −ω32, ω′′

32
= −ω12, ω′′

12
= ω31, (3.6)

ω′′

31
∧ ω′′

32
= −q ω31 ∧ ω32 (3.7)

are valid. Considering ϕ = 0 (resp. ϕ = π
2
), the condition (2.17), for which the differential

forms ω′

31
, ω′

32
(resp. ω′′

31
, ω′′

32
) are linearly independent, becomes

q̃ 6= 0 (resp. q 6= 0) ∀(u, v) ∈ G.

By (3.2), (3.5), it is obvious that the line congruences S ′, S ′′ are directed by the vectors
e1(u, v) and e2(u, v) respectively. They are parabolic congruences and their straight lines are
tangent to the asymptotic lines of P (u, v) [3, p. 324].
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Proposition 3.1 The following properties are valid

(i) h′ = −h′′, where h′ and h′′ are the mean curvatures of S ′ and S ′′ respectively.

(ii) 2z = 4z′ = 4z′′, where 2z′ and 2z′′ are the limit distances of S ′ and S ′′ respectively.

(iii) k = −4h′2 = −4h′′2.

Proof: From the equations (2.5), for the constant values 0 and π
2

of ϕ, we find

Γ = q̃, ∆ = q, (3.8)

meanwhile, by (2.16) for ϕ = 0 (resp. ϕ = π
2
) and by applying (3.8), we have

D = −q̃ (resp. D = −q). (3.9)

Besides, taking into account the equations (3.1), (3.8), (3.9), the relations (2.23), (2.24), (2.27)
for ϕ = 0 become

m′ = 0, (3.10)

n′ = 0, (3.11)

l′ = l = −n. (3.12)

Similarly, for ϕ = π
2
, we obtain

m′′ = 0, (3.13)

n′′ = 0, (3.14)

l′′ = n = −l. (3.15)

(i) It is easily proved from the equation (2.29), by virtue of (3.11), (3.12), (3.14), (3.15).

(ii) Applying the formula (1.10) to S ′, S ′′ it follows

2z′ = 2
√

h′2 − k′, (3.16)

2z′′ = 2
√

h′′2 − k′′, (3.17)

where k′, k′′ denote the curvatures of S ′, S ′′ respectively. However S ′and S ′′ are parabolic
line congruences. Hence we have

k′ = k′′ ≡ 0. (3.18)

Using the relations (3.16), (3.17), (3.18) and the property (i) we obtain

2z′ = 2z′′. (3.19)

Since m = 0 and 2h = l + n = 0 ∀(u, v) ∈ G, the relation (1.10) becomes 2z =
√

4l2.
Moreover, because of (2.29), (3.11), (3.12), (3.16), (3.18) we have

2z = 2
√

l2 = 2
√

(l′ + n′)2 = 4
√

h′2 = 4z′.

Therefore
2z = 4z′, (3.20)

which, using (3.19), can turn into
2z = 4z′ = 4z′′. (3.21)
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(iii) From (1.10) again, by means of (3.1), (3.16), (3.18), (3.20) we find that

k = −z2 = −(2z′)2 = −4h′2. (3.22)

The latter, via conclusion (i), becomes

k = −4h′2 = −4h′′2. (3.23)

Remark 3.1. The middle surface P (u, v) of the line congruence S is the focal surface of the
parabolic line congruences S ′and S ′′. For the curvature K of P (u, v) we have K = −1/(2z′)2,
which, by making use of (3.16), (3.23), can be written

K = − 1

4h′2
.

Hence, according to the property (iii) of the Proposition 3.1 K = 1/k. This result is already
known, since S is a normal line congruence of a minimal middle surface.

Now, we assume an arbitrary point P on the middle sur-
face P (u, v) and the lines g, g′, g′′ of the line congruences
S, S ′, S ′′ respectively that pass through P . Let Zi, Z ′

i,
Z ′′

i , i = 1, 2, be the limit points of g, g′, g′′ respectively
(see Fig. 1). Since S is the normal line congruence of
P (u, v), the middle plane of S and the tangent plane Π
to the surface P (u, v) at the point P coincide. The lines
g′, g′′ lie on Π, they are perpendicular to each other and
the points Z ′

i, Z ′′

i , i = 1, 2, via conclusion (ii) of the
Proposition 3.1, define a square. In addition, the line
g is perpendicular to Π and the limit points Z1, Z2 of
g are symmetrical to Π. As a consequence, taking into
account (3.21), (3.22), we have the following

Proposition 3.2 The points Z1, Z ′

i, Z ′′

i and Z2, Z ′

i,

Z ′′

i , i = 1, 2, define two canonical square pyramids P1,

P2, which are symmetrical to the middle plane of the

line congruence S. The center of their common base

Z ′

1
Z ′′

1
Z ′

2
Z ′′

2
is the middle point P . The length of its di-

agonals as well as the heights from the base to the apex

of P1, P2 are equal to the semi limit distance of S.

Figure 1: Two square pyramids,
symmetrical to the middle plane

of the line congruence S

We denote with d the height from the base to the apex Z1 (or Z2), with υ the slant
height of P1, P2 and with λ the length of a side of the base of P1, P2 (Fig. 1). According to
Proposition 3.2 and the property (ii) of Proposition 3.1

d2 = z2 = −k, (3.24)

υ2 = −9

8
k, (3.25)

λ2 = −k

2
(3.26)
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are valid. Thus:
The lateral surface area E and the volume V of each of the pyramids P1, P2 are given by the

formulae

E = −3

2
k, (3.27)

V =
1

6
(−k)

3

2 . (3.28)

However, K = 1/k holds. Thus, the relations (3.27), (3.28) may be written

E = − 3

2K
, (3.29)

V =
1

6(−K)3/2
. (3.30)

We focus now on the middle envelopes M ′(u, v) and M ′′(u, v) of the line congruences S ′

and S ′′ respectively. Setting ϕ = 0 in the relations (2.36), (2.37) and using (2.5), (2.6), (3.1)
we obtain from (2.39)

M ′P =
l

q̃
(e2 + qe3). (3.31)

Similarly, setting ϕ = π
2
, we find

M ′′P =
l

q
(e1 + q̃ e3). (3.32)

An immediate consequence of the relations (3.31), (3.32) is

Proposition 3.3 The formulae

k = −
〈
M ′P , M ′′P

〉
, (3.33)

∣∣M ′M ′′

∣∣2 =
∣∣M ′P

∣∣2 +
∣∣M ′′P

∣∣2 + 2k (3.34)

are valid.
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