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Abstract. We study an extension of the problem of construction of a triangle
from the feet of its internal angle bisectors. Given a triangle ABC, we give a conic
construction of points which are the incenter or excenters of their own anticevian
triangles with respect to ABC. If the given triangle contains a right angle, a very
simple ruler-and-compass construction is possible. We also examine the case when
the feet of the three external angle bisectors are three given points on a line.
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1. The angle bisectors problem

In this note we address the problem of construction of a triangle from the endpoints of its
angle bisectors. This is Problem 138 in Wernick’s list [3]. The corresponding problem of
determining a triangle from the lengths of its angle bisectors has been settled by Mironescu

and Panaitopol [2].
Given a triangle ABC, we seek, more generally, a triangle A′B′C ′ such that the lines A′A,

B′B, C ′C bisect the angles B′A′C ′, C ′A′B′, A′C ′B′, internally or externally (see Fig. 1). In
this note, we refer to this as the angle bisectors problem. With reference to triangle ABC,
A′B′C ′ is the anticevian triangle of a point P , which is the incenter or an excenter of triangle
A′B′C ′. It is an excenter if two of the lines A′P , B′P , C ′P are external angle bisectors and
the remaining one an internal angle bisector. For a nondegenerate triangle ABC, we show in
§ 3 that the angle bisectors problem always has real solutions, as intersections of three cubics.
We proceed to provide a conic solution in §§ 4, 5, 6. The particular case of right triangles has
an elegant ruler-and-compass solution which we provide in § 7. Finally, the construction of
a triangle from the feet of its external angle bisectors will be considered in § 8. In this case,
the three feet are collinear. We make free use of standard notations of triangle geometry (see
[4]) and work in homogeneous barycentric coordinates with respect to ABC.
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Figure 1: The angle bisectors problem

2. The cubic Ka

We begin with the solution of a locus problem: to find the locus of points at which two of the
sides of a given triangle subtend equal angles.

Proposition 1 Given a triangle ABC with b 6= c, the locus of a point Q for which QA is
a bisector of the angles between QB and QC is the isogonal conjugate of the A-Apollonian
circle.

Proof: The point A lies on a bisector of angle BQC if and only if cos AQB = ± cos AQC,
i.e., cos2 AQB = cos2 AQC. In terms of the distances, this is equivalent to

(QA4 − QB2 · QC2)(QB2 − QC2) − 2QA2(b2 · QB2 − c2 · QC2)
− 2(b2 − c2)QB2 · QC2 + b4 · QB2 − c4 · QC2 = 0.

Let Q have homogeneous barycentric coordinates (x : y : z) with respect to triangle ABC.
We make use of the distance formula in barycentric coordinates in [4, § 7.1, Exercise 1]:

QA2 =
c2y2 + (b2 + c2 − a2)yz + b2z2

(x + y + z)2

and analogous expressions for QB2 and QC2. Substitution into (1) leads to the cubic

Ka : x(c2y2 − b2z2) + yz((c2 + a2 − b2)y − (a2 + b2 − c2)z) = 0

after canceling a factor
−(a + b + c)(b + c − a)(c + a − b)(a + b − c)

(x + y + z)4
· x . Note that the factor x can

be suppressed because points on BC do not lie on the locus.
We obtain the isogonal conjugate of the cubic Ka by replacing, in its equation, x, y, z

respectively by a2yz, b2zx, c2xy. After clearing a factor b2c2x2yz, we obtain

(b2 − c2)(a2yz + b2zx + c2xy) + a2(x + y + z)(c2y − b2z) = 0.

This is the circle through A = (1 : 0 : 0) and (0 : b : ±c), the feet of the bisectors of angle A

on the sideline BC. It is the A-Apollonian circle of triangle ABC, and is the circle orthogonal
to the circumcircle at A and with center on the line BC (see Fig. 2).

Remark. If b = c, this locus is the circumcircle.
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Figure 2: The cubic Ka and the A-Apollonian circle

3. Existence of solutions to the angle bisectors problem

Let P = (x : y : z) be a point whose anticevian triangle A′B′C ′ is such that the line A′A

is a bisector, internal or external, of angle B′A′C ′, which is the same as angle CA′B. By
Proposition 1 with Q = A′ = (−x : y : z), we have the equation Fa = 0 below. Similarly, if
B′B and C ′C are angle bisectors of C ′B′A′ and A′C ′B′, then by cyclic permutations of a, b,
c and x, y, z, we obtain Fb = 0 and Fc = 0. Here,

Fa : = −x(c2y2 − b2z2) + yz
(

(c2 + a2 − b2)y − (a2 + b2 − c2)z
)

,

Fb : = −y(a2z2 − c2x2) + zx
(

(a2 + b2 − c2)z − (b2 + c2 − a2)x
)

,

Fc : = −z(b2x2 − a2y2) + xy
(

(b2 + c2 − a2)x − (c2 + a2 − b2)y
)

.

