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Abstract. In this article we find formulas for metrics on three-dimensional point
lattices which count the number of steps required connect a given lattice point
to the origin. Such formulas are previously known for the simple cubic lattice
and the face-centered cubic lattice. We provide analogous formulas for the simple
hexagonal lattice and the body-centered cubic lattice.
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1. Introduction

A point lattice L is a Z-module of the form
L=A{av+ -+ ayw,|a; € Z}

where vy, v9, ..., v, € R" are linearly independent. B = {vy,...,v,} is a basis of the lattice.
A given basis B is Minkowski-reduced if vy is the shortest vector in B and for 2 < i < n, v;
is the shortest vector in £ such that {vq,...,v;} may be extended to a basis of L. A lattice
point (ay,...,a,) is defined by (ay,...,a,) = ajv; + - - - + a,v, where a; € Z. Given a lattice
point P € L, the Voronoi cell containing P is the set

V(P)={zeR": ||l = P| < ||z —Q| for all Q € L}

where || || is the usual Euclidean metric on R". For a three-dimensional point lattice, we define
two lattice points to be neighbours if their Voronoi cells share a face (note that this definition
is easily extended to any dimension). A step in a lattice is a straight line segment adjoining
two neighbouring lattice points. Fig. 1 illustrates these definitions for a 2-dimensional lattice.

By a result of FEDOROV, there are only five combinatorially distinct convex polyhedra
(Fig. 2) that tessellate 3-space by translation [3]. These five polyhedra are called parallelo-
hedra. A correspondence between monohedral tilings of space by translation and lattices can
be established: Given a monohedral tiling of space by translation, the prototile of this tiling
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Figure 1: At left is a two-dimensional point lattice. In the middle is the Voronoi tessellation
of that lattice. At right, the neighbours of a central lattice point are connected by steps.

is one of FEDOROV’s five parallelohedra and the centroids of the tiles in such a tessellation
form a lattice. Conversely, given a lattice, the corresponding Voronoi tessellation is a mono-
hedral tiling of space by translation because lattices are known to be translation invariant.
This correspondence limits the scope of our discussion to at most five distinct lattices. We
note that under our definition of neighbours, the centroids of the tessellations of space by
rhombic dodecahedra and by elongated dodecahedra give lattices that are, for our purposes,
equivalent in the sense that the points of both of these lattices both have twelve neighbours
and the geometry of the lattices are virtually the same; one being a “stretched” copy of the
other. For this reason, we do not consider these two cases separately. Under our definition of
neighbours, we will consider the following four distinct lattices.

e The simplest of these is the simple cubic lattice (sc) which arises as the centroids of the
tessellation of space by cubes meeting face-to-face and vertex-to-vertex. Each simple
cubic lattice point has six neighbours. A Minkowski-reduced basis for this lattice is the
standard basis {(1,0,0), (0,1,0), (0,0,1)}.

e The simple hexagonal lattice (sh) is the lattice formed from the centroids of the tessel-
lation of space by hexagonal prisms. Each simple hexagonal lattice point has eight neigh-

bours. A Minkowski-reduced basis for this lattice is {(1, 0, 0), <1/2, V3/2, O>, (0, 0, 1)}

e The face-centered cubic lattice (fcc) is formed from the centroids of the tessellation of
space by rhombic dodecahedra. Each point in this lattice has twelve neighbours. A
Minkowski-reduced basis for this lattice is

{<1, 0,0, (1/2,V3/2,0), (1/2, 1/(2V/3), M)}.

e The body-centered cubic lattice (bee) is the set of centroids of a tessellation of space by
truncated octahedra. A Minkowski-reduced basis for this lattice is

{(1,1, 1), (2,0,0), (0,2,0)},

although we choose to work with {(2, 0, 0), (0, 2, 0), (1, 1, 1)} instead for conve-
nience. The usual notion of neighbours in bee (like the one chemists use) puts eight
neighbours around each lattice point. We will call this version bce-8. But, in keeping
with the Voronoi cell motivated definition of neighbour given in this paper, we will con-
sider another possibility where there are fourteen neighbours about each point; we call
this version bee-14. We stress that as point lattices, bee-8 and bee-14 are identical, the
difference between the two being in how neighbours are defined.

The results of this paper concern finding metrics on these lattices which measure the
minimum number of steps necessary to connect two given lattice points (or, equivalently, the
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Figure 2: FEDOROV’s space-filling parallelohedra: cube, hexagonal prism,
rhombic dodecahedron, elongated dodecahedron, and truncated octahedron

minimum number of steps necessary to connect a point to the origin). We point out that any
3-dimensional lattice is simply a stretched version of one of the four given above, so finding
metrics for these four lattices give a complete characterization of metrics for 3-dimensional
lattices (using our definitions for neighbors and steps).