Theorem 2 The angle bisectors problem for a nondegenerate triangle ABC always has real
solutions, i.e., the system of equations Fa = Fb = Fc = 0 has at least one nonzero real solution.

Proof: This is clear for equilateral triangles. We shall assume triangle ABC non-equilateral,
and B > π

3
> C. From Fa = 0, we write x in terms of y and z. Substitutions into the other

two equations lead to the same homogeneous equation in y and z of the form

c2
(

(c2 + a2 − b2)2 − c2a2
)

y4 + · · · + b2
(

(a2 + b2 − c2)2 − a2b2
)

z4 = 0. (1)

Note that

c2((c2 + a2 − b2)2 − c2a2) = c4a2(2 cos 2B + 1) < 0,

b2((a2 + b2 − c2)2 − a2b2) = a2b4(2 cos 2C + 1) > 0.

It follows that a nonzero real solution (y, z) of (1) exists, leading to a nonzero real solution
(x, y, z) of the system Fa = Fb = Fc = 0.

Fig. 3 illustrates a case of two real intersections. For one with four real intersections, see
§ 6.
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Figure 3: The cubics Fa = 0, Fb = 0 and Fc = 0

4. The hyperbola Ca

The isogonal conjugate of the cubic curve Fa = 0 is the conic

Ca : fa(x, y, z) := a2(c2y2 − b2z2) + b2(c2 + a2 − b2)zx − c2(a2 + b2 − c2)xy = 0

(see Fig. 4).

Proposition 3 The conic Ca is the hyperbola through the following points: the vertex A,
the endpoints of the two bisectors of angle A, the point X which divides the A-altitude in
the ratio 2 : 1, and its traces on sidelines CA and AB.

Proof: Rewriting the equation of Ca in the form

a2(b2 − c2)yz + b2(2a2 − b2 + c2)zx − c2(2a2 + b2 − c2)xy + a2(x + y + z)(c2y − b2z) = 0,

we see that it is homothetic to the circumconic which is the isogonal conjugate of the line

(b2 − c2)x + (2a2 − b2 + c2)y − (2a2 + b2 − c2)z = 0.

This is the perpendicular through the centroid to BC. Hence, the circumconic and Ca are
hyperbolas. The hyperbola Ca clearly contains the vertex A and the endpoints of the A-
bisectors, namely, (0 : b : ±c). It intersects the sidelines CA and AB at

Y = (a2 : 0 : c2 + a2 − b2) and Z = (a2 : a2 + b2 − c2 : 0)

respectively. These are the traces of X = (a2 : a2 + b2 − c2 : c2 + a2 − b2), which divides the
A-altitude AHa in the ratio AX : XHa = 2 : 1 (see Fig. 5).

Remark. The tangents of the hyperbola Ca (i) at (0 : b : ±c) pass through the midpoint of
the A-altitude, (ii) at A and X intersect at the trace of the circumcenter O on the sideline
BC.
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Figure 4: The cubic Fa = 0 and its isogonal conjugate conic Ca
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Figure 5: The hyperbola Ca

5. Conic solution of the angle bisectors problem

Suppose now P is a point which is the incenter (or an excenter) of its own anticevian triangle
with respect to ABC. From the analysis of the preceding section, its isogonal conjugate lies
on the hyperbola Ca as well as the two analogous hyperbolas

Cb : fb(x, y, z) := b2(a2z2 − c2x2) + c2(a2 + b2 − c2)xy − a2(b2 + c2 − a2)yz = 0,

and

Cc : fc(x, y, z) := c2(b2x2 − a2y2) + a2(b2 + c2 − a2)yz − b2(c2 + a2 − b2)zx = 0.