2. Known results

Metrics which measure the minimum number of steps necessary to connect a given lattice
point to the origin are known for sc and fcc [6]. The (well-known) formula for sc is

de(,y, 2) = |2 + [y[ + [2]

where the lattice point (z,y, z) is expressed in terms of the standard basis for sc. For fec, if
(x,y, z) is expressed in terms of the Minkowski-reduced basis

B—{(1,0.0, (12 V3/2,0), (12 1/2V3), VI3,

then the desired metric is
dicc(r,y, 2) = max {|z|, |y], [2], |z +yl, |z + 2|, |y + 2], [z +y + 2[}.

As we will see in bce, simpler expressions for lattice metrics can be obtained if we do not
require that lattice points be expressed in terms of a basis. For fcc in particular, if one uses the
Conway-Sloan characterization [2] of fcc as the set of point (z,y, z) € Z? such that x +y + 2
is even, we can derive an even simpler metric for fcc:

3 1
drec(w,9,2) = max {[al, lyl, |21, 5 (2] + gl + |2 } .

The authors are unsure if this formula for d is previously known, but point out that formula
for d follows easily from the formula for d.

3. The simple hexagonal lattice

The basis we will use for this lattice is {(1, 0, 0), (1/2, v/3/2,0), (0, 0, 1)} which is clearly
Minkowski-reduced. In terms of this basis, the elght neighbours of the origin (corresponding
to the faces of the hexagonal prism) are (£1,0,0), (0,+£1,0), (£1,F1,0), and (0,0, £1). It
is not difficult to show (using the same approach appearing in the next section) that taking
the metric given for the hexagonal plane [5] and adding |z| yields a metric for the simple
hexagonal lattice:

don(, . 2) = max {[a], [y, |o + y|} + |2
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4. Body-centered cubic lattice

4.1. bece-14

A basis for bee-14 is {(2,0,0), (0,2,0), (1,1, 1)} where the fourteen neighbours of the origin
are (£1,0,0), (0,£1,0), (£1,4+1,41), and (0,0,£2). We will give a formula for a metric
on bee-14 in terms of this basis later, but it turns out that we can state a simpler formula
for this metric if we use the Conway-Sloan description of fcc [2] to model bee. As point
sets, the only difference between fcc and bee is that bee is a slightly vertically stretched
copy of fcc. Ignoring the distance between the points in the ambient space, what really
differentiates fcc and bee is how neighbours are distributed around points in these lattices.
Our approach will be to use the Conway-Sloan description of the point set fce to model bee,
but we will use the neighbours corresponding to bce-14. The Conway-Sloan description of fcc
is {(z,y,2) € Z*: x+y—+ zis even}. To turn fcc in to a lattice combinatorially equivalent to
bee-14, we declare that the fourteen adjacent points to (0,0,0) are (+1,+£1,0), (£1,0,+1),
(0,£1,£1), (0,0, £2).
Define

1
dia(w,y,2) = max {Jal, yl, 5 (12l + Iyl + 2] }

where (7,y,2) € Z* and x + y + 2 is even. As we will prove, this function measures the
minimum number of edges required to connect (z,y,z) to the origin. We point out that if
you remove the |z| from the metric for fcc given in [6], then you get the metric above; this
demonstrates the similarity between the two lattices. The absence of the |z| term exhibits the
efficiency of using vertical steps (0,0, 42) in the bee-14. Observe that if |z| > |x| + |y, then

max {|x\, lyl, % (|| + |y| + \z|)} = % (|z| + |y| + |z]). This observation will be rather useful

in the proof the lemma we state below.
For simplicity, the following lemma is proven for nonnegative z. The proof for negative z
is similarly proven.

Lemma 1 Suppose di4(x,y,z) =n with z > 0 and n > 0. Then (x,y, z) neighbours a point
(a,b,c) for which dy4(a,b,c) =n — 1.

Proof: We will consider two cases corresponding to the conditionality of di4: z > |x| + |y| and
z < x|+ |y
1. Suppose z > |z|+ |y|. We will consider two subcases of this case where z > 2 and z < 1.

(a) Suppose z > 2.
i. Suppose z —2 > |z| + |y|. Then

1
d(z,y,2=2) = 5 (e + 1yl + |2 = 2])
1
= (el +lyl+]=]) =1
= dy(r,y,z) — 1.
ii. Suppose z — 2 < |z| + |y|. Note that since we have z > |z| + |y|, then either
z=|z|+ |y| or z — 1 = |z| + |y|. But, since x + y + z is even, then we must

have z = |z| + |y|. We will find it convenient to consider the further subcases
that either x or y is zero or x and y are both nonzero.
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A. Suppose x and y are both nonzero. Then
1
dia(e,y,2—2) = max{el, lyl, 3 (2l + [y + |2 — 2))}

1
= max {Jal, lyl, & (2l + o] + ] + lyl) 1}
= max{Jal, |yl 2l + Jy] - 1}
= ol + 1yl - 1,

This last equality is true since neither |z| nor |y| are zero here. Also,
observe that

1
d(z,y,2) = 5 (Jz|+ |yl + [2])

1
= 5 (el +ly[ + [zl + ly])
= |z[+lyl.