Since fa + fb + fc = 0, the three hyperbolas generate a pencil. The isogonal conjugates
of the common points of the pencil are the points that solve the angle bisectors problem.
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Theorem 2 guarantees the existence of common points. To distinguish between the incenter
and the excenter cases, we note that a nondegenerate triangle ABC divides the planes into
seven regions (see Fig. 6), which we label in accordance with the signs of the homogeneous
barycentric coordinates of points in the regions:

+ + +, − + +, − + −, + + −, + −−, + − +, −− +

In each case, the sum of the homogeneous barycentric coordinates of a point is adjusted to
be positive.

A

B C

+++

−++−+−

++−

+−−

+−+

−−+

Figure 6: Partition of the plane by the sidelines of a triangle

In the remainder of this section, we shall denote by εa, εb, εc a triple of plus and minus
signs, not all minuses.

Lemma 4 A point is in the εaεbεc region of its own anticevian triangle (with respect to ABC)
if and only if it is in the εaεbεc region of the medial triangle of ABC.

The isogonal conjugates (with respect to ABC) of the sidelines of the medial triangle
divide the plane into seven regions, which we also label εaεbεc, so that the isogonal conjugates
of points in the εaεbεc region are in the corresponding region partitioned by the lines of the
medial triangle (see Fig. 7).

Proposition 5 Let Q be a common point of the conics Ca, Cb, Cc in the εaεbεc region of
the partitioned by the hyperbolas. The isogonal conjugate of Q is a point whose anticevian
triangle A′B′C ′ has P as incenter or excenter according as all or not of εa, εb, εc are plus
signs.

6. Examples

Fig. 8 shows an example in which the hyperbolas Ca, Cb, Cc have four common points Q0, Qa,
Qb, Qc, one in each of the regions + + +, − + +, + − +, + + −. The isogonal conjugate P0

of Q0 is the incenter of its own anticevian triangle with respect to ABC (see Fig. 9).
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Figure 8: Pencil of hyperbolas with four real intersections

Fig. 10 shows the hyperbolas Ca, Cb, Cc corresponding to the cubics in Fig. 3. They have
only two real intersections Q1 and Q2, none of which is in the region +++. This means that
there is no triangle A′B′C ′ for which A, B, C are the feet of the internal angle bisectors. The
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Figure 9: P0 as incenter of its own anticevian triangle

isogonal conjugate P1 of Q1 has anticevian triangle A1B1C1 and is its A1-excenter. Likewise,
P2 is the isogonal conjugate of Q2, with anticevian triangle A2B2C2, and is its B2-excenter.
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Figure 10: Pencil of hyperbolas with two real intersections
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7. The angle bisectors problem for a right triangle

If the given triangle ABC contains a right angle, say, at vertex C, then the point P can be
constructed by ruler and compass. Here is an easy construction. In fact, if c2 = a2 + b2, the
cubics Fa = 0, Fb = 0, Fc = 0 are the curves

x ((a2 + b2)y2 − b2z2) − 2a2y2z = 0,
y ((a2 + b2)x2 − a2z2) − 2b2x2z = 0,

z(b2x2 − a2y2) − 2xy(b2x − a2y) = 0.
(2)

A simple calculation shows that there are two real intersections

P1 =
(

a(
√

3a − b) : b(
√

3b − a) : (
√

3a − b)(
√

3b − a)
)

,

P2 =
(

a(
√

3a + b) : b(
√

3b + a) : −(
√

3a + b)(
√

3b + a)
)

.

These two points can be easily constructed as follows. Let ABC1 and ABC2 be equilateral
triangles on the hypotenuse AB of the given triangle (with C1 and C2 on opposite sides of
AB). Then P1 and P2 are the reflections of C1 and C2 in C (see Fig. 11). Each of these
points is an excenter of its own anticevian triangle with respect to ABC, except that in the

case of P1, it is the incenter when the acute angles A and B are in the range arctan

√
3

2
< A,

B < arctan
2√
3

.
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Figure 11: The angle bisectors problems for a right triangle

Remark. The cevian triangle of the incenter contains a right angle if and only if the triangle
contains an interior angle of 120◦ angle (see [1]).

8. Triangles from the feet of external angle bisectors

In this section we make a change of notations. Fig. 12 shows the collinearity of the feet X, Y ,
Z of the external bisectors of triangle ABC. The line ℓ containing them is the trilinear polar
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of the incenter, namely,
x

a
+

y

b
+

z

c
= 0 . If the internal bisectors of the angles intersect ℓ at

X ′, Y ′, Z ′ respectively, then X, X ′ divide Y , Z harmonically, so do Y, Y ′ divide Z, X, and
Z, Z ′ divide X, Y . Since the angles XAX ′, Y BY ′ and ZCZ ′ are right angles, the vertices A,
B, C lie on the circles with diameters XX ′, Y Y ′, ZZ ′ respectively. This leads to the simple
solution of the external angle bisectors problem.