Therefore we see that diy(z,y, z — 2) = ds(x,y,2) — 1.
B. Suppose x = 0 or y = 0. Without loss of generality, suppose y = 0 and
x # 0 (both z and y cannot be zero since z = |z| + |y| and z > 0.) Then
z = |zl
If 2 =ua, then |z — 1| > |z — 1|+ |0], so
1

bz —1,0,2—1) = (o~ 1[40+ |z — 1]

= %(z—1+z—1)

= z—1

= d14(.T,O,Z) — 1.

Similarly, if 2 = —x, we can argue that dy4(z+1,0,2—1) = dy4(z,0,2) — 1.

(b) Suppose z < 1. Since z = 0 implies that x = y = 0 which violates our overall
assumption that the point (x,y, z) has distance greater than zero, we have z = 1.
The only points that satisfy the inequality 1 = z > |z| + |y| with x + y + z even
are (1,0,1), (—1,0,1), (0,1,1), and (0,—1,1). Choose (a,b,c) = (0,0,0).
2. Suppose z < |z| 4 |y|. This case can be broken into three subcases: z =0, z > 1 and
|z| = |y|, and z > 1 and |z| # |y|.

(a) The cases (z =0) and (z > 1 and |z| = |y|) can be handled simultaneously. Since
not both x and y can be zero in either case, we have |z|, |y| > 1. The point (a, b, ¢)
that will result in a distance of one less than (z,y,z) depends on the signs of x
and y. If z > 0 and y > 0, then

1
du(e =1y —1,2) = max{le 1], ly=1], 5 (jz =1+ ]y — 1|+ 2])}
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Similarly, if z > 0 and y < 0 then dyy(z — L,y + 1,2) = dyu(z,y,2) — 1, if 2 < 0
and y > 0 then dyy(x + 1,y — 1,2) = diu(z,y,2) — 1, and if x < 0 and y < 0 then
d14(37 + 17y =+ 17Z) = d14(37,y, Z) — 1.

(b) Assume z > 1 and |z| # |y|. Without loss of generality, assume |z| > |y|. We
consider the cases x > 0 and x < 0 separately: If z > 0, then

1
d14(37—17y72—1) = max{‘x_l‘, ‘y‘a §(|$—1‘+‘y‘+|2—1|>}

= max{je = 1], 3 (o = 1+ |yl + |2 - 1)}

{
= max{x 1, = x—1+|y|+z—1)}
= max{\x|—1 5 (1ol + Iyl +12) = 1}
= max{Jal, 5 |x\+\y\+|z\>}
— max {Jal, |yl |x|+|y|+|z|>}
= dy(z,y,2) —
If x < 0 then one similarly shows dy4(z + 1,y,2 — 1) = dws(x,y, z) — 1. O

Theorem 1 In bce-14, the minimum number of steps required to form a path from the point
(x,y, z) to the origin is given by dy4.

Proof:  Using Lemma 4.1 we are able to induct on n = dy4(z,y, z). That is, we show that if
dy4(x,y,z) = n, then (x,y, z) can be reached from the origin in no fewer than n steps.

Suppose n = 1. We will argue that the points (x,y, z) that have diy(z,y,z) = 1 are
exactly the points neighbouring the origin. For this, if |z| > |z| + |y|, then the metric gives
|z + |y +[2] = 2. Now

2l = fa]+ y]
2z = fal+ Jy[ +[2] =2
lz| > 1.

The points that satisfy |z| > 1 and |z|+|y|+|z| = 2 are (0,0,+2), (0,41, £1), and (£1,0, £1).
On the other hand, if |z] < |z| + |y| and

1
1= max {fal, Jyl, § (lal + Io] + 12D}

then |z| <1 and |y| < 1. The cases where either z = 0 or y = 0 yield no solutions. If |z| =1
and |y| = 1, then |z| < 2. However, z # +1 as the sum |z| + |y| + |2| is not even. Thus z =0
and we have the solutions (£1,+1,0).