A

B C

IX

Y

Z

X′

Y ′

Z′

Figure 12: The external angle bisectors problem

We shall make use of the angle bisector theorem in the following form. Let ε = ±1. The
ε-bisector of an angle is the internal or external bisector according as ε = +1 or −1.

Lemma 6 (Angle bisector theorem) Given triangle ABC with a point X on the line BC.
The line AX is an ε-bisector of angle BAC if and only if

BX

XC
= ε · AB

AC
.

Here the left hand side is a signed ratio of directed segments, and the ratio
AB

AC
on the

right hand side is unsigned.
Given three distinct points X, Y , Z on a line ℓ (assuming, without loss of generality, Y

in between, nearer to X than to Z, as shown in Fig. 12), let X ′, Y ′, Z ′ be the harmonic
conjugates of X, Y , Z in Y Z, ZX, XY respectively. Here is a very simple construction of
these harmonic conjugates and the circles with diameters XX ′, Y Y ′, ZZ ′. These three circles
are coaxial, with two common points F and F ′ which can be constructed as follows: if XY M

and Y ZN are equilateral triangles erected on the same side of the line XY Z, then F and F ′

are the Fermat point of triangle Y MN and its reflection in the line (see Fig. 13).
Note that the circle (XX ′) is the locus of points A for which the bisectors of angle Y AZ

pass through X and X ′. Since X ′ is between Y and Z, the internal bisector of angle Y AZ
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Figure 13: Coaxial circles with diameters XX ′, Y Y ′, ZZ ′

passes through X ′ and the external bisector through X. Let the half-line Y A intersect the
circle (ZZ ′) at C. Then CZ is the external bisector of angle XCY . Let B be the intersection
of the lines AZ and CX.

Lemma 7 The point B lies on the circle with diameter Y Y ′.

Proof: Applying Menelaus’ theorem to triangle ABC and the transversal XY Z (with X on
BC, Y on CA, Z on AB), we have

AY

Y C
· CX

XB
· BZ

ZA
= −1.

Here, each component ratio is negative (see Fig. 12). We rearrange the numerators and
denominators, keeping the signs of the ratios, but treating the lengths of the various segments
without signs:

(

−AY

AZ

) (

−CX

CY

) (

−BZ

BX

)

= −1.

Applying the angle bisector theorem to the first two ratios, we have

Y X

XZ
· XZ

ZY
·
(

−BZ

BX

)

= −1.

Hence,
ZY

Y X
=

BZ

BX
, and BY is the internal bisector of angle XBZ. This shows that B lies on

the circle with diameter Y Y ′.

The facts that X, Y , Z are on the lines BC, CA, AB, and that AX ′, BY , CZ ′ are
bisectors show that AX, BY , CZ are the external bisectors of triangle ABC. This leads to
a solution of a generalization of the external angle bisector problem.

Let A be a point on the circle (XX ′). Construct the line Y A to intersect the circle (ZZ ′)
at C and C ′ (so that A, C are on the same side of Y ). The line AZ intersects CX and C ′X at
points B and B′ on the circle (Y Y ′). The triangle ABC has AX, BY , CZ as external angle
bisectors. At the same time, AB′C ′ has internal bisectors AX, B′Y , and external bisector
C ′Z (see Fig. 14).

We conclude with a characterization of the solutions to the external angle bisectors prob-
lem.
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Figure 14: Solutions of the external angle bisectors problem

Proposition 8 The triangles ABC with external bisectors AX, BY , CZ are characterized
by

(a − b) : (b − c) : (a − c) = XY : Y Z : XZ.

Proof: Without loss of generality, we assume a > b > c (see Fig. 12). The point Y is between
X and Z. Since AX and CZ are the external bisector of angles BAC and ACB respectively,

we have
BX

XC
=

−c

b
and

AZ

ZB
=

−b

a
. From these,

CX

BC
=

b

−(b − c)
and

AB

ZA
=

a − b

b
. Applying

Menelaus’ theorem to triangle XZB with transversal Y AZ, we have

XY

Y Z
· ZA

AB
· BC

CX
= −1.

Hence,
XY

Y Z
= −CX

BC
· AB

ZA
=

a − b

b − c
. The other two ratios follow similarly.
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