Let n > 1 and suppose that for 1 < k < n — 1, if a lattice point (a,b,c) satisfies
dy4(a,b,c) = k, then (a, b, ¢) is no fewer than k steps from the origin. Let (z,y, z) be a lattice
point for which dy4(z,y,z) = n. By Lemma 4.1 there is a neighbouring lattice point (a, b, ¢)
for which dy4(a,b,¢) = n — 1. By the inductive hypothesis, (a,b,c) is no fewer than n — 1
steps from the origin, and because (a, b, ¢) neighbours (z,y, z), we have (x,y, z) is at most n
steps from the origin.
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To see that (z,y, z) is no fewer than n steps from the origin, suppose to the contrary that
(x,y,z) is n — 1 or less steps from the origin. Then by inductive hypothesis, di4(z,y, 2) # n,
contrary to our choice of (z,y, 2). O

The metric found above using the Conway-Sloane description can be converted to yield
a metric for bee-14 relevant to the basis given at the opening of the section. The formula in
terms of that basis is

= 1
dua(w,y,2) = max {Jz +y+ 2|, [ = yl, 3 (o +y+ 2] +|o —yl + 2D}

4.2. bce-8

In a manner similar to the way in which we used the Conway-Sloan description of fcc to model
bee-14, we model bee-8 as the set of points in Z2 where the coordinates are all odd or they are
all even and the neighbours of the origin include the eight points (+1,£1,+1). We proceed
to show that

d8<x7y72) = max{\x|, |y|7 |Z‘}

is a metric on bce-8 which measures the minimum number of steps necessary to connect
(x,y, z) to (0,0,0).

Theorem 2 In bce-8, the minimum number of steps required to form a path from the point
(x,y, z) to the origin is given by ds.

Proof:  We induct on n = dg(z,y,z). If n =0, then (z,y, z) is the origin. If n = 1, then
all coordinates of (z,y, z) must be odd yielding all eight points neighbouring the origin. The
minimum number of steps required to connect these points to the origin is indeed 1.

Now suppose that dg(z,y,z) = n > 2. We will first show that (z,y, z) can be connected
to the origin using n steps by finding a neighbour of (z,y,z) a distance of n — 1 from the
origin and then we will establish that n is the minimum number of steps required to connect
(x,y, z) to the origin. To find a point that is one step closer to the origin than (z,y, z), if
x > 0, then let the z-coordinate of the new point be x — 1 so that |z — 1| = || — 1. If
x < 0, then let the z-coordinate of the new point be x + 1 so that |x + 1| = |z| — 1. Similarly
make choices for all nonzero coordinates. If (z,y, z) has all nonzero coordinates, then upon
appropriate choice of signs we have

ds(r 1, y+1,2£1) = max{lzx 1|, [yE£1], |z 1]}
= max{|x|—1, |y|_1a |Z|_1}
= max{|x\, ‘y‘a |Z‘}—1
= n—1.
For points (x,y, z) that have zero coordinates, not all coordinates will be zero since n > 2.
In fact, one coordinate’s absolute value will be greater than or equal to 2. Without loss of
generality, say x = 0 and |z| > 2. Then consider
ds(r+1,y+1,2+1) = max{|lz+ 1], [y 1], |z £ 1]}
= max{l, ‘yil‘v ‘Z|—1}
= n—1.
To see that no fewer than max{|z|, |y|, |z|} steps can connect (z,y,z) to the origin, notice

that making one step in bee-8 changes all coordinates by £1. Thus any point (z,y, z) that is
n steps from the origin satisfies x| < n, |y| < n, and |z| < n so that max{|z|, |y|,|z|} < n. O
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5. Final remarks

In our definition of neighbours, we required that neighbouring points have Voronoi cells that
share a face. This definition fits with the common notion of neighbours for Z3; six neighbours
corresponding to the centers of cubes placed face-to-face around a centrally placed cube. We
could, however, define points to be neighbours if their Voronoi cells intersect. For example,
under this proposed definition, every point in Z3 would have 26 neighbours (think of a Rubik’s
Cube).

Open Question 1 What are the metrics of the three-dimensional lattices if we adjust our
notion of neighbours to mean that Voronoi cells simply intersect?

The answer for fcc is given in [6]. Under the new formulation of adjacency there are
eighteen neighbours at every point. The metric for the McAndrew-Osborne characterization
is

d18<x7y7z) = max{|a:\, ‘y‘a |Z‘, \:U—i—y—i—z\}

and the metric for the Conway-Sloane characterization is
dis(x,y, 2) :max{%\ —x+y+ 2, %\x—y+z|, %|x+y—z\, l\x+y+z\}.
We point out that this last metric can be simplified to the much nicer form
dus(,y,2) = 3 (|2l + |y| + |2])

Open Question 2 Using our definition of neighbours, classify the distinct four-dimensional
point lattices and find metrics which measure the minimum number of steps required to
connect a lattice point to the origin.
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